PRA	HA
PRA	GUE
PRA	GA
PRA	G

OI-OPPA. European Social Fund
Prague \& EU: We invests in your future.

Machine Learning Lecture 11

Thomas Hofmann
June 2, 2005

Statistical Estimation

- General setting:
- random variable $X=$ a variable representing a random event
- sample space $\mathcal{X}=$ space of possible outcomes
- realization $\mathrm{x}=$ observed or hypothetical outcome
- set of probability distributions \mathcal{P} over \mathcal{X} parameterized by some parameter vector $\theta, p(\cdot ; \theta) \in \mathcal{P}$.
- E.g. $p(\cdot ; \theta) \geq$ is a probabiliy density function $\int_{\mathcal{X}} p(\mathbf{x} ; \theta) d \mathbf{x}=1$
- Statistical estimation: given an observation or a set of observations, infer an optimal parameter θ

Maximum Likelihood Estimation

- Use likelihood as criterion to rate different hypotheses (θ).
- More convenient tu use so-called log-likelihood function

$$
\mathcal{L}(\theta ; \mathbf{x})=\log p(\mathbf{x} ; \theta)
$$

- This means, a parameter θ is preferred over some $\bar{\theta}$, if the observed data is more likely under θ than $\bar{\theta}$.
- Maximum Likelihood Estimation

$$
\hat{\theta}=\arg \max _{\theta} \mathcal{L}(\theta ; \mathbf{x})=\arg \max _{\theta} \log p(\mathbf{x} ; \theta)
$$

- i.i.d. sample $\mathbf{x}=\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}: \hat{\theta}=\arg \max _{\theta} \sum_{i=1}^{n} \log p\left(\mathbf{x}_{i} ; \theta\right)$

MLE: Gaussian Case

- Example: Gaussian distribution, $\mathcal{X}=\mathbb{R}, \theta=(\mu, \sigma)^{\prime}$, probability density

$$
p(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]
$$

- Maximum likelihood estimates

$$
\begin{aligned}
\hat{\mu} & =\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
\hat{\sigma}^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2}
\end{aligned}
$$

MLE: Multivariate Normal Distribution

- Multivariate normal

$$
p(\mathbf{x} ; \mu, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{\frac{d}{2}}|\Sigma|^{\frac{1}{2}}} \exp \left[-\frac{1}{2}(\mathbf{x}-\mu)^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mu)\right]
$$

- MLE

$$
\begin{aligned}
\hat{\mu} & =\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \\
\hat{\boldsymbol{\Sigma}} & =\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\hat{\mu}\right)\left(\mathbf{x}_{i}-\hat{\mu}\right)^{\prime}
\end{aligned}
$$

MLE: Multivariate Normal Distribution

Mixture Models (1)

- Statistical classification: assume that the observed patterns $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ belong to a certain number of K classes c_{1}, \ldots, c_{K}.
- Assume further that we do not observe these classes, but rather a mixture of patterns from different classes.
- For each class we assume that patterns are distributed according to a class-conditional distribution $p_{k}\left(\mathbf{x} ; \theta_{k}\right)$ parameterized by $\theta_{k}, p_{k}(\mathbf{x} ; \theta)=p\left(\mathbf{x} \mid \mathbf{C}=c_{k} ; \theta_{k}\right)$. Denote $\theta=\left(\theta_{1}, \ldots, \theta_{K}\right)^{\prime}$.
- These assumptions lead to a mixture model

$$
p(\mathbf{x} ; \pi, \theta)=\sum_{k=1}^{K} \pi_{k} p_{k}\left(\mathbf{x} ; \theta_{k}\right)
$$

where π_{k} is the prior probability of class c_{k} (mixing proportions).

Mixture Models (2)

- Notice that $\pi_{k} \geq 0$ and $\sum_{k=1}^{K} \pi_{k}=1$.
- A simple example of a density consisting of a mixture of three Gaussians

Why Mixture Models?

- Mixture models are more powerful than the component models used for the class-conditional distribution
- Mixture models can capture multimodality and offer a systematic way to define complex statistical models based on simpler ones.
- Mixture models can also be utilized to "unmix" the data, i.e. to assign patterns to the unobserved classes (data clustering)
- Bayes rule: posterior probabilities

$$
P\left(c_{k} \mid \mathbf{x} ; \pi, \theta\right)=\frac{\pi_{k} \cdot p_{k}\left(\mathbf{x} ; \theta_{k}\right)}{\sum_{l=1}^{K} \pi_{l} \cdot p_{l}\left(\mathbf{x} ; \theta_{l}\right)}
$$

