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Outline

1. Looking for representation of images that:
• is compact (useful for very large datasets) 
• is fast (linear in the size of the output)
• supports local (image and object) recognition/retrieval
• is accurate (very low false positive rate)

2. min-Hash is a powerful representation, but we show that
Geometric min-Hash is significantly more powerful

3. Applications: 
• Large database clustering
• Discovery of (even small) objects
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Introduction to min-Hash for Images

min-Hash originates from the text retrieval community, 
originally used for detection of near duplicate documents
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Image Representation: a Set of  Words
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min-Hash

This probability will be called “image similarity ” and denoted

min-Hash is a locality sensitive hashing (LSH) function m that 
selects an element (visual word) m(Ii) from each set Ii of visual 
words detected in image i so that
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Estimated similarity of I1 and I2 from 3 min-Hashes = 2/3
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k hash tables

a sketch = s-tuple of min-Hashes

Sketch collisionI1 I2

... P{collision} = sim(I1,I2)s

P{retrieval} = 
1 – (1 - sim(I1, I2)s)k

collision:
all s min-Hashes must agree

min-Hash Retrieval

retrieval: 
1. generate k sketches
2. at least one of k 

sketches must collide
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Probability of Retrieving an Image Pair

similarity (set overlap)

Near duplicate imagesImages of the same object
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Near Duplicate Images
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Near Duplicate Images
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Near Duplicate Images
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Scalable Near Duplicate Image Detection

• Images perceptually (almost) identical but not identical 
(noise, compression level, small motion, small occlusion)

• Similar images of the same object / scene

• Large databases

• Fast – linear in the number of duplicates

• Store small constant amount of data per image
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Representation, Distance and Search

• Naïve method (space and time infeasible):
– Representation:  the whole image

– Similarity: sophisticated visual similarity measure

– Search: O(N^2) on N images

• Goal:
– Compact representation – small constant number of bytes (that captures 

visual content addressed by near duplicate definition) 

– Similarity that allows for fast retrieval of similar images (that measures 
similarity according to near duplicate definition)

– Search: linear in the number of near duplicates – needs to be indexing
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Word Weighting for min-Hash

all words Xw have the same chance to be a min-Hash

For hash function (set overlap similarity)

For hash function

the probability of Xw being a min-Hash is proportional to dw

A Q VE RJC ZA U B: Y
dA dC dE dVdJ dQ dY dZdR
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Histogram Intersection Using min-Hash
Idea: represent a histogram as a set, use min-Hash set machinery

A1 C1B1

A2 C2

C3

C1 D1B1

B2 C2

C3

A1 C1 D1B1A2 B2 C2 C3min-Hash vocabulary:

Bag of words A / set A’ Bag of words B / set B’

A1 C1 D1B1A2 B2 C2 C3A’ U B’:

Set overlap of A’ of B’ is a histogram intersection of A and B

A C DBVisual words:

tA = (2,1,3,0) tB = (0,2,3,1)
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Similarity Measures for min-Hash

Set representation Bag of words representation
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Min-Hash on TrecVid

Query Retrieved images with decreasing similarity 

• DoG features
• vocabulary of 64,635 visual words
• 192 min-Hashes, 3 min-Hashes per a sketch, 64 sketches
• similarity threshold 35%

Set overlap similarity measure
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Query Examples

Query image:

Results
Set overlap, weighted set overlap, weighted histogram intersection
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Geometric min-Hash (GmH)

Can geometry help us in finding sketches of 
min-Hashes with much higher repeatability than

random s-tuples?
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The Idea

• For a sketch collision all s min-Hashes in the sketch must agree

• In the construction of a sketch, we can assume that the first min-
Hash is matching

• If the assumption is violated, no harm is done, the sketch would 
not collide

We show how to exploit the assumption of matching m1(I) to design 
the rest of the sketch (not independent min-Hashes anymore). The 
new procedure – Geometric min-Hash - is superior to the standard 
min-Hash.
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Vocabulary Size and Set Representation

Small vocabulary (1k visual words) Large vocabulary (1M visual words)

On a 100k dataset of images, 95% of features have a unique visual word in an image

For large vocabularies selecting a 
visual word from an image is 

(almost) equivalent to selecting a 
feature (with location and scale)



22 /26

Repeatability of Feature Sets:
Translation and Occlusion

Do not group features that are far apart 
into sketches. Such  sketches have lower 
repeatability (as groups, not individually) 

under translation or occlusion
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Repeatability of Feature Sets: 
Scale Change

Do not group features of very 
different scale into sketches. Such 
sketches have lower repeatability 

under scale change. 
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Geometric min-Hash algorithm

1. Keep features with unique visual word in the image
2. Obtain the “central feature” by min-Hash
3. Select scale and spatial neighbourhood of the central feature
4. Select secondary min-Hash(es) from the neighbourhood
5. Relative pose of the sketch features is a geometric invariant (as in 

geometric hashing)

EBF

Sketch of GmH: s-tuple of visual 
words + geometric invariant
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Geometric vs. Standard min-Hash

• Lower false positives
– Additional geometric invariant (part of 

the hash key or verification)

– Lower probability random sketch 
collisions (next slide)

GmH:  37 collisions mH:  4 collisions

Sketches s=2,  k=5000

GmH:  0 collisions mH:  4 collisions

Sketches s=2,  k=5000

• Higher true positives
– View point change 

– Severe occlusion

– Scale change

– Object on a different background

• Faster spatial verification
– Sketch collision defines geometric 

transformation
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Overlap of Random Sets

False positive = sketch collision of two random images

The probability of two random sets I1and I2having a common 
min-Hash (i.e. the average overlap of two random sets)

where w is the size of the vocabulary

The smaller the sets, the smaller probability of random collision

• Min-Hash: features in the whole image

• Geometric min-Hash: only small subset of the image
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Experiments
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Experiment 1: Clustering on Oxford 100k DB

Hertford

Keble

Magdalen

Pitt Rivers

Radcliffe 
Camera

All Soul's

Ashmolean

Balliol

Bodleian

Christ Church

Cornmarket

100 000 Images downloaded from FLICKR
Includes 11 Oxford Landmarks with manually labeled ground truth

Randomized clustering
Cluster hypotheses by hashing, completion by retrieval
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Clustering Results on Oxford 100k

16 min* 33 min*

≥

<s = 2, k = 64
~550 bytes per image

* The time does not include feature detection, SIFT computation, vector quantization

s = 3, k = 256
~1600 bytes per image
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Experiment 2: Object Discovery

Verification by co-segmentation
critical for small objects

[Cech, Matas, Perdoch CVPR 08], code available on WWW 
[Ferrari, Tuytelaars,Van Gool, ECCV 2004]

Geometric min-Hash
sketch collision
s = 2, k = 256
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Small Object Discovery

Other instances of the discovered object by (sub)image retrieval 
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Faces are Small Objects
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Discovery of the Face Category:
the Largest Cluster in Oxford 100k
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The Importance of the Co-segmentation
in Object Discovery

Seed image pair

Result by query expansion using features inside the segmentation

Using the whole bounding box
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Visual Content Hyperlinks
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Conclusions

• Novel representation for hashing was introduced
– Significantly improves the recall (reduces false negatives)

– Reduces the number of false positives

– Reduces memory footprint of image representation

– Connects min-Hash and geometric Hashing

– The first efficient combination of appearance and 
geometry in large scale indexing

• Applications
– Clustering of spatially related images

– Discovery of small objects
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Thank you!

Example of discovered object

(cut outs)
(cut outs)
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