Data structures and algorithms

Part 9

Searching and Search Trees II

Petr Felkel

Topics

Red-Black tree
 - Insert
 - Delete

B-Tree

- Motivation
- Search
- Insert
- Delete

[^0]
Red-Black tree

Approximately balanced BST

$$
h_{R B} \leq 2 x h_{B S T} \quad \text { (height } \leq 2 x \text { height of balanced tree) }
$$

Additional bit for COLOR = \{red | black nil (non-existent child) = pointer to nill node

Red-Black tree

A binary search tree is a red-black tree if:

1. Every node is either red or black
2. Every leaf (nil) is black
3. If a node is red, then both its children are black
4. Every simple path from a node to a descendant leaf contains the same number of black nodes
(5. Root is black)

Black-height bh (\mathbf{x}) of a node \mathbf{x} is the number of black nodes on any path from \mathbf{x} to a leaf, not counting \mathbf{x}

Red-Black tree

Binary Search Tree -> RB Tree

Red-Black tree

Black-height $b h(x)$ of a node \mathbf{x}

- is the number of black nodes on any path from \mathbf{x} to a leaf, not counting \mathbf{x}
- is equal for all paths from \mathbf{x} to a leaf
- For given h is $b h(x)$ in the range from $h / 2$ to h

$$
\begin{array}{ll}
\text { - if } 1 / 2 \text { of nodes red } & =>b h(x) \approx 1 / 2 h(x), h(x) \approx 2 \lg (n+1) \\
\text { - if all nodes black } & \Rightarrow \quad b h(x)=h(x)=\lg (n+1)-1
\end{array}
$$

Height $h(\mathbf{x})$ of a RB-tree rooted in node \mathbf{x}

- is at maximum twice of the optimal height of a balanced tree
- $h \leq 2 \lg (n+1)$
$\ldots . \mathrm{h} \in \Theta(\lg (n))$

RB-tree height proof [cormen, p.264]

A red-black tree with n internal nodes has height h at most $2 \lg (n+1)$

Proof: 1. Show that subtree starting at x contains at least $2^{\text {bh(}}$ ($)-1$ internal nodes.
By induction on height of x :
I. If x is a leaf, then $\operatorname{bh}(x)=0,2^{\mathrm{bh}(x)-1}=0$ internal nodes $\quad / / \ldots$ nil node
II. Consider x with height h and two children (with height $h-1$)

- x's children black-height is either bh(x)-1 or bh(x) // black or red
- Ind. hypothesis: x 's children subtree has at least $2^{\mathrm{bh}(x)-1}-1$ internal nodes
- So subtree starting at x contains at least $\left(2^{\mathrm{bh}(x)-1}-1\right)+\left(2^{\mathrm{bh}(x)-1}-1\right)+1=2^{\mathrm{bh}(x)}-1$ internal nodes $=>$ proved

2. Let $h=$ height of the tree rooted at x
$-\min 1 / 2$ nodes are black on any path to leaf $=>b h(x) \geq h / 2$

- Thus, $n \geq 2^{h / 2}-1<=>n+1 \geq 2^{h / 2}<=>\lg (n+1) \geq h / 2$
$-h \leq 2 \lg (n+1)$

Inserting in Red-Black Tree

Color new node Red Insert it as in the standard BST

If parent is Black, stop. Tree is a Red-Black tree. If parent is Red ($3+3$ cases)...
resp.

While x is not root and parent is Red
if x 's uncle is Red then case 1 // propagate red up
else if x is Right child then case 2 // double rotation
case 3 // single rotation
Color root Black

Inserting in Red-Black Tree

x's parent is Black
Insert 1

If parent is Black, stop. Tree is a Red-Black tree.

