
Advanced algorithms

dynamic data structures,

garbage collectors

Jiří Vyskočil, Radek Mařík

2011

Advanced algorithms
2 / 21

Dynamic Data Structures

Program data memory representation:

Advanced algorithms
3 / 21

Dynamic Data Structures

 The main goals of a memory allocator:

 minimizing time

 The malloc, free and realloc routines should be as fast as possible in

the average case.

 minimizing space

 The allocator should not waste space: It should obtain as little memory from

the system as possible, and should maintain memory in ways that minimize

fragmentation -- ``holes'‘ in contiguous chunks of memory that are not used

by the program.

 maximizing locality

 Allocating chunks of memory that are typically used together near each

other. This helps minimize page and cache misses during program

execution.

Advanced algorithms
4 / 21

Dynamic Data Structures

 dynamic data structures
 Two bordering unused

chunks can be coalesced

into one larger chunk. This

minimizes the number of

unusable small chunks.

 All chunks can be traversed

starting from any known

chunk in either a forward or

backward direction.

 Free chunks are connected

(see further description).

Advanced algorithms
5 / 21

Dynamic Data Structures
 Available chunks are maintained in bins, grouped by size.

 There are some number (here 128) of fixed-width bins, approximately logarithmically
spaced in size.

 Bins of sizes less than some constant size (here 512 bytes) hold each only exactly
one size (spaced 8 bytes apart, simplifying enforcement of 8-byte alignment).

 Searches for available chunks are processed in smallest-first, best-fit order.

Advanced algorithms
6 / 21

Dynamic Data Structures
 deallocation algorithm:

1. Look to the previous and the next chunk from the current chunk for the

deallocation.

2. If there is at least one of this chunk free then connect all of these free

chunks to one free chunk (Of course you need to disconnect these free

chunks from their correspondent groups). This operation tends to have

a relatively low fragmentation.

3. The result chunk is marked as free and connected to the right group.

 Because both size information and bin links must be held in each available
chunk, the smallest allocable chunk is 16 bytes in systems with 32-bit
pointers and 24 bytes in systems with 64-bit pointers.

 This can lead to significant wastage for example in applications allocating
many tiny linked-list nodes.

Advanced algorithms
7 / 21

Dynamic Data Structures - Locality
 If locality were the only goal, an allocator might always allocate each successive

chunk as close to the previous one as possible. However, this nearest-fit (often
approximated by next-fit) strategy can lead to a very bad fragmentation.

 In general, the problem of fragmentation can be solved by allocation via an
operating system with paging. Typically, this is too slow and the size of the allocation
is rounded by the size of the page which increases vastly the memory requirements.

 These techniques are used mainly in debugging (e.g. library Electric Fence). It helps
you to detect two common programming bugs:

 software that overruns the boundaries of a malloc() memory allocation, and

 software that touches a memory allocation that has been released by free().

 Such a system allocates at least two pages for every allocated chunk and mark one
of this page as inaccessible. When software reads or writes this inaccessible page,
the hardware issues a segmentation fault, stopping the program at the offending
instruction. It is then trivial to find the erroneous statement using a standard
debugger. In a similar manner, memory that has been released by free() is made

inaccessible, and any code that touches it will get a segmentation fault.

Advanced algorithms
8 / 21

Garbage Collector

 garbage collector
 garbage collection is a form of automatic memory management. The

garbage collector (GC) attempts to reclaim garbage (= memory occupied

by objects that are no longer in use) by the program.

 the basic principles are:

1. Find data objects in the program that cannot be accessed in the

future.

2. Reclaim the resources used by those objects.

Advanced algorithms
9 / 21

Garbage Collector
 benefits

 Frees the programmer from manually dealing with memory deallocation.

 certain categories of bugs are eliminated or reduced:

 Dangling pointer bugs, which occur when a piece of memory is freed while there are still pointers

to it, and one of those pointers is then used. => unpredictable results

 Double free bugs, which occur when the program tries to free a region of memory that has already

been freed, and perhaps already been allocated again. => sometimes undefined results

 Certain kinds of memory leaks, in which a program fails to free memory occupied by objects that

will not be used again. => memory exhaustion

 disadvantages
 Additional computing resources.

 GC consumes computing resources in deciding which memory to free, reconstructing facts that may

have been known to the programmer.

 GC needs some additional information about the places of dynamic variables and for its own run.

 Unpredictable delays. The moment when the garbage is actually collected can be unpredictable,

resulting in delays throughout a session. This is unacceptable in real-time environments such as

device drivers, interactive programs,...

 A semantic GC is so called undecidable problem (same as the halting problem) (the present GCs

are based only on a syntactic level).

Advanced algorithms
10 / 21

Garbage Collector – Reference Counting

 reference counting
 Each object has a count of the number of references to it.

 An object's reference count is incremented when a reference to

it is created, and

 decremented when a reference is destroyed.

 The object's memory is reclaimed when the count reaches zero.

Reference counts before and after the assignment p=q:

Advanced algorithms
11 / 21

 major disadvantages

 If two or more objects refer to each other, they can create a cycle whereby

neither will be collected as their mutual references never let their reference

counts become zero.

 In naive implementations, each assignment of a reference and each reference

falling out of scope often require modifications of one or more reference

counters.

 One important advantage of reference counting is that it provides deterministic
garbage collection (unlike tracing GC).

 Therefore, reference counting by itself is not a suitable garbage collection scheme for
arbitrary objects. But it is often used in more specific situations e.g. in modern
Pascals for strings manipulations.

