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Fitting a Line

Least squares fit
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How Many Samples?

On average

mean time before the success 
E(k) = 1 / P(good)

N …  number of point
I …  number of inliers
m … size of the sample

P(good) =
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How Many Samples?

With confidence p

P(good) =

P(bad) = 1 – P(good)

N …  number of point
I …  number of inliers
m … size of the sample

P(bad k times) = (1 – P(good))k



How Many Samples?

With confidence p

P(bad k times) = (1 – P(good))k ≤ 1 - p

k log (1 – P(good)) ≤ log(1 – p)

k ≥ log(1 – p) / log (1 – P(good))
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RANSAC

k … number of samples 
drawn

N … number of data points
I … time to compute a 

single model
p … confidence in the 

solution (.95)

log (1- )

log(1 – p)

I
N

I-1
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k =



RANSAC [Fischler, Bolles ’81]
In: U = {xi} set of data points, |U| = N

function f computes model parameters p given a sample S from U

the cost function for a single data point x

Out: p* p*, parameters of the model maximizing the cost function

k := 0

Repeat until P{better solution exists} <  η (a function of C* and no. of steps k)

k := k + 1

I. Hypothesis

(1) select randomly set               , sample size

(2) compute parameters 

II. Verification

(3) compute cost 

(4) if C* < Ck then C* := Ck, p* := pk

end

(III. Is the solution valid?)



RANSAC Issues:
RANSAC is a very general robust estimation method, any problems?
- Correctness of the results. Degeneracy.
Solution: DegenSAC.

- Stopping criterion?:
Repeat until

P{better solution exists} <  η (a function of C* and no. of steps k)
- Cost function:
Solutions: Least median of Squares, MINPRAN

- Accuracy (model parameters are estimated from minimal samples):
Solution: Locally Optimized RANSAC

- Speed:
Running time grows with

1. number of data points,
2. number of iterations (polynomial in inlier ratio)
Addressing the problem:
RANSAC with SPRT (WaldSAC),  PROSAC
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RANSAC – Time Complexity

Repeat k times  (k is a function of η, Ι, Ν)
1. Hypothesis generation
• Select a sample of m data points
• Calculate parameters of the model(s)
2. Model verification
• Find the support (consensus set) by
• verifying all N data points

Time

Total running time:

I–- the number of inliers

N - the number of data points

η   − confidence in the solution
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RANSAC time complexity

where P is a probability of drawing an all-inlier sample

where m is size of the sample
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Randomised RANSAC [Matas, Chum 02]

Repeat k/(1-α) times
1. Hypothesis generation
2. Model pre-verification Td,d test
• Verify d << N data points, reject
• the model if not all d data points
• are consistent with the model
3. Model verification

Verify the rest of the data points

Time

V − average number of data points verified
α − probability that a good model is rejected byTd,d test
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Optimal Randomised Strategy

where 
Hg - hypothesis of a `good` model (≈ from an uncontaminated sample)
Hb - hypothesis of a `bad` model, (≈ from a contaminated sample)
δ - probability of a data point being consistent with an arbitrary model

Optimal (the fastest) test that ensures with probability α that that Hg is 
not incorrectly rejected
is  the 

Sequential probability ratio test (SPRT) [Wald47]

Model Verification is Sequential Decision Making
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SPRT  [simplified from Wald 47]

Two important properties of SPRT:

1. probability of rejecting a \good\ model α < 1/A

2. average number of verifications V=C log(A)   

Compute the likelihood ratio
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SPRT properties

1. Probability of rejecting a \good\ model α=1/A



Center for Machine 
Perception Prague

J. Matas, O. Chum,
25RANSAC workshop CVPR 
2006 éž

WaldSAC - Optimal Randomised RANSAC 23

WaldSAC 

Repeat k/(1-1/A) times
1. Hypothesis generation
2. Model verification 

use SPRT

Time

In sequential statistical decision problem decision errors are traded off for time. 
These are two incomparable quantities, hence the constrained optimization. 

In WaldSAC, decision errors cost time (more samples) and there is a single  
minimised quantity, time t(A), a function of a single parameter A.
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Optimal test (optimal A) given ε and δ

Optimal A* found by solving

Optimal A*
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SPRT

bad model good model

decision
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Exp. 1: Wide-baseline matching
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Exp. 2 Narrow-baseline stereo
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Randomised Verification in RANSAC: 

Conclusions

 The same  confidence  η in the solution reached faster (data dependent, ¼
10x) 

 No change in the character of the algorithm, it was randomised anyway.
 Optimal strategy derived using Wald`s theory for known ε and δ.
 Results with ε and δ estimated during the course of RANSAC are not 

significantly different. Performance of SPRT is insensitive to errors in the 
estimate.

• δ can be learnt, an initial estimate can be obtained by geometric  
consideration

• Lower bound on ε is given by the best-so-far support
• Note that the properties of WaldSAC are quite different from preemptive 

RANSAC!



PROSAC – PROgressive SAmple Consensus

• Not all correspondences are created equally
• Some are better than others
• Sample from the best candidates first

1 2 3 4 5 … N-2 N-1 N

Sample from here



PROSAC Samples

l-1 l l+1 l+2 ……

Draw Tl samples from (1 … l) 
Draw Tl+1 samples from (1 … l+1)

Samples from (1 … l)  that are not from (1 … l+1) contain l+1

Draw Tl+1 - Tl samples of size m-1 and add l+1
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Chum, Matas, Kittler: Locally Optimized RANSAC, DAGM 2003 

It was observed experimentally, that RANSAC takes several times 
longer than theoretically expected. This is due to the noise on inlier 
measurement – not every all-inlier sample generates a good hypothesis.

By applying local optimization (LO) to the-best-so-far hypotheses:

(i) a near perfect agreement with theoretical (i.e. optimal) performance 

(ii) lower sensitivity to noise and poor conditioning.

The LO is shown to be executed so rarely that it has minimal impact on 
the execution time.
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Chum, Matas, Obdržálek: Enhancing RANSAC by Generalized Model Optimization,
ACCV 2004 

Estimation of (approximate) models with lower complexity (less data 
points in the sample) followed by LO step estimating the desired model 
speeds the estimation up significantly.

The estimation of epipolar geometry is up  to 10000 times 
faster when using 3 region-to-region correspondences rather 
than 7 point-to-point correspondences.

Simultaneous estimation of radial distortion 
and epipolar geometry with LO is superior to 
the state-of the art in both speed a precision of 
the model.

Fish-eye images by Braňo Mičušík
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Degenerate Configurations

Chum, Werner, Matas: Epipolar Geometry Estimation unaffected by dominant plane,
CVPR 2005 

The presence of degenerate configuration causes RANSAC to fail in 
estimating a correct model, instead a model consistent with the 
degenerate configuration and some outliers is found.

The DEGENSAC algorithm handles 
scenes with:
• all points in a single plane
• majority of the points in a single 
plane and the rest off the plane
• no dominant plane present

No a-priori knowledge of the type of 
the scene is required
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