Inserting in Red-Black Tree

x's parent is Red
x 's uncle y is Red
x is a Left child
Loop: x = x.p.p

x is node of interest

Inserting in Red-Black Tree

x's parent is Red
x 's uncle y is Red
x is a Right child
Loop: x = x.p.p

x is node of interest

Inserting in Red-Black Tree

x's parent is Red
x 's uncle y is Black
x is a Right child
Case 2

x is a Right child

Inserting in Red-Black Tree

x's parent is Red
x 's uncle y is Black
x is a Left child

Terminal case, tree is a Red-Black tree

Case 3

x is a Left child x's uncle is Black

Inserting in Red-Black Tree

Cases Right from the grandparent are symmetric

RB-Insert (T, x)

```
Tree-Insert \((T, x)\)
    color \([x] \leftarrow\) RED
    while \(x \neq \operatorname{root}[T]\) and \(\operatorname{color}[p[x]]=\operatorname{RED}\)
        do if \(p[x]=\operatorname{left}[p[p[x]]]\)
                then \(y \leftarrow \operatorname{right}[p[p[x]]] \quad\) Red uncle y ->recolor up
                if color \([y]=\) RED
            then \(\operatorname{color}[p[x]] \leftarrow\) BLACK \(\quad \triangleright\) Case 1
                color \([y] \leftarrow\) BLACK
                    \(\operatorname{color}[p[p[x]]] \leftarrow \operatorname{RED}\)
                \(x \leftarrow p[p[x]]\)
                \(p[x]=\) parent of \(x\)
                            left \([x]=\) left son of \(x\)
                        \(y=\) uncle of \(x\)
                    \(\triangleright\) Case 1
                    \(\triangleright\) Case 1
                            \(\triangleright\) Case 1
                        else if \(x=\operatorname{right}[p[x]]\)
                then \(x \leftarrow p[x]\)
                            \(\triangleright\) Case 2
                        \(\operatorname{Left}-\operatorname{Rotate}(T, x) \quad \triangleright\) Case 2
                            color \([p[x]] \leftarrow\) BLACK \(\quad \triangleright\) Case 3
                            \(\operatorname{color}[p[p[x]] \leftarrow \operatorname{RED} \quad \triangleright\) Case 3
\(\operatorname{Right}-\operatorname{Rotate}(T, p[p[x]]) \quad \triangleright\) Case 3
else (same as then clause
with "right" and "left" exchanged)

\section*{Inserting in Red-Black Tree}

Insertion in \(\mathrm{O}(\log (\mathrm{n}))\) time
Requires at most two rotations

DEMO: http://www.ececs.uc.edu/~franco/C321/html/RedBlack/redblack.html (Intuitive, good for understanding)
http://reptar.uta.edu/NOTES5311/REDBLACK/RedBlack.html
(little different order of re-coloring and rotations)

\section*{Deleting in Red-Black Tree}

Find node to delete
Delete node as in a regular BST
Node y to be physically deleted will have at most one child x!!!

If we delete a Red node, tree still is a Red-Black tree, stop Assume we delete a black node

Let \(\mathbf{x}\) be the child of deleted (black) node
If \(x\) is red, color it black and stop
while ( \(x\) is not root) AND ( \(x\) is black)
move \(x\) with virtual black mark through the tree (If x is black, mark it virtually double black A )