Garbage Collector – Reference Counting

Advanced algorithms
12 / 21

Garbage Collector - Tracing GCs
 Tracing GCs are the most common type of GC. They first determine which objects are

reachable (or potentially reachable), and then discard all remaining objects.

 syntactic reachability of an object
 Informally, an object (or cell) is reachable (or live) if it is referenced by at least one

variable in the program, either directly or through references from other reachable

objects. More precisely, objects can be reachable in only two ways:

1. A distinguished set of objects are

assumed to be reachable: these are
known as the roots (or root set of
references). Typically, these include all
the objects referenced from anywhere
in the call stack (that is, all local
variables and parameters in the
functions currently being invoked),
and any global variables.

2. Anything referenced from a reachable
object is itself reachable; more
formally, reachability is a transitive
closure.

Advanced algorithms
13 / 21

Garbage Collector - Naïve Mark & Sweep
 naïve mark & sweep

 Its so called tracing collector. Tracing collectors are so called because they

trace through the working set of memory. These garbage collectors perform

collection in cycles.

 each object in memory has a flag (typically a single bit) reserved for

garbage collection use only.

 This flag is always cleared, except during the collection cycle.

 algorithm

1. The first stage of collection does a tree traversal of the entire 'root set',

marking each object that is pointed to as being 'in-use‘ flag.

2. All objects that those objects point to, and so on, are marked ‘in-use’ as

well, so that every object that is ultimately pointed to from the root set is

marked ‘in-use’.

3. Finally, all memory is scanned from start to finish, examining all free or

used blocks; those with the ‘in-use’ flag still cleared are not reachable by

any program or data, and their memory is freed. (For objects which are

marked ‘in-use’, the ‘in-use’ flag is cleared again, preparing for the next

cycle.)

Advanced algorithms
14 / 21

Garbage Collector - Naïve Mark & Sweep

 benefits
 it can be technically implemented in constant memory

 1 bit used for marking cells and during traversing structures, directions of

pointers can be swapped for storing the backtracking path.

 it handles cycles correctly

 disadvantages
 the entire system must be suspended during collection

 no mutation of the working set can be allowed

 This will cause programs to 'freeze' periodically (and generally

unpredictably), making real-time and time-critical applications

impossible.

Advanced algorithms
15 / 21

Garbage Collector - Semi-Space Collector
 semi-space or copying collector (Cheney's algorithm)

 the heap is divided into two equal halves, only one of which is in use at any one time.

 Garbage collection is performed by copying live objects from one semispace (the from-

space) to the other (the to-space), which then becomes the new heap. The entire old heap

is then discarded in one piece.

 algorithm
 Object references on the stack. Object references on the stack are checked. One of the

two following actions is taken for each object reference that points to an object in from-

space:

 If the object has not yet been moved to the to-space, this is done by creating an identical copy in the

to-space, and then replacing the from-space version with a forwarding pointer to the to-space copy.

Then update the object reference to refer to the new version in to-space.

 If the object has already been moved to the to-space, simply update the reference from the forwarding

pointer in from-space.

 Objects in the to-space. The garbage collector examines all object references in the

objects that have been migrated to the to-space, and performs one of the above two actions

on the referenced objects.

 Once all to-space references have been examined and updated, garbage collection is

complete.

Advanced algorithms
16 / 21

Garbage Collector - Semi-Space Collector

 benefits
 does a complete defragmentation of memory (on contrary to Mark & Sweep)

 allocation can be done in constant time

 disadvantages
 similar as mark & sweep.

 very large contiguous region of free memory is necessarily required on every collection

cycle.

Advanced algorithms
17 / 21

Garbage Collector – Mark & Compact
 algorithm Mark & Compact

 Mark & compact algorithms can be regarded as a combination of the mark-sweep algorithm

and Cheney's copying algorithm.

 does a defragmentation of memory (on contrary to Mark & Sweep)

 Has lower memory consumptions (on contrary to Cheney’s algorithm)

 Does not copy big “long living” objects as frequently as Cheney’s algorithm.

Advanced algorithms
18 / 21

Garbage Collector - Generational
 generational GC (ephemeral GC)

 Generational garbage collection is a heuristic approach.

 It has been empirically observed that:

 generational hypothesis . In many programs, the most recently created

objects are also those most likely to become unreachable quickly.

 only a very small part of references from „old“ objects is pointing to younger

objects.

 A generational GC divides objects into generations and, on most cycles, will place only the

objects of a subset of generations into the initial white (condemned) set.

 Furthermore, the runtime system maintains knowledge of when references cross generations

by observing the creation and overwriting of references.

 When the garbage collector runs, it may be able to use this knowledge to prove that some

objects in the initial white set are unreachable without having to traverse the entire reference

tree.

 If the generational hypothesis holds, this results in much faster collection cycles while still

reclaiming most unreachable objects.

 generational garbage collectors use separate memory regions for different ages of objects.

 When a region becomes full, those few objects that are referenced from older memory

regions are promoted (copied) up to the next highest region, and the entire region can then

be overwritten with fresh objects.

Advanced algorithms
19 / 21

Garbage Collector - Generational

 generational GC, example of “aging” 1/2:

Young

Old

root
 set

A

B

C

D

E

F

G

Advanced algorithms
20 / 21

Garbage Collector - Generational

 generational GC, example of “aging” 2/2:

Young

Old

root
 set

A

B

D

E

F

G

C

Advanced algorithms
21 / 21

References

 Lee, D. A Memory Allocator. http://g.oswego.edu/dl/html/malloc.html

 Preiss, B. R. Data Structures and Algorithms with Object-Oriented
Design Patterns in Java. Wiley 1999. ISBN-13: 9780471346135.

 Cheney, C. J. A Nonrecursive List Compacting Algorithm.
Communications of the ACM 13 (11): 677–678. (November 1970).

 Wikipedia:
http://en.wikipedia.org/wiki/Garbage_collection_(computer_science)

http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html

