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LECTURE PLAN
¢ Discriminative approach. Maximal margin classifier.
¢ Minimization of the structural risk.
¢ SVM, task formulation, solution: quadratic programming.
¢ Linearly separable case.

¢ Linearly non-separable case.
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® There are two principal approaches to design a classifier:

e (Generative.
e Discriminative.

¢ So far, the generative methods were used. A known
statistical model was assumed = decision rule.

©® Now, we will assume that class of decision rules is known.

V. Vapnik: Learning is the selection of one decision rule
from the class of rules.
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¢ Maximizes margin between classes which increases generalization ability.

® The Vapnik's Support Vector Machine is based on the same idea.

X, +

Class 1
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¢ Two hidden states (classes) only, ki, ko.

® A separable hyperplane is sought which maximizes a
distance (margin) between classes.

® The task is converted into a quadratic programming task

1
(w*,b") = argmin - fJw|]
w,b

under constraints

(w,z;) +b>1 for kj=1
(w,z;) +b<1 for k; =2
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Theory how to learn classifier

Minimization of the structural risk

v

margin for nonseparable data

Linear classifier, a maximal margin classifier
Seek for a maximal margin, respectively. a soft

Primal task

Learning expressed as quadratic optimization

v

Transformation of the primal task to the dual task
In dual task, data is expressed as scalar products

l

Support Vector Machines

4_
4_

Extensions
- Straightening of the feature space

- Use of kernel functions.

5/22
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INTRODUCTION

¢ Learning the classifier from the finite training set.

® There is an estimate — upper bound of the mean
classification error.

® Solves problem of generalization, i.e. choice of a statistical

model.
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ASSUMPTIONS

¢ x € R" ... observation of the object (vector of
measurements).

¢ ye{-1,1} ... hidden states

® There is a training set available

{(ajlayl)' (x27y2)1 Tt (x[nyL)}’
which is drawn randomly and generated by an unknown
probability distribution p(x,y).
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THE AIM

Is to find a classifier
flz,a),
where a is a parameter with the minimal expected classification

error (risk)

R(f(w.) = [ 5lu = F@.0)] dplo.y).

Note: a 1/0 loss (penalty) function was used, i.e.,

1 )| — 0 ify=f(x,a),
L ﬂ’)"{1ﬁy¢f@@y
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COMPLICATIONS

R(f(z,a)) cannot be calculated because the probability
distribution p(x,y) is unknown.

SOLUTION

Use the upper bound for R by Vapnik-Cervonénkis.

h (log 5 2L 4+ 1) —logZ

structural risk
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MINIMIZATION OF THE STRUCTURAL RISK

1 L

1
Empirical risk  Repp = 7 Z §‘f(33i,a) — Yl

1=1

h is a VC dimension characterizing the class of decision
functions f(x,a) € F.

L is the length of the training set.

n is the degree of belief into the bound R(f(x,a)), i.e.,

0<n< L

10/22

Support Vector Machines implement structural risk
minimization principle.


http://cmp.felk.cvut.cz

©
LINEARLY SEPARABLE SVM C -

11/22

The aim is to find linear discriminant function
F(,w,b) = sign({w, z) + b) = sign (w'z +b)

¢ VC dimension (capacity) depends on
the margin m

¢ R is given by the data itself.

¢ Margin m can be optimized in the
classifier design.

Conclusion: separation hyperplanes with larger margin have
lower VC dimension < lower value of the upper bound.


http://cmp.felk.cvut.cz

®
LINEARLY SEPARABLE SVM (2) °

12/22

The separating hyperplane is sought which maximizes distance
to data (margin).
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LINEARLY SEPARABLE SVM (3) C

The distance between the observation x; and the separating
hyperplane w'z; +b =0 is
w'x; d w'z, + b

COS ¥ = COS (¥ = —
|wl[f]ai]] || |w]|

13/22
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The optimization task

w* b* — arginax min
( ’ ) w.b i=1,....L ”UJH

can be converted in to a standard quadratic programming
problem (primal task)

1
(w*, b") = argmin §HwH2

w'e; +b> 41, y; = +1

w'r, +b< -1, y=-1
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The aim is to convert the problem into a formulation without
constraints.

Lagrange function L is introduced, «; are Lagrange multipliers,

L(w, b, ay) :—HwH2 Zaz (w x yﬁ—Zal. (Eq. 1)

Now we have formulated the dual task, i.e., the problem without
constraints

(w*,b") = argmin max L(w,b, a;) .
w,b a; >0
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SOLUTION TO THE DUAL TASK

min max L(w,b,®;) = maxmin L(w,b, a;)
w,b o;>0 a; >0 w,b

Seek optimum, i.e., 1st partial derivatives = 0,

OL
ow

1=1

Substitute to (Eq. 1), get rid off w, b and get
L L

L

Q; = arglnax ; — 5 Qi YY;,; Ly,
e2) _
1=1

i=1 j=1

a; > 0, ZO%?J?;:O-

=0 = w= Zozx a—L—szL:oz--—O
- - ’Ly’b 7 9 ab_ - ’Ly’L_ .

16/22
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Primal task
¢ Optimized according to vector w € R™ and b € R.
® Number of variables is n + 1.
® Number of linear constraints is n.
Dual task
¢ Optimized according to oy, s, ..., ar, o; € R.
¢ Number of variables is L.
¢ Number of linear constraints is L + 1.

¢ Data appear as scalar products only, i.e., x;r:v]
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® The solution is sparse. Many «; equal to 0.
;=0 = yi(w'z; +0) > 1.
o, >0 = yi(wTa;Z- -+ b) = 1.

¢ Data x; for which «; > 0 are called Support Vectors.

L
w = E QYL — E YLy
i=1

1eSV

Calculation of b for 7 € SV:

1 — yinazi

Yi

yi(w'z;+b) =1=b=

One SV should be enough.

Practically, many SVs, mean of b.
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Nonseparable data. < It is not possible to find separable
hyperplane without errors.

/e
3 I

S po
I/ll /I ®

fog =+t | fog =

Solution: Regularization, i.e., introduction of slack variables
£ > 0 = Soft Margin SVM.


http://cmp.felk.cvut.cz

<
SOFT MARGIN SVM C

L
* 1k %\ . 1 2 k
(', b, €) = argmin L[]+ C Y €

w,b,r1; i—1

w'a+b>4+1-&, y=+1
wa+b<-1+&, yi=-1

Optimization criterion, marginal behavior
¢ min ||w||* — maximization of the margin.

¢ min Zle £¥ — minimal number misclassified training
points (upper bound of the empirical error).

Quadratic programming for k =1, 2.

20/22
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How to choose regularization constant C'? Common solutions:

¢ Design the classifier for several values of C' = {C},...,C,}.
Follow by 1D optimization.

¢ Use some other criterion to choose (', e.g., cross validation.

¢ Transform to dual task, analogically to separable case.

L L

L
1 N\ N\ T
(; = argilnax E oy — 5 >4 >4 ;O GYY L, Loy
Yo =1 i=1 j=1

L
0<q; <, Z&iyi:().
1=1

Note: < C above is the only difference when comparing to
the linearly separable case.



http://cmp.felk.cvut.cz

©
SOFT MARGIN SVM, THEORETIC BACKING & -

22/22

- L (ZE&) los () log? L + log <1>\
)

Risk =
1S 7 \ —
IS minimized when

el (Zg) 8 (w“w))

This matches to Soft Margin SVM criterion with exception to
the last term on the right side.
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