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Natural Number Encodings 

 The most common representation of natural numbers is 
the following binary encoding: 

 

 

 where n is a number of bits of the number and bi is a value 
of i-th bit.  

 BCD (Binary Coded Decimal) representation with each 
decimal digit represented by its own four-bit binary 
sequence (nibble) 
 It is not as effective as the previous representation (all combinations 

of binary bit sequences are not used) 

 BCD format are still important and continue to be used in financial, 

commercial, and industrial computing. 

value of a number =  𝑏𝑖 × 2𝑖𝑛
𝑖=0  
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Integer Number Encodings 

 complement representation of negative numbers (the most common): 

 

 

 

 

 

value of a number 𝑁 =

 
 
 

 
  𝑏𝑖 × 2𝑖
𝑛−1

𝑖=0

                         for 𝑏𝑛 = 0,  thus 𝑁 ∈  0; 2𝑛−1 − 1 

−1− (1− 𝑏𝑖)× 2𝑖
𝑛−1

𝑖=0

   for 𝑏𝑛 = 1,  thus 𝑁 ∈  −2𝑛−1;−1 

 

  
 For additions and subtractions we can 

use the same algorithms as for the 
previous binary numbers 
representation of natural numbers.  

 +/- sign can be detected from the 
most-significant bit. 

 There is only encoding for zero. 
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Floating-point Data and Encodings 

 representation: 
 

 


  

 

 

where  s is the sign (signum +/-) 

     c is the significand (fraction) 

        b is the base (typically 2 or 10) 

   p is the precision (the number of digits in the significand) 

         e is the integer exponent 
 

 We want to encode also +∞ a -∞. 

 If b=2 (the most common case) then there can arise some 

problems when inputs and outputs are converted from/to decimal 
base. 

 

𝑠 ×
𝑐

𝑏𝑝−1
× 𝑏𝑒  
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Floating-point Data and Encodings 

 IEEE 754: 

 

 

 

 

 

 

 normalized value: 

 value = (-1) sign  2 exponent-exponent bias   (1.fraction) 

 denormalized value: 

 value = (-1) sign  2 exponent-exponent bias+1   (0.fraction) 

 

 
 

 

type exponent field significand 
(fraction field) 

+/- zero 0 0 

denormalized numbers 0 non zero 

normalized numbers 1 až 2
e - 2 any 

+/- ∞ 2
e 
- 1 0 

NaN (Not a Number) 2
e - 1 non zero 
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Floating-point Data and Encodings 
 IEEE 754: 

 NaN (Not a Number) is used for encodings of numbers that were 

a result of arithmetical operations with nonstandard inputs: 

 operations with a NaN as at least one operand  

 the divisions: 0/0, ∞/∞, ∞/-∞, -∞/∞, and -∞/-∞  

 the multiplications: 0×∞ and 0×-∞  

 the additions: ∞ + (-∞), (-∞) + ∞ and equivalent subtractions  

 calling functions with arguments out of its domain: 

 the square root of a negative number  

 the logarithm of a negative number 

 triginometric functions … 

 NaNs have two types: 

 Quiet (qNaN)  

 do not raise any additional exceptions as they propagate through most 

operations) 

 Signalling (sNaN) 

 should raise an invalid exception as underflow or overflow).  

 NaNs may also be explicitly assigned to variables, typically as a 

representation for missing values. 
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Differences Between Computer and Standard Arithmetic 

 in both worlds (computer and standard arithmetic) holds: 

 1 ∙ x = x 

 x ∙ y = y ∙ x 

 x + x = 2 ∙ x 

 in computer arithmetic needs not hold: 

 x ∙ (1/x) = 1 

 (1 + x) – 1 = x 

 (x + y) + z = x + (y + z) 

 a common programmer’s mistake is 
 addition of one (or another different number) in float type inside 

some loop with the stop condition with equality to some arbitrary 

number. Typically, such loop will never finish. 

