## Mean shift 1

**Tomáš Svoboda**, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz

Last update: April 8, 2013

#### Talk Outline

- appearance based tracking
- patch similarity using histogram
- tracking by mean shift
- experiments, discussion

<sup>1</sup>Please note that the lecture will be accompanied be several sketches and derivations on the blackboard and few live-interactive demos in Matlab

## Appearance based tracking





<sup>2</sup>illustration from [1]

## Histogram based representation







## Patch comparison





## histogram difference



assume normalized histograms, i.e  $\sum_{u=1}^m p_u = 1$ 

$$d = \sqrt{1 - \rho[p, q]}$$

where  $\rho[p,q]$  is the Bhattacharyya coefficient

$$\rho[p,q] = \sum_{u=1}^{m} \sqrt{p_u q_u}$$





# Similarity measured by the Bhattacharyya coefficient





The object is the "4" plate and the model is histogram of image intensities.

$$s(\mathbf{y}) = \sum_{u=1}^{m} \sqrt{p_u(\mathbf{y})q_u}$$

where p(y) is the histogram of image patch at position y and q is the histogram of the template.

# Problem: finding modes in probability density





- the complete enumeration of similarity surface can be costly,
- can we do it faster and more elegantly?



# **Density Gradient Estimation**

# Mean shift procedure 9/2 Initial window Mean shift (a) (b)

# Meanshift segmentation of colours - color distribution







# Meanshift segmentation of colours - color modes seeking





<sup>5</sup>Figure from [2]

# Mean shift segmentation - intensity and space





u,v are here spatial pixel coordinates

different normalization for intensity and spatial coordinates

<sup>&</sup>lt;sup>4</sup>Figure from [2]

## Multivariate kernel density estimator





Given n data points  $\mathbf{x}_i$  in d-dimensional space  $R^d$ .

$$\tilde{f}_{h,K}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

- looking for extremum of  $f_{h,K}(\mathbf{x})$
- gradient  $\nabla f_{h,K}(\mathbf{x}) = \mathbf{0}$

#### **Kernels**





Can be seen as membership function.

Remind Kernel density estimation (Parzen method).

Remember convolution?



<sup>&</sup>lt;sup>6</sup>Taken from http://en.wikipedia.org/wiki/Kernel\_density\_estimation

### Mean-shift iterations





Assuming a reasonable differentiable kernel K, iterate till convergence:

$$\mathbf{y}_{k+1} = \frac{\sum_{i=1}^{n} \mathbf{x}_{i} g(\|\mathbf{y}_{k} - \mathbf{x}_{i}\|^{2})}{\sum_{i=1}^{n} g(\|\mathbf{y}_{k} - \mathbf{x}_{i}\|^{2})}$$

g is the derivative of kernel profile.

## Mean-shift tracking - ratio histogram





Ratio histogram:

$$r_u = \min\left(\frac{q_u}{p_u}, 1\right)$$

where q is the histogram of the target and p is the histogram of the current frame.  $w_i = r_{b(\mathbf{x}_i)}$  (just binning)

Image intensities (or colors) are tranformed into weights,  $w_i$ , by back projection of the ratio histogram. Mean-shift iterations:

$$\mathbf{y}_{k+1} = \frac{\sum_{i=1}^{n} w_i \mathbf{x}_i g(\|\mathbf{y}_k - \mathbf{x}_i\|^2)}{\sum_{i=1}^{n} w_i g(\|\mathbf{y}_k - \mathbf{x}_i\|^2)}$$

## Mean-shift tracking - Bhattacharya coeficient



model, coordinates  $\mathbf{x}_i^*$  centered at  $\mathbf{0}$ :

$$q_u = C \sum_{i=1}^{n} k(\|\mathbf{x}_i^*\|^2) \delta(b(\mathbf{x}_i^*) - u)$$

target candidate centered at y:

$$p_u(\mathbf{y}) = C_h \sum_{i=1}^{n_h} k \left( \left\| \frac{\mathbf{y} - \mathbf{x}_i}{h} \right\|^2 \right) \delta(b(\mathbf{x}_i) - u)$$

## ms tracking - object and its model







<sup>&</sup>lt;sup>7</sup>Figure from [5]

### ms tracking - iterations







## References



Mean-shift originally from [3].

- [1] Robert Collins. CSE/EE486 Computer Vision I. slides, web page. http://www.cse.psu.edu/~rcollins/CSE486/. Robert kindly gave general permission to reuse the
- [2] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Analysis, 24(5):603–619, May 2002.
- [3] Keinosuke Fukunaga and Larry D. Hostetler. The estimation of the gradient of a density function, with appilcations in pattern recognition. IEEE Transactions on Information Theory, 21(1):32–40, January 1975.
- [4] Milan Šonka, Václav Hlaváč, and Roger Boyle. Image Processing, Analysis and Machine Vision. Thomson, 3rd edition, 2007.
- [5] Tomáš Svoboda, Jan Kybic, and Václav Hlaváč. Image Processing, Analysis and Machine Vision. A MATLAB Companion. Thomson, 2007. Accompanying www site http://visionbook.felk.cvut.cz.

End



<sup>&</sup>lt;sup>8</sup>Figure from [5]