MLE in Mixtures: Complete Data Log-Likelihood

- Key question: how to fit the parameters π, θ of a mixture model
- Expectation Maximization (EM) algorithm
- Introduce unobserved cluster membership variables $z_{i k} \in\{0,1\}$
$-z_{i k}=1$ denotes the fact that data point \mathbf{x}_{i} has been generated from the k-th component or class
$-\sum_{k=1}^{K} z_{i k}=1$ for all $i=1, \ldots, n$
- If membership variables were observed, then one could define the so-called complete data log-likelihood,

$$
\mathcal{L}_{c}(\pi, \theta ; \mathbf{x}, \mathbf{z})=\sum_{i=1}^{n} \sum_{k=1}^{K} z_{i k}\left[\log p_{k}\left(\mathbf{x}_{i} ; \theta_{k}\right)+\log \pi_{k}\right]
$$

MLE in Mixtures: Observed Data Log-Likelihood

- Since class membership variables z are not observed, we only have access to the observed data log-likelihood

$$
\mathcal{L}(\pi, \theta ; \mathbf{x})=\sum_{i=1}^{n} \log p\left(\mathbf{x}_{i} ; \theta\right)=\sum_{i=1}^{n} \log \sum_{k=1}^{K} \pi_{k} p_{k}\left(\mathbf{x}_{i} ; \theta_{k}\right)
$$

- Problem: direct maximization is difficult (logarithm of a sum effectively introduces complicated couplings)

Statistical Models with Unobserved Variables

- Imagine we would have some estimate of what the unobserved variables could be:

$$
Q_{i k}=\operatorname{Pr}\left(z_{i k}=1\right)=\text { probability that } \mathbf{x}_{i} \text { belongs to cluster } c_{k}
$$

- Try to maximize the expected complete data log-likelihood

$$
\mathbf{E}_{Q}\left[\mathcal{L}_{c}(\pi, \theta ; \mathbf{x}, \mathbf{z})\right]=\sum_{i=1}^{n} \sum_{k=1}^{K} Q_{i k}\left[\log p_{k}\left(\mathbf{x}_{i} ; \theta_{k}\right)+\log \pi_{k}\right]
$$

- Q is called a variational distribution (we don't know yet how to chose it appropriately)

Expected Complete Data Log-Likelihood

- Consider the following line of argument

$$
\begin{aligned}
\mathcal{L}(\pi, \theta ; \mathbf{x}) & =\sum_{i=1}^{n} \log p\left(\mathbf{x}_{i} ; \pi, \theta\right)=\sum_{i=1}^{n} \log \sum_{k=1}^{K} \pi_{k} p_{k}\left(\mathbf{x}_{i} ; \theta_{k}\right) \\
& =\sum_{i=1}^{n} \log \sum_{k=1}^{K} Q_{i k} \frac{\pi_{k} p_{k}\left(\mathbf{x}_{i} ; \theta_{k}\right)}{Q_{i k}} \\
& \geq \sum_{i=1}^{n} \sum_{k=1}^{K} Q_{i k} \log \frac{\pi_{k} p_{k}\left(\mathbf{x}_{i} ; \theta_{k}\right)}{Q_{i k}}=L(\pi, \theta, Q ; \mathbf{x})
\end{aligned}
$$

- Inequality follows from the concavity of the logarithm, or more specifically from Jensen's inequality.

Jensen's Inequality

- Jensen's inequality: for a convex function f and any probability mass function p

$$
\mathbf{E}[f(\mathbf{x})]=\sum_{\mathbf{x}} p(\mathbf{x}) f(\mathbf{x}) \geq f\left(\sum_{\mathbf{x}} p(\mathbf{x}) \mathbf{x}\right)=f(\mathbf{E}[\mathbf{x}])
$$

- Proof uses a simple inductive argument over the state space size.

Variational Upper Bound

- No matter what Q is, we will get a lower bound on the log-likelihood function.
- Instead of maximizing \mathcal{L} directly, we can hence try to maximize the (simpler) lower bound $L(\theta, \pi, Q ; \mathbf{x})$ w.r.t. the parameters θ and π.

Expectation Maximization Algorithm (1)

- Each choice of Q defines a different lower bound $L(\theta, \pi, Q ; \mathbf{x})$
- Key idea: optimize lower bound also w.r.t. Q. Get tightest lower bound for a given estimate of θ.
- Alternation scheme, maximizes $L(\pi, \theta, Q ; \mathbf{x})$ in every step.
- E-step: $Q^{(t+1)}=\arg \max _{Q} L\left(\pi^{(t)}, \theta^{(t)}, Q ; \mathbf{x}\right)$
- M-step: $\left(\pi^{(t+1)}, \theta^{(t+1)}\right)=\arg \max _{\pi, \theta} L\left(\theta, \pi, Q^{(t+1)} ; \mathbf{x}\right)$
- M-step optimizes a lower bound instead of the true likelihood function
- E-step adjusts the bound