 If conditions with exact equality to float constant. Such constructions 

need not be satisfied. 
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Summary of Matrix Algebra I 
 An m×n matrix A is a rectangular array of numbers with 

m rows and n columns. The numbers m and n are the 
dimensions of A.  

 Example: 2 × 3 matrix A. 

 The transpose, AT, of a matrix A is the matrix obtained 
from A by writing its rows as columns. If A is an m×n 
matrix and B = AT, then B is the n×m matrix with bij = aji.  

 

 A vector is a matrix with the second dimension always 1. 

 The unit vector ei is the vector whose i-th element is 1 
and all of whose other elements are 0. Usually, the size of 
a unit vector is clear from the context. 

 A Square matrix is an n×n matrix. 

 A diagonal matrix has aij = 0 whenever i ≠ j. 

 

 The n×n identity matrix In is a diagonal matrix with 1's 
along the diagonal. 
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Summary of Matrix Algebra II 
 An upper-triangular matrix U is one for which uij = 0 

if i  > j. All entries below the diagonal are zero: 

 An upper-triangular matrix is unit upper-triangular 
if it has all 1's along the diagonal. 

 

 A lower-triangular matrix L is one for which lij = 0 if 
i < j. All entries above the diagonal are zero: 

 A lower-triangular matrix is unit lower-triangular if 
it has all 1's along the diagonal. 

 

 A permutation matrix P has exactly one 1 in each 
row or column, and 0's elsewhere. An example of a 
permutation matrix is: 

 

 An inverse matrix for n×n matrix A is a matrix n×n, 
we denote it as A-1 (if it exists), that holds: 

  A A-1 = In = A-1A  
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LUP Decomposition 
 solving systems of linear equations 

 Consider systems of n linear equations Ax = b, letting A = (aij), x = (xj) a b = (bi) 

 

a11x1 + a12x2 + . . . + a1nxn = b1 

a21x1 + a22x2 + . . . + a2nxn = b2 

... 

an1x1 + an2x2 + . . . + annxn = bn 

 

 

 If the rank of A is less than n-then the system is underdetermined. An 

underdetermined system typically has infinitely many solutions, although it may 

have no solutions at all if the equations are inconsistent. 

 If the number of equations exceeds the number n of unknowns, the system is 

overdetermined, and there may not exist any solutions.  

 If A is nonsingular, it possesses an inverse A −1 and x = A −1b is the solution vector, 

because 

 x = In x = A −1 A x = A −1b.  

 Thus we have only one solution. 
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LUP Decomposition 
 solving systems of linear equations 

 

 one possible solution:  

 Compute A-1 and then multiply both sides by A-1, yielding A-1 Ax = 
A-1b, or x = A-1b. This approach suffers in practice from numerical 

instability. 

 

 a solution using LUP decomposition:  

 The idea behind LUP decomposition is to find three n × n 
matrices L, U, and P such that 

   PA = LU 
 where 

 L is a unit lower-triangular matrix, 

 U is an upper-triangular matrix, and 

 P is a permutation matrix. 
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LUP Decomposition 
 solving systems of linear equations with a LUP decomposition knowledge 

 Multiplying both sides of Ax = b by P yields the equivalent equation:  

 P Ax = Pb,  which only permutes the original linear equations.  

 Using our LUP decomposition equality PA=LU, we obtain  

 LUx = Pb . 

 We can now solve this equation by solving two triangular linear systems.  

 Let us define y = Ux, where x is the desired solution vector. 

 First, we solve the lower-triangular system:  

 Ly = Pb  for the unknown vector  y  by a method called forward substitution.  

 Having solved for y, we then solve the upper-triangular system 

 Ux = y   for the unknown x  by a method called back substitution. 

 The vector x is our solution to Ax = b, since the permutation matrix P is invertible:  

 Ax = P−1LUx = P−1Pb = b. 
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LUP Decomposition 
 forward substitution 

 can solve the lower-triangular system in Θ(n2) given L, P, and b. 

