OPPA European Social Fund Prague \& EU: We invest in your future.

Advanced algorithms

computer arithmetic: number encodings and operations, LUP decomposition, finding inverse matrix

Jiř̌í Vyskočil, Radek Mařík

Natural Number Encodings

- The most common representation of natural numbers is the following binary encoding:

$$
\text { value of a number }=\sum_{i=0}^{n} b_{i} \times 2^{i}
$$

where n is a number of bits of the number and b_{i} is a value of i-th bit.

- BCD (Binary Coded Decimal) representation with each decimal digit represented by its own four-bit binary sequence (nibble)
\square It is not as effective as the previous representation (all combinations of binary bit sequences are not used)
\square BCD format are still important and continue to be used in financial, commercial, and industrial computing.

Integer Number Encodings

- complement representation of negative numbers (the most common):

Floating-point Data and Encodings

- representation:

$$
s \times \frac{c}{b^{p-1}} \times b^{e}
$$

where $\quad s$ is the sign (signum $+/-$) c is the significand (fraction)
b is the base (typically 2 or 10)
p is the precision (the number of digits in the significand) e is the integer exponent
\square We want to encode also $+\infty$ a $-\infty$.

- If $b=2$ (the most common case) then there can arise some problems when inputs and outputs are converted from/to decimal base.

Floating-point Data and Encodings

- IEEE 754:

type	exponent field	significand (fraction field)
+ +- zero	0	0
denormalized numbers	0	non zero
normalized numbers	1 až $2^{\mathrm{e}}-2$	any
$+/-\infty$	$2^{\mathrm{e}}-1$	0
NaN (Not a Number)	$2^{\mathrm{e}}-1$	non zero

- normalized value:
\square value $=(-1)^{\text {sign }} \times 2$ exponent-exponent bias $\times(1$. fraction)
- denormalized value:
\square value $=(-1)$ sign $\times 2$ exponent-exponent bias $+1 \times(0$. fraction $)$

Floating-point Data and Encodings

- IEEE 754:
$\square \mathbf{N a N}$ (Not a Number) is used for encodings of numbers that were a result of arithmetical operations with nonstandard inputs:
- operations with a NaN as at least one operand
- the divisions: $0 / 0, \infty / \infty, \infty /-\infty,-\infty / \infty$, and $-\infty /-\infty$
- the multiplications: $0 \times \infty$ and $0 \times-\infty$
- the additions: $\infty+(-\infty),(-\infty)+\infty$ and equivalent subtractions
- calling functions with arguments out of its domain:
\square the square root of a negative number
\square the logarithm of a negative number
\square triginometric functions ...
\square NaNs have two types:
- Quiet (qNaN)
\square do not raise any additional exceptions as they propagate through most operations)
- Signalling (sNaN)
\square should raise an invalid exception as underflow or overflow).
\square NaNs may also be explicitly assigned to variables, typically as a representation for missing values.

Differences Between Computer and Standard Arithmetic

- in both worlds (computer and standard arithmetic) holds:
$\square 1 \cdot x=x$
$\square x \cdot y=y \cdot x$
$\square \mathrm{x}+\mathrm{x}=2 \cdot \mathrm{x}$
- in computer arithmetic needs not hold:
$\square \mathrm{x} \cdot(1 / \mathrm{x})=1$
$\square(1+x)-1=x$
$\square(x+y)+z=x+(y+z)$
- a common programmer's mistake is
\square addition of one (or another different number) in float type inside some loop with the stop condition with equality to some arbitrary number. Typically, such loop will never finish.
\square If conditions with exact equality to float constant. Such constructions need not be satisfied.

