

OPPA European Social Fund Prague & EU: We invest in your future.

Modeling Error Explanation

Petr Křemen petr.kremen@fel.cvut.cz

FEL ČVUT

Modeling Error Explanation

Black-box methods

Algorithms based on CS-trees Algorithm based on Reiter's Algorithm

Modeling Error Explanation

- When an inference engine claims inconsistency of an (ALC) theory/unsatisfiability of an (ALC) concept, what can we do with it ?
- We can start iterating through all axioms in the theory and look, "what went wrong".
- ... but hardly in case we have hundred thousand axioms
- A solution might be to ask the computer to *localize the axioms causing the problem for us.*

i i i i i i i i i i i i i i i i i i i		
b <i>i</i> ⊻ ⊞		
Knowledge Base Repository	Narrative	Marking \
nowledge Base Repository KB http://krizik.felk.cvut.cz/generate	Cattle (From Wikipedia, the free encyclopedia) Cattle, commonly referred to as cows, are domesticated ungulates, a member of the subfamily Bovinae of	cow person
	the family dovidae. They are raised as leveloof, for meat (called beef and vaib, dany products (mild), learber and as drawpin harmals goulding carts, ploves and the like). In some courtiers, such as india, they are subject to religious ceremonies and respect. It is estimated that there are 1.4 billion head of cattle in the world today.[1]	
Concept Hierarchy\Role Hierarchy\ C T C animal B C vegetarian B C cow C C mad+cow	Control were wrightably identified by Controls Lineares is three appared apprices apprices. These were port sums, the Sumprase carelie, notifying maintry hope in Marks and Arab. So inducts, the search are been the Sing primigeness, the aurochts its ancestral to both zeba and European cattle. More recently these three have increasingly been grouped as to approximate using the name too for minimum tarruly. Bog primigeness indices and Bog primigeness primaginus. Complicating the matter is the ability of cattle to European cattle and ability that and the source and bogs and the source bogs European cattle and ability that and the source and the source and the source and the European cattle and ability that and the source and the source and the source and the energies and the ability that and the source and the source and the source and the energies and the ability that and the source and the source and the energies and the ability that and the source and the source and the energies and the ability that and the source and the source and the energies and the ability that and the source and the source and the energies and the ability that and the source and the source and the energies and the ability the source and the energies and the ability that and the source and the energies and the ability that and the source and the energies and the ability the source and the energies and the ability that and the source and the energies and the source and the source and the energies and the energie	
	nnot successfully be bred with water buffalo = ((V eats-(V part+ofanimai)) n (V eatsanimai) n animai) = ((3 eats-(3 part+of-sheep) n braini) n cow) = (3 eats-(3 part+of-sheep) n braini) n cow)	
B - C pet+owner B - C grownup B - C dog+lker B - C anmai+tover B - C anmai+tover B - C woman B - C dog+owner	Cault Carolus Linneus τ anmä+lver covr τ person person	
D-C leaf D-C haulage+company D-C haulage+company D-C bone D-C vehicle D-C vehicle D-C brain	gaur animal T	

Minimal unsatisfiability preserving subterminology (MUPS) is a minimal set of axioms responsible for concept unsatisfiability.

Example

Consider theory $\mathcal{K}_5 = (\{\alpha_1, \alpha_2, \alpha_3\}, \emptyset)$

- $\alpha_1 : Person \sqsubseteq \exists hasParent \cdot (Man \sqcap Woman) \sqcap \forall hasParent \cdot \neg Person,$
- α_2 : Man $\sqsubseteq \neg$ Woman,
- α_3 : Man \sqcup Woman \sqsubseteq Person.

Unsatisfiability of *Person* comes independently from two axiom sets (MUPSes), namely $\{\alpha_1, \alpha_2\}$ and $\{\alpha_1, \alpha_3\}$. Check it yourself !

Currently two approaches exist for searching all MUPSes for given concept:

black-box methods perform many satisfiability tests using existing inference engine.

- © flexible and easily reusable for another
 - (description) logic
- time consuming
- glass-box methods all integrated into an existing reasoning (typically tableau) algorithm.
 - \bigcirc efficient
 - © hardly reusable for another (description) logic.