 Let us define c = Pb as permutation of a vector b (in detail: ci = bπ(i)). 

 Since L is unit lower-triangular, equation Ly = Pb can be rewritten as 

 

 

 

 

 

 We can solve for y1 directly (from the 1st equation). Having solved 

for y1, we can substitute it into the second equation, yielding        

    y2 = c2 − l21 y1  

 In general, we substitute y1, y2, . . . , yi−1 "forward" into the i-th equation 

to solve for yi:  

𝑦1 = 𝑐1

𝑙21𝑦1 + 𝑦2 = 𝑐2

𝑙31𝑦1 + 𝑙32𝑦2 + 𝑦3 = 𝑐3

⋮ ⋱ ⋮
𝑙𝑛1𝑦1 + 𝑙𝑛2𝑦2 + 𝑙𝑛3𝑦3 +⋯+ 𝑦𝑛 = 𝑐𝑛

 

𝑦𝑖 = 𝑐𝑖 −   𝑙𝑖𝑗𝑦𝑗

𝑖−1

𝑗=1
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LUP Decomposition 
 back substitution 

 is similar to forward substitution. It solves the upper-triangular 

system in Θ(n2) given U and y. 

 Since U is upper-triangular, we can rewrite the system Ux = y  as 

 

 

 

 

 

 We can solve for xn from the last equation as xn = yn / unn  . Having 

solved for xn, we can substitute it into the previous equation, 

yielding     xn-1 = (yn-1 − un-1,nxn)/ un-1,n-1 . 

 In general, we substitute xn, xn-1, . . . , xi+1 “back" into the i-th 

equation to solve for xi:  

𝑢11𝑥1 + 𝑢12𝑥2 +⋯+ 𝑢1,𝑛−1𝑥𝑛−1 + 𝑢1𝑛𝑥𝑛 = 𝑦1

𝑢22𝑥2 +⋯+ 𝑢2,𝑛−1𝑥𝑛−1 + 𝑢2𝑛𝑥𝑛 = 𝑦2

⋱ ⋮
𝑢𝑛−1,𝑛−1𝑥𝑛−1 + 𝑢𝑛−1,𝑛𝑥𝑛 = 𝑦𝑛−1

𝑢𝑛𝑛𝑥𝑛 = 𝑦𝑛

 

𝑥𝑖 =  𝑦𝑖 −   𝑢𝑖𝑗 𝑥𝑗

𝑛

𝑗=𝑖+1

 𝑢𝑖𝑖  
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LUP Decomposition 
 solving systems of linear equations with a LUP 

decomposition knowledge 

 We represent the permutation P compactly by a permutation array π[1..n].  

 For i = 1, 2, . . . , n, the entry π[i] indicates that Pi, π[i] = 1 and Pij = 0 for j ≠ π[i].  

  

 We have now shown that if an LUP decomposition can be computed for a 

nonsingular matrix A, forward and back substitution can be used to solve the 

system Ax = b of linear equations in Θ(n2) time. 

 

 It remains to show how an LUP decomposition for A can be found efficiently. 

 

 We start with the case in which A is an n × n nonsingular matrix and P is 

absent (or, equivalently, P = In). We call it LU decomposition.  
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LUP Decomposition 
 computing an LU decomposition 

 the idea is based on Gaussian elimination:  

 We start by subtracting multiples of the first equation from the other 

equations so that the first variable is removed from those equations.  

 Then, we subtract multiples of the second equation from the third and 

subsequent equations so that now the first and second variables are 

removed from them.  

 We continue this process until the system that is left has an upper-

triangular form-in fact, it is the matrix U. The matrix L is made up of the row 

multipliers that cause variables to be eliminated. 

 the recursive algorithm: 

1. Divide A into following parts according the picture: 

  

    A’  is (n − 1) × (n − 1) matrix,  

 v is a column vector, and  

 wT
  is a row vector.  
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LUP Decomposition 
 computing an LU decomposition 

2. Then we decompose the matrix: 

 

 

 

 

 The submatrix A’-vwT/a11 with dimensions (n − 1) × (n − 1) is called 

 Schur complement  A with respect to a11. 