Summary of Matrix Algebra I

- An $m \times n$ matrix A is a rectangular array of numbers with m rows and n columns. The numbers m and n are the dimensions of A.
- Example: 2×3 matrix A.

$$
\begin{aligned}
A & =\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
\end{aligned}
$$

- The transpose, A^{T}, of a matrix A is the matrix obtained from A by writing its rows as columns. If A is an $m \times n$ matrix and $B=A^{\mathrm{T}}$, then B is the $n \times m$ matrix with $b_{i j}=a_{j i}$.
- A vector is a matrix with the second dimension always 1.
- The unit vector e_{i} is the vector whose i-th element is 1 and all of whose other elements are 0 . Usually, the size of a unit vector is clear from the context.
- A Square matrix is an $n \times n$ matrix.
- A diagonal matrix has $a_{i j}=0$ whenever $i \neq j$.

$$
\operatorname{diag}\left(a_{11}, a_{22}, \ldots, a_{n n}\right)=\left(\begin{array}{cccc}
a_{11} & 0 & \ldots & 0 \\
0 & a_{22} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & a_{n n}
\end{array}\right)
$$

$$
I_{n}=\operatorname{diag}(1,1, \ldots, 1)
$$

- The $n \times n$ identity matrix I_{n} is a diagonal matrix with 1 's along the diagonal.

$$
=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

Summary of Matrix Algebra II

- An upper-triangular matrix U is one for which $u_{i j}=0$ if $i>j$. All entries below the diagonal are zero:
- An upper-triangular matrix is unit upper-triangular if it has all 1's along the diagonal.

$$
\begin{aligned}
& U=\left(\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
0 & u_{22} & \ldots & u_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & u_{n n}
\end{array}\right) \\
& L=\left(\begin{array}{cccc}
l_{11} & 0 & \ldots & 0 \\
l_{21} & l_{22} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
l_{n 1} & l_{n 2} & \ldots & l_{n n}
\end{array}\right)
\end{aligned}
$$ it has all 1's along the diagonal.

- A permutation matrix P has exactly one 1 in each row or column, and 0's elsewhere. An example of a permutation matrix is:

$$
P=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

- An inverse matrix for $n \times n$ matrix A is a matrix $n \times n$, we denote it as A^{-1} (if it exists), that holds:

$$
A A^{-1}=I_{n}=A^{-1} A
$$

LUP Decomposition

- solving systems of linear equations
\square Consider systems of n linear equations $A x=b$, letting $A=\left(a_{i j}\right), \mathrm{x}=\left(x_{j}\right) \mathrm{a} \mathrm{b}=\left(b_{i}\right)$

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \ldots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n}
\end{aligned} \quad\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

\square If the rank of A is less than n-then the system is underdetermined. An underdetermined system typically has infinitely many solutions, although it may have no solutions at all if the equations are inconsistent.
\square If the number of equations exceeds the number n of unknowns, the system is overdetermined, and there may not exist any solutions.
\square If A is nonsingular, it possesses an inverse A^{-1} and $x=A^{-1} b$ is the solution vector, because

$$
x=I_{n} x=A^{-1} A x=A^{-1} b .
$$

\square Thus we have only one solution.

LUP Decomposition

solving systems of linear equations
\square one possible solution:

- Compute A^{-1} and then multiply both sides by A^{-1}, yielding $A^{-1} A x=$ $A^{-1} b$, or $x=A^{-1} b$. This approach suffers in practice from numerical instability.
\square a solution using LUP decomposition:
- The idea behind LUP decomposition is to find three $n \times n$ matrices L, U, and P such that

$$
P A=L U
$$

where

- L is a unit lower-triangular matrix,
- U is an upper-triangular matrix, and
- P is a permutation matrix.

LUP Decomposition

solving systems of linear equations with a LUP decomposition knowledge

\square Multiplying both sides of $A x=b$ by P yields the equivalent equation:
$P A x=P b$, which only permutes the original linear equations.
\square Using our LUP decomposition equality $P A=L U$, we obtain

$$
L U x=P b
$$

\square We can now solve this equation by solving two triangular linear systems.
\square Let us define $y=U x$, where x is the desired solution vector.
\square First, we solve the lower-triangular system:
$L y=P b \quad$ for the unknown vector y by a method called forward substitution.
$\square \quad$ Having solved for y, we then solve the upper-triangular system

$$
U x=y \quad \text { for the unknown } x \text { by a method called back substitution. }
$$

