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Lecture motivation

              A:
int matrix[M][N];

int i, j, sum = 0;

…

for(i=0; i<M; i++)

  for(j=0; j<N; j++)

    sum += matrix[i][j];

Quick Quiz 1.: Is the result of both code fragments a same?

Quick Quiz 2.: Which of the code fragments is processed faster and why?

               B:
int matrix[M][N];

int i, j, sum = 0;

…

for(j=0; j<N; j++)

  for(i=0; i<M; i++)

    sum += matrix[i][j];

Is there a rule how to iterate over matrix element efficiently? 
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Lecture outline

● Overview of memory related terms and definitions
● Memory hierarchy

● Management and mapping of data between levels
● Cache memory

● Basic concept
● More realistic approach
● Multi-level cache memory

● Virtual memory
● Memory hierarchy and related problems
● Main memory implementation – memory chips
● Secondary(+more) storage (mass storage)
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John von Neumann, Hungarian physicist

28. 12. 1903 - 8. 2. 1957

von Neumann's computer architecture

Memory

ALU
Unit

Control
Unit

Input Output

Processor
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Computer architecture (desktop x86 PC)

generic
example
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From UMA to NUMA development (even in PC segment)

CPU 1 CPU 2

Northbridge
MC

Southbridge

RAM

SATA

USB
PCI-E

MC - Memory controller – contains circuitry responsible for SDRAM read and 
writes. It also takes care of refreshing each memory cell every 64 ms. 

CPU 1 CPU 2

MC

Southbridge

RAM

SATA

USB
PCI-E

RAM

MC  Northbridge

Southbridge
SATA

USB
PCI-E

CPU 1 CPU 2

MC MC

RAM RAM

Non-Uniform 
Memory 
Architecture
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Intel Core 2 generation

Northbridge became Graphics and Memory Controller Hub (GMCH)
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Intel i3/5/7 generation
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Memory address space

data path, 
usual width 
32b/4BAddress

width a bits

The most common size of addressable 
memory unit is 1B (8 bits)

  a 2↑a

  8 256 distinct locations

16 64K (K=1024)

… ……

32 4G (4096M, M=K↑2)
000000H

FFF…FFH
memory location
holds value – contents

It is an array of addressable units (locations) where each unit can hold a data value.
Number/range of addresses same as addressable units/words are limited in size.

Memory

ALU
Unit

Control
Unit

Input Output

Processor
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 Memory subsystem – terms and definitions

● Memory address – fixed-length sequences of bits or index
● Data value – the visible content of a memory location

Memory location can hold even more control/bookkeeping 
information
● validity flag, parity and ECC bits etc.

● Basic memory parameters:
● Access time – delay or latency between a request and the access 

being completed or the requested data returned
● Memory latency – time between request and data being available 

(does not include time required for refresh and deactivation)
● Throughput/bandwidth – main performance indicator. Rate of 

transferred data units per time.
● Maximal, average and other latency parameters
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Memory types and maintenance

● Types: RWM (RAM), ROM, FLASH
● Implementation: SRAM, DRAM

● Data retention time and conditions (volatile/nonvolatile)
● Dynamic memories (DRAM, SDRAM) require specific 

care
● Memory refresh – state of each memory cell has to be 

internally read, amplified and fed back to the cell once 
every refresh period (usually about 60 ms), even in idle 
state. Each refresh cycle processes one row of cells.

● Precharge – necessary phase of access cycle to restore 
cell state after its partial discharge by read

● Both contribute to maximal and average access time.
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Memory and CPU speed – Moore's law

Processor-Memory
Performance Gap
Growing

Source: Hennesy, Patterson
CaaQA 4th ed. 2006

CPU
performance

25%
per year

52%
per year

20%
per year

Throughput of memory 
only +7% per year
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Bubble sort – algorithm example from seminaries

int pole[5]={5,3,4,1,2};
int main()
{
    int N = 5,i,j,tmp;
    for(i=0; i<N; i++)
        for(j=0; j<N-1-i; j++)
            if(pole[j+1]<pole[j])
            {
                tmp = pole[j+1];
                pole[j+1] = pole[j];
                pole[j] = tmp;
            }
    return 0;
}

   What we can 
consider and 
expect from our 
programs?

Think about 
some typical 
data access 
patterns and 
execution flow.
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Memory hierarchy – principle of locality

● Programs access a small proportion of their address 
space at any time

● Temporal locality
● Items accessed recently are likely to be accessed again 

soon
● e.g., instructions in a loop, induction variables

● Spatial locality
● Items near those accessed recently are likely to be 

accessed soon
● E.g., sequential instruction access, array data

Source: Hennesy, Patterson
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Memory hierarchy introduced based on locality

● The solution to resolve capacity and speed requirements is 
to build address space (data storage in general) as 
hierarchy of different technologies.