Expectation Maximization Algorithm (2)

- What does that have to do with the function we referred to as expected complete data log-likelihood above?

$$
\begin{aligned}
L(\pi, \theta, Q ; \mathbf{x}) & =\sum_{i=1}^{n} \sum_{k=1}^{K} Q_{i k} \log \frac{\pi_{k} p_{k}\left(\mathbf{x}_{i} ; \theta_{k}\right)}{Q_{i k}} \\
& =\sum_{i=1}^{n} \sum_{k=1}^{K} Q_{i k} \log \pi_{k} p_{k}\left(\mathbf{x}_{i} ; \theta_{k}\right)-\sum_{i=1}^{n} \sum_{k=1}^{K} Q_{i k} \log Q_{i k} \\
& =\mathbf{E}_{Q}\left[\mathcal{L}_{c}(\pi, \theta ; \mathbf{x}, \mathbf{z})\right]-\sum_{i=1}^{n} \sum_{k=1}^{K} Q_{i k} \log Q_{i k}
\end{aligned}
$$

- Second term: entropy of Q (does not depend on π or θ)
- Maximizing $L(\pi, \theta, Q ; \mathbf{x})$ is the same as maximizing the expected complete data log-likelihood.

Expectation Maximization Algorithm (3)

- How about the E-step?
- It is easy to find a general answer to how Q should be chosen.
- Posterior probability $Q_{i k}^{*} \equiv \operatorname{Pr}\left(z_{i k}=1 \mid \mathbf{x}_{i} ; \pi, \theta\right)$ maximizes $L(\pi, \theta, Q ; \mathbf{x})$ for given π and θ.
- Proof: insert this choice for Q^{*} into $L(\pi, \theta, Q ; \mathbf{x})$

$$
\begin{aligned}
L\left(\pi, \theta, Q^{*} ; \mathbf{x}\right) & =\sum_{i=1}^{n} \sum_{k=1}^{K} Q_{i k}^{*} \log \frac{\pi_{k} p_{k}\left(\mathbf{x}_{i} ; \theta_{k}\right)}{Q_{i k}^{*}} \\
& =\sum_{i=1}^{n} \sum_{k=1}^{K} Q_{i k}^{*} \log p\left(\mathbf{x}_{i} ; \pi, \theta\right)=\mathcal{L}(\pi, \theta ; \mathbf{x})
\end{aligned}
$$

- Since $L(\pi, \theta, Q ; \mathbf{x}) \leq \mathcal{L}(\pi, \theta ; \mathbf{x})$ for all Q, equality is optimal.

Normal Mixture Model

- In the case of a mixture of multivariate normal distributions:
- M-step: differentiating expected complete data log-likelihood
- Mixing proportions $\hat{\pi}_{k}=\frac{1}{n} \sum_{i=1}^{n} Q_{i k}$
- Normal model

$$
\begin{aligned}
\hat{\mu}_{k} & =\frac{\sum_{i=1}^{n} Q_{i k} \mathbf{x}_{i}}{\sum_{i=1}^{n} Q_{i k}} \\
\hat{\Sigma}_{k} & =\frac{\sum_{i=1}^{n} Q_{i k}\left(\mathbf{x}_{i}-\hat{\mu}_{k}\right)\left(\mathbf{x}_{i}-\hat{\mu}_{k}\right)^{\prime}}{\sum_{i=1}^{n} Q_{i k}}
\end{aligned}
$$

Normal Mixture Model (2)

- E-Step

$$
Q_{i k}=\frac{\pi_{k}\left|\Sigma_{k}\right|^{-\frac{1}{2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{i}-\mu_{k}\right) \Sigma_{k}^{-1}\left(\mathbf{x}_{i}-\mu_{k}\right)\right]}{\sum_{l=1}^{K} \pi_{l}\left|\Sigma_{l}\right|^{-\frac{1}{2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{i}-\mu_{l}\right) \Sigma_{l}^{-1}\left(\mathbf{x}_{i}-\mu_{l}\right)\right]}
$$

EM for Normal Mixture Model

1: initialize $\hat{\mu}_{k}$ at random
2: initialize $\hat{\Sigma}_{k}=\sigma^{2} \mathbf{I}$, where σ^{2} is the overall data variance
3: repeat
4: for each data point x_{i} do
5: \quad for each component $k=1, \ldots, K$ do
6: \quad compute posterior probability $Q_{i k}$
7: end for
8: end for
9: for each component $k=1, \ldots, K$ do
10: compute $\hat{\mu}_{k}, \hat{\Sigma}_{k}, \hat{\pi}_{k}$
11: end for
12: until convergence