 Because the Schur complement is nonsingular, we can now recursively 

find an LU decomposition of it (= L’U’). 

 where L′ is unit lower-triangular and U′ is upper-triangular. Then, using 

matrix algebra, we have 
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LUP Decomposition 
 computing an LU decomposition (nonrecursive) 

1) Procedure LU-DECOMPOSITION(matrix  A)  

2) n = rows[A] ; 

3) for k = 1 to n do { 

4)         ukk = akk ; 

5)         for i = k + 1 to n do { 

6)                 lik = aik/ukk ;         //  lik represents vi  

7)                 uki = aki ;               //   uki represents wT
i 

8)         } 

9)         for i = k + 1 to n do 

10)                 for j = k + 1 to n do 

11)                         aij = aij - likukj ; 

12) } 

13) return L and U 

 The asymptotic time complexity is Θ(n3).  
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LUP Decomposition 
 computing an LU decomposition (Example) 

 

 

 

 

 

 Of course, if it holds a’11 = 0 for a currently processed sub-matrix A’, 

then this method doesn't work, because it attempts to divide by 0.  

 Thus, if |a’11| is near to 0, then this algorithm can produce big 

errors. 
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LUP Decomposition 
 computing an LUP decomposition (nonrecursive) 

 
1) Procedure LUP-DECOMPOSITION(matrix  A)  

2) n = rows[A];  

3) for i = 1 to n do π[i] = i ;  

4) for k = 1 to n do { 

5)         p = 0 ;  

6)         for i = k to n do { 

7)                 if |aik| > p then { 

8)                         p = |aik| ; 

9)                         k' = i ; 

10)                 } 

11)         if p = 0 then error "singular matrix“;  

12)         exchange π[k] ↔ π[k'] ; 

13)         for i = 1 to n do exchange aki ↔ ak'i ; 

14)         for i = k + 1 to n do { 

15)                 aik = aik/akk ; 

16)                 for j = k + 1 to n do  aij = aij - aikakj ; 

17)         } 

18) } 

 The asymptotic time complexity is 

Θ(n3).   

 The resulting matrices L and U 

are contained in “improved”  

matrix A in the following way 

 

 

 

𝑎𝑖𝑗 =  
𝑙𝑖𝑗  if 𝑖 > 𝑗

𝑢𝑖𝑗  if 𝑖 ≤ 𝑗
 

  

 

  

// main cycle 

// initialization of pivot 

// selection of pivot 

 

 

// position of pivot 

 

 

 

 

 

// k-th column of L 

                                    //  U 
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LUP Decomposition 
 computing an LUP decomposition (Example) 
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Computing Inverse Matrix 
 computing inverse matrix using LUP decomposition 

 Using LUP-DECOMPOSITION, we can solve an equation of the form 

Ax = b in time Θ(n2).   

 Since the LUP-DECOMPOSITION decomposition depends on A but not 

b, we can run LUP-DECOMPOSITION on a second set of equations of 

the form Ax = b' in additional time Θ(n2). 

 Using the same LUP-DECOMPOSITION, we can solve n equations of 

the form Ax = ei for i from 1 to n (dimensions of matrix A is n×n) 

where ei is a unit vector also in time Θ(n2). 

 If we join all n vectors ei for i from 1 to n together then we have In 

(unit matrix). 

 The task of finding an inverse matrix X for A is to find a solution of 

the following matrix equation AX = I. 

 If we join all n solutions x from Ax = ei from 1 to n together then we 

have a matrix to X (so it holds: AX = I ).  

 Since the LUP decomposition of A can be computed in time Θ(n3), 

the inverse A-1 of a matrix A can be determined in time Θ(n3).  
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