- \bullet For \mathcal{ALC} there exists a complete algorithm with the following idea:
 - tableau algorithm for \mathcal{ALC} is extended in such way that it "remembers which axioms were used during completion graph construction".
 - for each completion graph containing a clash, the axioms that were used during its construction can be transformed into a MUPS.
- Unfortunately, complete glass-box methods do not exist for OWL-DL and OWL2-DL. The same idea (tracking axioms used during completion graph construction) can be used also for these logics, but only as a preprocessing reducing the set of axioms used by a black-box algorithm.

Black-box methods

- Let's have a set of axioms X of given DL and reasoner R for given DL. We want to find MUPSes for :
 - concept unsatisfiability,
 - theory (ontology) inconsistency,
 - arbitrary entailment.
- It can be shown (see [Kal06]) that w.l.o.g. we can deal only with *concept unsatisfiability*.
- Let's denote MUPS(C, Y) a subset MUPS(C, Y) ⊆ Y ⊆ X responsible for unsatisfiability of C.

• Let's focus on concept C unsatisfiability. Denote

$$R(C, Y) = \left\{ \begin{array}{cc} true & \text{iff} Y \nvDash (C \sqsubseteq \bot) \\ false & \text{iff} Y \models (C \sqsubseteq \bot) \end{array} \right\}$$

- There are many methods (see [dSW03]). We introduce just two of them:
 - Algorithms based on CS-trees.
 - Algorithm for computing a single MUPS[Kal06] + Reiter algorithm [Rei87].

Algorithms based on CS-trees

- A naive solution: test for each set of axioms from $\mathcal{T} \cup \mathcal{A}$ for $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, whether the set causes unsatisfiability minimal sets of this form are MUPSes.
- Conflict-set trees (CS-trees) systematize exploration of all these subsets of T∪A. The main gist :

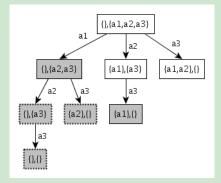
If we found a set of axioms X that do not cause unsatisfiability of C (i.e. $X \nvDash C \sqsubseteq \bot$), then we know (and thus can avoid asking reasoner) that $Y \nvDash C \sqsubseteq \bot$ for each $Y \subseteq X$.

- CS-tree is a representation of the state space, where each state *s* has the form (*D*, *P*), where
 - *D* is a set of axioms that *necessarily has to be part of all MUPSes* found while exploring the subtree of *s*.
 - *P* is a set of axioms that *might be part of some MUPSes* found while exploring the subtree of *s*.

CS-tree Exploration

The following algorithm is exponential in the number of tableau algorithm runs.

- 1 (Inicializace) The root of the tree is an initial state $s_0 = (\emptyset, \mathcal{K})$ - apriori, we don't know any axiom being necessarily in a MUPS ($D_{s_0} = \emptyset$), but potentially all axioms can be there ($P_{s_0} = \mathcal{T} \cup \mathcal{A}$). Next, we define $Z = (s_0)$ and $R = \emptyset$
- 2 (Depth First Search) If Z is empty, stop the exploration. Otherwise pop the first element s from Z.
- 3 (Test) If $R(C, D_s \cup P_s) = true$ then no subset of $D_s \cup P_s$ can cause unsatisfiability we continue with step 2.
- 4 (Finding an unsatisfiable set) We add $D_s \cup P_s$ into R and remove from R all $s' \in R$ such that $D_s \cup P_s \subseteq s'$. For $P_s = \alpha_1, \ldots, \alpha_N$ we push to Z a new state $(D_s \cup \{\alpha_1, \ldots, \alpha_{i-1}\}, P_s \setminus \{\alpha_1, \ldots, \alpha_i\})$ – we continue with step 2.


- Soundness : Step 4 is important here, we cover all possibilities. It always holds that $D_s \cup P_s$ differs to $D'_s \cup P'_s$ by just one element, where s' is a successor of s.
- Finiteness : Set D_s ∪ P_s is finite at the beginning and gets smaller with the tree depth. Furthermore, in step 4 we generate only finite number of states.

CS-tree Exploration – Example

Example

A CS-tree for \mathcal{K}_5 could look like as follows:

In gray states the following holds: $R(C, D \cup P) = true$. States with a dotted border are pruned by the algorithm.

stner 149 / 158

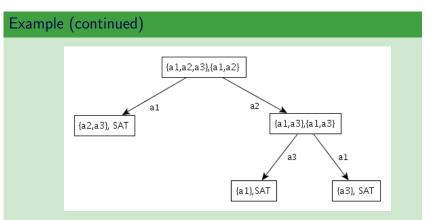
aboratory

The following algorithm is polynomial in the number of tableau algorithm applications – the computational complexity stems from the complexity of tableau algorithm itself.