\section*{Deleting in Red-Black Tree}
while( \(x\) is not root) AND ( \(x\) is black) \{
// move \(x\) with virtual black mark A through the tree
// just recolor or rotate other subtree up (decrease bh in R subtree)
if(red sibling)
-> Case 1: Rotate right subtree up, color sibling black, and continue in left subtree with new sibling
if(black sibling with both black children)
-> Case 2: Color sibling red and go up
else // black sibling with one or two red children
if(red left child) -> Case 3: rotate to surface
Case 4: Rotate right subtree up

\section*{Deleting in R-B Tree - Case 1}
\(x\) is the child of the physically deleted black node => double black x's sibling w (sourozenec) is red (x's parent MUST be black)

x stays at the same black height
[Possibly transforms to case 2a and terminates - depends on 3,4]

\section*{Deleting in R-B Tree - Case 2a}
x's sibling w is black x's parent is red
x's sibling left child is black x's sibling right child is black


Terminal case, tree is Red-Black tree


\section*{Deleting in R-B Tree - Case 2b}
x's sibling w is black
x's parent is black
x's sibling left child is black
x's sibling right child is black


Decreases x black height by one

\section*{Deleting in R-B Tree - Case 3}
x's sibling w is black x's parent is either
x's sibling left child is red // blocks coloring w red x's sibling right child is black

\section*{Case 3}


Transform to case 4 x stays at same black height


\section*{Deleting in R-B Tree - Case 4}
x's sibling w is black x's parent is either
\(x\) 's sibling left child is either x's sibling right child is red
// blocks coloring w red
Case 4


Terminal case, tree is Red-Black tree

\section*{Deleting in Red-Black Tree}
\begin{tabular}{|c|c|}
\hline \(\operatorname{RB-Delete}(T, z)\) & \\
\hline \[
\begin{array}{|cc}
1 & \text { if } \operatorname{left}[z]=\operatorname{nil}[T] \text { or } \operatorname{right}[z]=\operatorname{nil}[T] \\
2 & \text { then } y \leftarrow z \\
3 & \text { else } y \leftarrow \operatorname{Tree-SUCCESSOR}(z)
\end{array}
\] & \begin{tabular}{l}
\(\mathrm{y}=\) physically removed \\
\(x=y\) 's only son
\end{tabular} \\
\hline \[
\begin{array}{cc}
4 & \text { if } \operatorname{left}[y] \neq \operatorname{nil}[T] \\
5 & \text { then } x \leftarrow \operatorname{left}[y] \\
6 & \text { else } x \leftarrow \operatorname{right}[y]
\end{array}
\] & \\
\hline \(7 \quad p[x] \leftarrow p[y]\) & \\
\hline \begin{tabular}{|rc}
8 & if \(p[y]=\operatorname{nil}[T]\) \\
9 & then \(\operatorname{root}[T] \leftarrow x\) \\
10 & else if \(y=\operatorname{left}[p[y]]\) \\
11 & then left \([p[y]] \leftarrow x\) \\
12 & else \(\operatorname{right}[p[y]] \leftarrow x\)
\end{tabular} & \\
\hline  & \\
\hline \[
\begin{array}{cc}
16 & \text { if } \text { color }[y]=\operatorname{BLack} \\
17 & \text { then RB-DeLete-Fixup }(T, x)
\end{array}
\] & \\
\hline 18 return \(y\) & [Cormen90] \\
\hline
\end{tabular}

RB-Delete-Fixup \((T, x)\)
```