$\square \quad$ The vector x is our solution to $A x=b$, since the permutation matrix P is invertible:

$$
A x=P^{-1} L U x=P^{-1} P b=b
$$

LUP Decomposition

- forward substitution

\square can solve the lower-triangular system in $\Theta\left(n^{2}\right)$ given L, P, and b.
\square Let us define $c=P b$ as permutation of a vector b (in detail: $c_{\mathrm{i}}=b_{\pi(\mathrm{i})}$).
\square Since L is unit lower-triangular, equation $L y=P b$ can be rewritten as

$$
\begin{array}{clllll}
y_{1} & & & & c_{1} \\
l_{21} y_{1}+y_{2} & & & & c_{2} \\
l_{31} y_{1} & +l_{32} y_{2}+y_{3} & & & c_{3} \\
\vdots & & \ddots & & \vdots \\
l_{n 1} y_{1}+l_{n 2} y_{2}+l_{n 3} y_{3}+\cdots+y_{n} & = & c_{n}
\end{array}
$$

\square We can solve for y_{1} directly (from the $1^{\text {st }}$ equation). Having solved for y_{1}, we can substitute it into the second equation, yielding

$$
y_{2}=c_{2}-l_{21} y_{1}
$$

\square In general, we substitute $y_{1}, y_{2}, \ldots, y_{\mathrm{i}-1}$ "forward" into the i-th equation to solve for y_{i} :

$$
y_{i}=c_{i}-\sum_{j=1}^{i-1} l_{i j} y_{j}
$$

LUP Decomposition

back substitution

\square is similar to forward substitution. It solves the upper-triangular system in $\Theta\left(n^{2}\right)$ given U and y.
\square Since U is upper-triangular, we can rewrite the system $U x=y$ as

$$
\begin{aligned}
u_{11} x_{1}+u_{12} x_{2}+\cdots+u_{1, n-1} x_{n-1} & +u_{1 n} x_{n}
\end{aligned} \begin{aligned}
& =y_{1} \\
& u_{22} x_{2}+\cdots+ \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

\square We can solve for x_{n} from the last equation as $x_{n}=y_{n} / u_{n n}$. Having solved for x_{n}, we can substitute it into the previous equation, yielding $\quad x_{n-1}=\left(y_{n-1}-u_{n-1, n} x_{n}\right) / u_{n-1, n-1}$.
\square In general, we substitute $x_{n}, x_{n-1}, \ldots, x_{\mathrm{i}+1}$ "back" into the i-th equation to solve for x_{i} :

$$
x_{i}=\left(y_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i}
$$

LUP Decomposition

- solving systems of linear equations with a LUP decomposition knowledge
\square We represent the permutation P compactly by a permutation array $\pi[1 . . n]$. For $i=1,2, \ldots, n$, the entry $\pi[i]$ indicates that $P_{i, \pi[i]}=1$ and $P_{i j}=0$ for $j \neq \pi[i]$.
\square We have now shown that if an LUP decomposition can be computed for a nonsingular matrix A, forward and back substitution can be used to solve the system $A x=b$ of linear equations in $\Theta\left(n^{2}\right)$ time.
\square It remains to show how an LUP decomposition for A can be found efficiently.
\square We start with the case in which A is an $n \times n$ nonsingular matrix and P is absent (or, equivalently, $P=I_{n}$). We call it $L U$ decomposition.

LUP Decomposition

- computing an LU decomposition
\square the idea is based on Gaussian elimination:
- We start by subtracting multiples of the first equation from the other equations so that the first variable is removed from those equations.
- Then, we subtract multiples of the second equation from the third and subsequent equations so that now the first and second variables are removed from them.
- We continue this process until the system that is left has an uppertriangular form-in fact, it is the matrix U. The matrix L is made up of the row multipliers that cause variables to be eliminated.
\square the recursive algorithm:

1. Divide A into following parts according the picture:
A^{\prime} is $(n-1) \times(n-1)$ matrix, v is a column vector, and w^{T} is a row vector.

$$
\begin{aligned}
A & \text { ture: } \\
A & =\left(\begin{array}{c|ccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\hline a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right) \\
& =\left(\begin{array}{cc}
a_{11} & w^{\mathrm{T}} \\
v & A^{\prime}
\end{array}\right),
\end{aligned}
$$

LUP Decomposition

- computing an LU decomposition

2. Then we decompose the matrix:

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
a_{11} & w^{\mathrm{T}} \\
v & A^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
v / a_{11} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & w^{\mathrm{T}} \\
0 & A^{\prime}-v w^{\mathrm{T}} / a_{11}
\end{array}\right) .
\end{aligned}
$$