- 1 (Initialization) Denote $S = \emptyset$, $K = \emptyset$
- 2 (Finding superset of MUPS) While R(C, S) = false, then $S = S \cup \{\alpha\}$ for some $\alpha \in Y \setminus S$.
- 3 (Pruning found set) For each $\alpha \in S \setminus K$ evaluate $R(C, S \setminus \{\alpha\})$. If the result is *false*, then $K = K \cup \{\alpha\}$. The resulting K is itself a MUPS.

Example

Follow the run of <i>singleMUPS</i> (<i>Osoba</i> , \mathcal{K}_5). 1.PHASE :				
	$\mathcal{T}_5 \cup \mathcal{A}_5 = \{ \alpha_1, \alpha_2, \alpha_3 \}$ $S = \{ \alpha_1 \}$	$R(C, \{\alpha_1\}) = true$		
1.PHASE :	$\mathcal{T}_5 \cup \mathcal{A}_5 = \{\alpha_1, \alpha_2, \alpha_3\}$	$R(C, \{\alpha_1, \alpha_2\}) = false$		
1.PHASE :	$S = \{\alpha_1, \alpha_2\}$			
2.PHASE :	$\mathcal{T}_5 \cup \mathcal{A}_5 = \{ lpha_1, lpha_2, lpha_3 \}$ $S = \{ lpha_1, lpha_2 \}$	$R(C, \{\alpha_1, \alpha_2\}) = false$		
Z.FHAJL .	$S = \{\alpha_1, \alpha_2\}$	$R(C, \{\alpha_1, \alpha_2\} - \{\alpha_1\}) = true$		
1.PHASE :	$K = \{\alpha_1\}$		Gerstner	
	$\mathcal{T}_5 \cup \mathcal{A}_5 = \{\alpha_1, \alpha_2, \alpha_3\}$	$R(C, \{\alpha_1, \alpha_2\}) = false$	151 / 158	


- Reiter algorithm runs singleMUPS(C, Y) multiple times to construct so called "Hitting Set Tree", nodes of which are pairs (*K_i*, *M_i*), where *K_i* lacks some axioms comparing to *K* and *M_i* = singleMUPS(C, *K_i*), or *M_i* = "SAT", if C is satisfiable w.r.t. *K_i*.
- Paths from the root to leaves build up *diagnoses* (i.e. minimal sets of axioms, each of which removed from \mathcal{K} causes satisfiability of C).
- Number of *singleMUPS*(*C*, *Y*) calls is at most exponential w.r.t. the initial axioms count. Why ?

- 1 (Initialization) Find single MUPS for C in \mathcal{K} , and construct the root $s_0 = (\mathcal{K}, singleMUPS(C, \mathcal{K}))$ of the hitting set tree. Next, set $Z = (s_0)$.
- 2 (Depth First Search) If Z is empty, STOP.
- 3 (Test) Otherwise pop an element from Z and denote it as $s_i = (\mathcal{K}_i, M_i)$. If $M_i = "SAT"$, then go to step 2.
- 4 (Decomposition) For each $\alpha \in M_i$ insert into Z a new node $(\mathcal{K}_i \setminus \{\alpha\}, singleMUPS(\mathcal{K}_i \setminus \{\alpha\}, C))$. Go to step 2.

Finding all MUPSes - Reiter Algorithm, example

The algorithm ends up with two MUPSes $\{\alpha_1, \alpha_2\}$ a $\{\alpha_1, \alpha_3\}$. "For free" we got diagnoses $\{\alpha_1\}$ a $\{\alpha_2, \alpha_3\}$.

 $154 \, / \, 158$

laboratory

Modeling Error Explanation – Summary

- finding MUPSes is the most common way for explaining modeling errors.
- black-box vs. glass box methods. Other methods involve e.g. incremental methods [dSW03].
- the goal is to find MUPSes (and diagnoses) what to do in order to solve a modeling problem (unsatisfiability,inconsistency).
- above mentioned methods are quite universal they can be used for many other problems that are not related with description logics.

OPPA European Social Fund Prague & EU: We invest in your future.