Homework 5 for the Physics for OI

This homework is focused on coordinate systems, center of mass and moment of inertia.

Your tasks:

a) To calculate coordinates (especially z-coordinate) of a center of mass of hemisphere of radius R with its bottom in the xy plane and centered around z -axis (see the picture).
b) To calculate the moment of inertia of the hemisphere from the a) if the axis of rotation would be the z -axis.
c) To calculate the moment of inertia of a sphere with its center at the origin of the coordinate system if the axis of rotation would be the z -axis (the hemisphere from the a) was completed to a sphere).
d) To calculate the moment of inertia of a quarter of cylinder (see the picture) of radius R and height H if the axis of rotation is " o ".
e) To calculate the moment of inertia of a cylinder (the quarter of cylinder was completed to a cylinder) of radius R and height H if the axis of rotation is " o ".

Hemisphere

Quarter of cylinder

Additional instructions and hints:

The density of each body is constant and equal to ρ. Evaluate each result both in the pure format (as a function of the ρ, R, or H) and also divided by the mass of the body (the result will be just a function of radius R)
Use triple integration in cylindrical coordinates for the d) and e). Assume that the "o" axis is identical with the z -axis.
Recalculation between Cartesian and cylindrical coordinates:

$$
\begin{aligned}
& x=r \sin \phi \\
& y=r \cos \phi \\
& z=z
\end{aligned}
$$

Mass of a cylinder calculated in cylindrical coordinates, " o " axis is z -axis.

$$
m=\rho V=\rho \int_{0}^{H} \int_{0}^{2 \pi} \int_{0}^{2} r d r d \phi d z
$$

Use triple integration in spherical coordinates for the a), b) and c).
Recalculation between Cartesian and spherical coordinates:

$$
\begin{aligned}
& x=r \sin \theta \cos \varphi \\
& y=r \sin \theta \sin \varphi \\
& z=r \cos \theta
\end{aligned}
$$

Mass of a sphere with its center at the origin of coordinate system calculated in spherical coordinates

$$
m=\rho V=\rho \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{2} r^{2} \sin \theta d r d \varphi d \theta
$$

You can use either Integrate function from the Mathematica or chained application of the direct integration sign.

$$
\int_{\text {lower }}^{\text {upper }} \int_{\text {lower }}^{\text {upper }} \int_{\text {lower }}^{\text {upper }} \text { expr dlvar ddvar dl var }
$$

Spherical coordinates