\square The submatrix $A^{\prime}-v w^{\mathrm{T}} / a_{11}$ with dimensions $(n-1) \times(n-1)$ is called Schur complement A with respect to a_{11}.
\square Because the Schur complement is nonsingular, we can now recursively find an LU decomposition of it ($=L^{\prime} U^{\prime}$).
\square where L^{\prime} ' is unit lower-triangular and U ' is upper-triangular. Then, using matrix algebra, we have

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
1 & 0 \\
v / a_{11} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & w^{\mathrm{T}} \\
0 & A^{\prime}-v w^{\mathrm{T}} / a_{11}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
v / a_{11} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & w^{\mathrm{T}} \\
0 & L^{\prime} U^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
v / a_{11} & L^{\prime}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & w^{\mathrm{T}} \\
0 & U^{\prime}
\end{array}\right) \\
& =L U,
\end{aligned}
$$

LUP Decomposition

- computing an LU decomposition (nonrecursive)

1) Procedure LU-DECOMPOSITION(matrix A)
2) $n=\operatorname{rows}[A]$;
3) $\boldsymbol{f o r} k=1$ to n do \{
4) $u_{k k}=a_{k k}$;
5) \quad for $i=k+1$ to n do $\{$
6) $\quad l_{i k}=a_{i k} / u_{k k} ; \quad / / l_{i k}$ represents v_{i}
7) $\quad u_{k i}=a_{k i} ; \quad / / u_{k i}$ represents $w^{\mathrm{T}}{ }_{\mathrm{i}}$
8) $\}$
9) \quad for $i=k+1$ to n do

$$
\text { for } j=k+1 \text { to } n \text { do }
$$

12) $\}$
13) return L and U

The asymptotic time complexity is $\Theta\left(n^{3}\right)$.

LUP Decomposition

- computing an LU decomposition (Example)

\[

\]

2	3	1	5
3	4	2	4
1	16	9	18
2	4	9	21

(b)

2	3	1	5
3	4	2	4
1	4	1	2
2	1	7	17

(c)

(d)

$$
\begin{array}{ccc}
\left(\begin{array}{cccc}
2 & 3 & 1 & 5 \\
6 & 13 & 5 & 19 \\
2 & 19 & 10 & 23 \\
4 & 10 & 11 & 31
\end{array}\right)
\end{array}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 \\
1 & 4 & 1 & 0 \\
2 & 1 & 7 & 1
\end{array}\right)\left(\begin{array}{llll}
2 & 3 & 1 & 5 \\
0 & 4 & 2 & 4 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

(e)
\square Of course, if it holds $a_{11}^{\prime}=0$ for a currently processed sub-matrix A^{\prime}, then this method doesn't work, because it attempts to divide by 0.
\square Thus, if $\left|a^{\prime}{ }_{11}\right|$ is near to 0 , then this algorithm can produce big errors.

LUP Decomposition

computing an LUP decomposition (nonrecursive)

```
Procedure LUP-DECOMPOSITION(matrix \(A\) )
\(n=\operatorname{rows}[A]\);
for \(i=1\) to \(n\) do \(\pi[i]=i\);
for \(k=1\) to \(n\) do \(\{\quad / /\) main cycle
    \(p=0\); // initialization of pivot
    for \(i=k\) to \(n\) do \{ // selection of pivot
        if \(\left|a_{i k}\right|>p\) then \(\{\)
            \(p=\left|a_{i k}\right| ;\)
            \(k^{\prime}=i ; \quad / /\) position of pivot
        \}
    if \(p=0\) then error "singular matrix";
    exchange \(\pi[k] \leftrightarrow \pi\left[k^{\prime}\right]\);
    for \(i=1\) to \(n\) do exchange \(a_{k i} \leftrightarrow a_{k^{\prime} i}\);
    for \(i=k+1\) to \(n\) do \{
        \(a_{i k}=a_{i k} / a_{k k} ; \quad / / k\)-th column of \(L\)
        for \(j=k+1\) to \(n\) do \(a_{i j}=a_{i j}-a_{i k} a_{k j} ; / / U\)
    \}
\}
```