while $x \neq \operatorname{root}[T]$ and $\operatorname{color}[x]=$ BLACK
do if $x=\operatorname{left}[p[x]]$
then $w \leftarrow \operatorname{right}[p[x]]$

```
                if color \([w]=\) RED
then \(\operatorname{color}[w] \leftarrow\) BLACK
                \(\operatorname{color}[p[x]] \leftarrow\) RED
                \(\operatorname{Left}-\operatorname{Rotate}(T, p[x])\)
                \(w \leftarrow \operatorname{right}[p[x]]\)
            if color \([\operatorname{left}[w]]=\) BLACK and color \([\operatorname{right}[w]]=\) BLACK
        then \(\operatorname{color}[w] \leftarrow\) RED
            \(x \leftarrow p[x]\)
            \(\triangleright\) Case 2
            \(\triangleright\) Case 2
            else (if color \([\) right \([w]]=\operatorname{BLACK}\)
                then color \([\operatorname{left}[w]] \leftarrow\) BLACK
                color \([w] \leftarrow\) RED
                        \(\operatorname{Right-Rotate}(T, w)\)
                    \(\frac{w \leftarrow \operatorname{right}[p[x]]}{\operatorname{color}[w] \leftarrow \operatorname{color}[p[x]]}\)
                        \(\operatorname{color}[p[x]] \leftarrow\) BLACK
                        color \([\) right \([w]] \leftarrow\) BLACK
                        \(\operatorname{Left}-\operatorname{Rotate}(T, p[x])\)
                \(x \leftarrow \operatorname{root}[T]\)
            else (same as then clause
            with "right" and "left" exchanged)
    23 color \([x] \leftarrow\) BLACK

\section*{Deleting in R-B Tree}

Delete time is \(\mathrm{O}(\log (\mathrm{n}))\)
At most three rotations are done

\section*{Which BS tree is the best? [Pfaff 2004]}

It is data dependent
- For random sequences
=> use unsorted tree, no waste time for rebalancing
- For mostly random ordering with occasional runs of sorted order
=> use red-black trees
- For insertions often in a sorted order and
- later accesses tend to be random => AVL trees
- later accesses are sequential or clustered => splay trees
- self adjusting trees,
- update each search by moving searched element to the root

\section*{B-tree as BST on disk}

\section*{B-tree}


Based on [Cormen] and [Maire]

\section*{B-tree}
1. Motivation
2. Multiway search tree
3. B-tree
4. Search
5. Insert
6. Delete

\section*{B-tree}

\section*{Motivation}
- Large data do not fit into operational memory -> disk
- Time for disk access is limited by HW (Disk access = Disk-Read, Disk-Write)

DISK : 16 ms
Seek \(8 \mathrm{~ms}+\) rotational delay 7200 rpm 8 ms

Instruction: 800 MHz 1,25ns
- Disk access is MUCH slower compared to instruction
- 1 disk access ~ 13000000 instructions!!!!
- Number of disk accesses dominates the computational time

\section*{B-tree}

\section*{Motivation}

Disk access = Disk-Read, Disk-Write
- Disk divided into blocks (512, 2048, 4096, 8192 bytes)
- Whole block transferred
- Design a multiway search tree
- Each node fits to one disk block

\section*{B-tree}

\section*{Multiway search tree}
= a generalization of Binary search tree

Each node has at most \(m\) children \(\square\) \((m>2)\) Internal node with \(n\) keys has \(n+1\) successors, \(n<m\) (except root)
Leaf nodes with no successors
Tree is ordered \%
Keys in nodes separates the ranges in subtrees \%

\section*{B-tree}

\section*{Multiway search tree - internal node}

Keys in internal node separate the ranges of keys in subtrees


\section*{B-tree}

\section*{Multiway search tree - leaf node}

Leaves have no subtrees and do not use pointers


Leaves have no pointers to subtrees
\[
\mathrm{k}_{1}<\mathrm{k}_{2}<\ldots<\mathrm{k}_{5}
\]

\section*{B-tree}

\section*{B-tree}
\(=\) of order \(m\) is an \(m\)-way search tree, such that
- All leaves have the same height (B-tree is balanced)
- All internal nodes are constrained to have
- at least \(m / 2\) non-empty children and (precisely later)
- at most \(m\) non-empty children
- The root can have 0 or between 2 to \(m\) children
- 0 - leaf
- m - a full node

\section*{B-tree}

\section*{B-tree - problems with notation}

Different authors use different names
- Order m B-tree
- Maximal number of children
- Maximal number of keys (No. of children-1)
- Minimal number of keys
- Minimum degree \(t\)
- Minimal number of children [Cormen]

\section*{B-tree}

\section*{B-tree - problems with notation}

Relation between minimal and maximal number of children also differs
For minimal number \(t\) of children
Maximal number \(m\) of children is
- \(m=2 \mathrm{t}-1\) simple B-tree,
multiphase update strategy
- \(m=2 \mathrm{t}\) optimized B-tree,
singlephase update strategy

\section*{B-tree}


B-tree of order \(m=1000\) of height 2 contains
1001001 nodes (1+1000 + 1000000 )
999999999 keys ~ one billion keys (1 miliarda klíčů)

\section*{B-tree}

\section*{B-tree node fields}
\(n \ldots\) number of keys \(k_{i}\) stored in the node \(n<m\).
Node with \(n=m-1\) is a full-node
\(k_{i} \ldots \quad n\) keys, stored in non-decreasing order \(k_{1} \leq k_{2} \leq \ldots \leq k_{n}\)
leaf ... boolean value, true for leaf, false for internal node
\(\mathrm{c}_{i} \ldots \quad n+1=\mathrm{m}\) pointers to successors (undefined for leaves)
Keys \(k_{i}\) separate the keys in subtree:
For keys in the subtree with root \(k_{i}\) holds
keys \(_{1} \leq k_{1} \leq\) keys \(_{2} \leq k_{2} \leq \ldots \leq k_{n} \leq\) keys \(_{n+1}\)

\section*{B-tree}

\section*{B-tree algorithms}
- Search
- Insert
- Delete

\section*{B-tree search}

Similar to BST tree search
Keys in nodes sequentially or binary search

Input: pointer to tree root and a key \(k\)
Output: an ordered pair \((y, i)\), node \(y\) and index \(i\)
such that \(y . k[i]=k\)
or NIL, if \(k\) not found

\section*{B-tree search}

\section*{Search 17}


17 not found => return NIL

Search 18


18 found \(=>\) return \((x, 3)\)

\section*{B-tree search}
```