● Store input/output data, program code and its runtime data 
on large and cheaper secondary storage (hard disk)

● Copy recently accessed (and nearby) items from disk to 
smaller DRAM based main memory (usually under 
operating system control)

● Copy more recently accessed (and nearby) items from 
DRAM to smaller SRAM memory (cache) attached to CPU 
(hidden memory, transactions under HW control), 
optionally, tightly coupled memory under program's control

● Move currently processed variables to CPU registers 
(under machine program/compiler control) 



17AE0B36APO   Computer Architectures

Memory hierarchy – speed, capacity, price

Source: Wikipedia.org

small size
small capacity

small size
small capacity

medium size
medium capacity

small size
large capacity

large size
very large 

capacity

processor registers
very fast, very expensive

processor cache
very fast, very expensive

random access memory
fast, affordable

flash/USB memory
slower, cheap

hard drive
slow, very cheap

tape backup
very slow, affordable

power on

immediate term

power on
very short term

power off
short term

power off
mid term

power off
long term
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Memory/storage in computer system

Logic
unit

ALU/CU

registers

Cache

Main memory
random access

256 MB …
16 GB

Mass storage
Hard disk
120 GB …
many TB

Removable media
CD-RW, DVD-RW

Removable
medium

memory
bus

Robotic
access
system

Removable
medium

Removable
media
drive

Removable
medium

Input/output 
channels

Secondary storage Off-line storage

Tertiary storage Primary storage

Central Processing Unit

Source: Wikipedia.org
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Contemporary price/size examples

Data
path

Control unit

L1
cache

Level2
cache

(SRAM)

Main
memory
(DRAM)

Secondary
memory

(disc)

R
egiste rs

CPU

Type/
Size

L1 32kB Sync 
SRAM

DDR3
16 GB 

HDD 3TB

Price 10 kč/kB 300 
kč/MB

123 
kč/GB

1 kč/GB

Speed/ 
throughput

0.2...2ns 0.5...8 
ns/word

15 
GB/sec

100 MB/sec

Some data can be available in more copies (consider levels and/or SMP ). 
Mechanisms to keep consistency required if data are modified.
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Mechanism to lookup demanded information?

● According to the address and other management 
information (data validity flags etc).

● The lookup starts at the most closely located memory 
level (local CPU L1 cache).

● Requirements:
● Memory consistency/coherency.

● Used means:
● Memory management unit to translate virtual address 

to physical and signal missing data on given level.
● Mechanisms to free (swap) memory locations and 

migrate data between hierarchy levels
● Hit (data located in upper level – fast), miss (copy from 

lower level required)
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Processor-memory performance gap solution – cache
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Performance gap between CPU and main memory

● Solution – cache memory
● Cache – component that (transparently) stores data so 

that future requests for that data can be served faster
● Transparent cache – hidden memory

● Placed between two subsystems with different data 
throughput. It speeds-up access to (recently) used data.

● This is achieved by maintaining copy of data on memory 
device faster than the original storage
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Initial idea – fully associative cache
● Tag – the key to locate data (value) in the cache. The original 

address in the main memory for fully associative case. Size of this 
field is given by number of bits in an address  – i.e. 32, 48 or 64

● Data – the stored information, basic unit – word – is usually 4 bytes
● Flags – additional bits to keep service information.

Tag Data Flags

Cache line of fully associative cache

Hit

comparator

comparator

comparator

Address

Tag Data Flags

Data
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Definitions for cache memory

● Cache line or cache block – basic unit 
copied between levels
● May be multiple words
● Usual cache line size from 8B up to 1KB

● If accessed data is present in upper level
● Hit: access satisfied by upper level

– Hit rate: hits/accesses
● If accessed data is absent

● Miss: block copied from lower level
– Time taken: miss penalty
– Miss rate: misses/accesses

= 1 – hit rate
● Then the accessed data is supplied from 

upper level
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Fully associative cache implementation

● The Tag field width is equivalent to address width (not counting 
address bits equivalent to byte in word or line)

● Each cache line requires its own multiplexer input and same 
number of one-bit comparators as is size of the tag field.

● Cache line count determines capacity of the cache
● Cache requires complex replacement policy logic to find out 

which of all lines is the best candidate for new request.

● Such cache implementation is very expensive to implement 
in HW (ratio of gate count/capacity is high) and slow

● That is why other cache types are used in practice
● Direct mapped
● n-way associative – with limited associativity
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CPU writes to main memory

● There is cache in the way
● Data consistency – requirement for data coherency for same 

address accessed through different paths
● Write through – data are written to the cache and write 

buffer/queue simultaneously
● Write back – data are written to the cache only and dirty bit is 

set. Write to the other level is delayed until cache line 
replacement time or to cache flush event

● Dirty bit – an additional flag for cache line. It Indicates that 
cached value is updated and does not correspond with the main 
memory.