LUP Decomposition

computing an LUP decomposition (Example)

$$
\left.\geq \begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \begin{array}{cccc}
2 & 0 & 2 & 0.6 \\
3 & 3 & 4 & -2 \\
\mathbf{5} & 5 & 4 & 2 \\
-1 & -2 & 3.4 & -1
\end{array}
$$

(a)

$$
\geq
$$

(d)

$$
\geq \begin{array}{|cccccc}
3 \\
1 \\
2 & 0.4 & -2 & 5 & 0.4 & -0.2 \\
\hline & 0.6 & 0 & 1.6 & -3.2 \\
4 & -0.2 & 0.5 & 4 & -0.5
\end{array}
$$

(g)

$$
\begin{array}{|c|ccc|}
\hline 5 & 5 & 4 & 2 \\
\hline 3 & 3 & 4 & -2 \\
2 & 0 & 2 & 0.6 \\
-1 & -2 & 3.4 & -1
\end{array}
$$

(b)

$$
\begin{array}{|l|c|ccc}
\hline 3 & 5 & 5 & 4 & 2 \\
\cline { 3 - 6 } 1 & 0.4 & -2 & 0.4 & -0.2 \\
2 & 0.6 & 0 & 1.6 & -3.2 \\
4 & -0.2 & -1 & 4.2 & -0.6
\end{array}
$$

(e)

\[

\]

(h)

3								
2	5					5	4	2
	0.6	0	1.6	-3.2				
1		0.4	-2	0.4				
4	-0.2	-1	4.2	-0.6				

(c)

\[

\]

(f)

$$
\begin{array}{|l|cccc|}
\hline 3 \\
1 \\
4 \\
2
\end{array} \begin{array}{ccccc}
\hline 0.4 & -2 & 4 & 0.4 & -0.2 \\
\hline & -0.2 & 0.5 & \mathbf{4} & -0.5 \\
\hline 0.6 & 0 & 0.4 & -3
\end{array}
$$

$$
\begin{gathered}
\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) \\
P
\end{gathered}\left(\begin{array}{cccc}
2 & 0 & 2 & 0.6 \\
3 & 3 & 4 & -2 \\
5 & 5 & 4 & 2 \\
-1 & -2 & 3.4 & -1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0.4 & 1 & 0 & 0 \\
-0.2 & 0.5 & 1 & 0 \\
0.6 & 0 & 0.4 & 1
\end{array}\right)\left(\begin{array}{cccc}
5 & 5 & 4 & 2 \\
0 & -2 & 0.4 & -0.2 \\
0 & 0 & 4 & -0.5 \\
0 & 0 & 0 & -3
\end{array}\right)
$$

Computing Inverse Matrix

- computing inverse matrix using LUP decomposition
\square Using LUP-DECOMPOSITION, we can solve an equation of the form $A x=b$ in time $\Theta\left(n^{2}\right)$.
\square Since the LUP-DECOMPOSITION decomposition depends on A but not b, we can run LUP-DECOMPOSITION on a second set of equations of the form $A x=b^{\prime}$ in additional time $\Theta\left(n^{2}\right)$.
\square Using the same LUP-DECOMPOSITION, we can solve n equations of the form $A x=e_{\mathrm{i}}$ for i from 1 to n (dimensions of matrix A is $n \times n$) where e_{i} is a unit vector also in time $\Theta\left(n^{2}\right)$.
\square If we join all n vectors e_{i} for i from 1 to n together then we have I_{n} (unit matrix).
\square The task of finding an inverse matrix X for A is to find a solution of the following matrix equation $A X=I$.
\square If we join all n solutions x from $A x=e_{\mathrm{i}}$ from 1 to n together then we have a matrix to X (so it holds: $A X=I$).
\square Since the LUP decomposition of A can be computed in time $\Theta\left(n^{3}\right)$, the inverse A^{-1} of a matrix A can be determined in time $\Theta\left(n^{3}\right)$.

References

- Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001). Introduction to Algorithms (2nd ed.). MIT Press and McGraw-Hill. ISBN 0-262-53196-8.
- http://babbage.cs.qc.cuny.edu/IEEE-754/References.xhtml

OPPA European Social Fund Prague \& EU: We invest in your future.