B-treeSearch (x,k)
i < 1
while i\leqx.n and k>x.k[i] //sequential search
do i}\leqslanti+
if i \leqx.n and k=x.k[i]
return (x, i)
// pair: node \& index
if x.leaf
then return NIL
else
Disk-Read(x.c[i]) // tree traversal
return B-treeSearch(x.c[i],k)

```

\section*{B-tree search}

\section*{B-treeSearch complexity} Using tree order \(m\)

Number of disk pages read is
\[
\mathrm{O}(h)=\mathrm{O}\left(\log _{m} n\right)
\]

Where \(h\) is tree height and
\(m\) is the tree order
\(n\) is number of tree nodes
Since num. of keys \(x . n<m\), the while loop takes \(O(m)\) and
total time is \(\mathbf{O}\left(\boldsymbol{m} \log _{m} n\right)\)

\section*{B-tree search}

\section*{B-treeSearch complexity \\ Using minimum degree \(t\)}

Number of disk pages read is
\[
\mathrm{O}(h)=\mathrm{O}\left(\log _{t} n\right)
\]

Where \(h\) is tree height and
\(t\) is the minimum degree of B-tree
\(n\) is number of tree nodes
Since num. of keys \(x . n<2 t\), the while loop takes \(O(t)\) and
total time is \(\boldsymbol{O}\left(\boldsymbol{t} \boldsymbol{\operatorname { l o g }}_{\boldsymbol{t}} \boldsymbol{n}\right)\)

\section*{B-tree update strategies}

\section*{Two principal strategies}
1. Multiphase strategy
"solve the problem, when appears" m=2t-1 children
2. Single phase strategy [Cormen] "avoid the future problems"

Actions:
Split full nodes
Merge nodes with less than minimum entries

\section*{B-tree insert - 1.Multiphase strategy}

\section*{Insert to a non-full node} Insert 17


\section*{B-tree insert - 1.Multiphase strategy}

\section*{Insert to a full node}

median
1.Multiphase strategy
"solve the problem, when appears"


\section*{B-tree insert - 1.Multiphase strategy}

Insert (x, T) - pseudocode
Find the leaf for \(x\)
x...key, T...tree

Top down phase

If not full, insert \(x\) and stop
while (current_node full)
(node overflow)
find median (in keys in the node after insertion of \(x\) ) split node into two

Bottom-up phase
promote median up as new \(x\)
current_node = parent of current_node or new root
Insert \(x\) and stop

\section*{B-tree insert - 2.Singlephase strategy}

Principle: "avoid the future problems"
- Split the full node with \(2 \mathrm{t}-1\) keys when enter
- It creates space for future medians from the children
- No need to go bottom-up
- Splitting of
- Root => tree grows by one
- Inner node or leaf => parent gets median key

\section*{B-tree insert - 2.Singlephase strategy}

Insert to a non-full node \(m=2 t=6\) children
\(m-1\) keys \(=\) odd max number Insert B


\section*{B-tree insert - 2.Singlephase strategy \\ 1 new node}

\section*{Splitting a passed full node and insert to a not full node} Insert Q


\section*{B-tree insert - 2.Singlephase strategy 2 new nodes}

\section*{Splitting a passed full root and insert to a not full node}


Insert L to JK


\section*{B-tree insert - 2.Singlephase strategy}


\section*{B-tree insert - 2.Singlephase strategy}

Insert (x, T) - pseudocode
Top down phase only
While searching the leaf \(x\)

\author{
\(x \ldots\) key, \(T \ldots\) tree
}
if (node full)
find median (in keys in the full node only) split node into two
insert median to parent (there is space)
Insert \(x\) and stop

\section*{B-tree delete}

\section*{Delete ( x , btree) - principles}

\section*{Multipass strategy only}
- Search for value to delete
- Entry is in leaf
is simple to delete. Do it. Corrections of number of elements later...
- Entry is in Inner node
- It serves as separator for two subtrees
- swap it with predecessor(x) or successor(x)
- and delete in leaf

Leaf in detail
if leaf had more than minimum number of entries delete \(x\) from the leaf and STOP
else
redistribute the values to correct and delete x in leaf (may move the problem up to the parent, problem stops by root, as it has no minimum number of entries)

\section*{B-tree delete}

Node has less than minimum entries
- Look to siblings left and right

- If one of them has more than minimum entries
- Take some values from it
- Find new median in the sequence:
(sibling values - separator- node values)
- Make new median a separator (store in parent)
- Both siblings are on minimum
- Collapse node - separator - sibbling to one node
- Remove separator from parent
- Go up to parent and correct


\section*{B-tree delete}

Delete ( x , btree) - pseudocode Multipass strategy only
```

if(x to be removed is not in a leaf)
swap it with successor(x)
currentNode = leaf
while(currentNode underflow)
try to redistribute entries from an immediate
sibling into currentNode via its parent
if(impossible) then merge currentNode with a
sibling and one entry from the parent
currentNode = parrent of CurrentNode

```

\section*{Maximum height of B-tree}
\[
\mathrm{h} \leq \log _{\uparrow_{m / 2\rceil}((\mathrm{n}+1) / 2) \quad \text { half node used for } \mathrm{k},} \quad \text { half of children }
\]

Gives the upper bound to number of disk accesses
See [Maire] or [Cormen] for details

\section*{References}
[Cormen] Cormen, Leiserson, Rivest: Introduction to Algorithms, Chapter 14 and 19, McGraw Hill, 1990

\section*{Red Black Tree}
[Whitney]: CS660 Combinatorial Algorithms, San Diego State University, 1996], RedBlack, B-trees
http://www.eli.sdsu.edu/courses/fall96/cs660/notes/redBlack/redBlack.html\#RT FToC5
[RB tree] John Franco - java applet http://www.ececs.uc.edu/~franco/C321/html/RedBlack/redblack.html
[RB tree] Robert Lafore. Applets accompanying the book "Data Structures and Algorithms in Java," Second Edition. Robert Lafore, 2002 (applet, v němž si ìze vyzkoušet vkládání a mazání u Red-Black Tree) http://cs.brynmawr.edu/cs206/WorkshopApplets/Chap09/RBTree/RBTree.html
B-tree
[Maire] Frederic Maire: An Introduction to Btrees, Queensland University of Technology, 1998] http://sky.fit.qut.edu.au/~maire/baobab/lecture/

\section*{References}
[Wiki] B-tree. Wikipedia, The Free Encyclopedia. (2006, November 24). Retrieved December 12, 2006, from http://en.wikipedia.org/w/index.php?title=B-tree\&oldid=89805120
[Jones] Jeremy Jones: B-Tree animation - java applet
https://www.cs.tcd.ie/Jeremy.Jones/vivio/trees/B-tree.htm

\section*{Splay tree}
[Wiki] Splay tree. Wikipedia, The Free Encyclopedia. (2007, Oct 29) Retrieved November 27, 2007 from <http://en.wikipedia.org/w/index.php?title=Splay tree\&oldid=167855497>.
Tree comparison
[Pfaff 2004] Ben Pfaff. Performance Analysis of BSTs in System Software, extended abstract of this paper appeared in the proceedings of SIGMETRICS/Performance 2004. http://www.stanford.edu/~blp/papers/libavl.pdf```


[^0]:    Based on:
    [Cormen, Leiserson, Rivest: Introduction to Algorithms, Chapter 14 and 19, McGraw Hill, 1990] [Whitney: CS660 Combinatorial Algorithms, San Diego State University, 1996]
    [Frederic Maire: An Introduction to Btrees, Queensland University of Technology, 1998]