V Other bits, i.e. D Tag Data
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The process to resolve cache miss

● Data has to be filled from main memory, but quite often all available cache 
locations which address can be mapped to are allocated

● Cache content replacement policy (offending cache line is invalidated either 
immediately or after data are placed in the write queue/buffer)

● Random – random cache line is evicted
● LRU (Least Recently Used)  – additional information is required to find cache line 

that has not been used for the longest time
● LFU (Least Frequently Used) – additional information is required to find cache 

line that is used least frequently – requires some kind of forgetting
● ARC (Adaptive Replacement Cache) – combination of LRU and LFU concepts
● Write-back – content of the modified (dirty) cache line is moved to the write 

queue
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CPU including cache – Harvard cache architecture

Separated instruction and data cache
The concept of Von Neumann's CPU with Harvard cache is illustrated on 
a MIPS CPU family member, i.e. real CPU which is superset of the design 
introduced during lectures 2 and 4.
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Example to illustrate base cache types

● The cache capacity 8 blocks. Where can be 
block/address 12 placed for
● Fully associative
● Direct mapped
● N-way (set) associative – i.e. N=2 (2-way cache)

0 1 2 3 4 5 6 7

Only one set

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Set
0

Set 
1

Set
2

Set
3

Block
number

Block
number

Block
number

Fully associative:
Address 12 can be 
placed anywhere

Direct mapped:
Address 12 placed only 
to block 4 (12 mod 8)

2-way associative:
Address 12 is placed 
into set 0 (12 mod 4)

Set
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Direct mapped cache

Capacity – C

Number of sets – S

Block size – b

Number of blocks – B

Degree of associativity – N

C = 8 (8 words), 

S = B = 8,

b = 1 (one word in the block),

N = 1

direct mapped cache: one block in each set
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Direct mapped cache

Set = (Address/(4·b)) mod S

Set = (Address/4) mod 8
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Real cache organization

● Tag is index of the block corresponding to the cache set 
size in the main memory (that is address divided by block 
length and number or the cache lines in the set)

● Data are organized in cache line blocks, multiple words. 
● Valid bit – marks line contents (or sometimes individual 

words) as valid.
● Dirty bit – corresponding cache line (word) was modified 

and write back will be required later
● Possible cache line states (for coherence protocols) – 

Invalid, Owned, Shared, Modified, Exclusive – out of the 
scope for this lecture

V Flags, i.e. dirty bit D Tag Data
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Direct mapped cache implementation

Quick Quiz: Is bigger block 
size (always) advantageous?
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Capacity – C

Number of sets – S

Block size – b

Number of blocks – B

Degree of associativity – N

C = 8 (8 words), 

S = 4,

b = 1 (one word in the block),

B = 8

N = 2 What is main advantage of higher associativity?

2-way set associative cache
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4-way set associative cache
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Fully associative cache as special N-way case

● From the above, a fully associative cache can be 
considered as N-way with only one set. N=B=C/(b·4)

● The same way we can define direct mapped cache as a special case 
where the number of ways is one.
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Important cache access statistical parameters

● Hit Rate – number of memory accesses satisfied by 
given level of cache divided by number of all memory 
accesses

● Miss Rate – same, but for requests resulting in 

access to slower memory = 1 – Hit Rate
● Miss Penalty – time required to transfer block (data) 

from lower/slower memory level 
● Average Memory Access Time (AMAT)

         AMAT = Hit Time + Miss Rate × Miss Penalty

● Miss Penalty for multi-level cache can be computed by 
recursive application of AMAT formula
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Comparison of different cache sizes and organizations

Remember: 1. miss rate is not cache parameter/feature!
2. miss rate is not parameter/feature of the program!
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What can be gained from spatial locality?

Miss rate of consecutive accesses can be reduced by increasing block size. 
On the other hand, increased block size for same cache capacity results in 
smaller number of sets and higher probability of conflicts (set number aliases) 
and then to increase of miss rate.
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Multi-level cache organization
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Multiple cache levels – development directions

● Primary/L1 cache – tightly coupled to the CPU
● Fast but small. Main objective: minimal Hit Time/latency
● Usually separated caches for instruction and for data
● Size usually selected so that cache lines can be virtually tagged without 

aliasing. (set/way size is smaller than page size)
● L2 cache resolves cache misses of the primary cache

● Much bigger and slower but still faster than main memory. Main goal: low 
Miss Rate

● L2 cache misses are resolved by main memory
● Trend to introduce L3 caches, inclusive versus exclusive cache

Usual for L1 Usual for L2

Block count 250-2000 15 000-250 000

KB 16-64 2 000-3 000

Block size in bytes 16-64 64-128

Miss penalty (cycles) 10-25 100-1 000

Miss rates 2-5% 0,1-2%
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Intel Nehalem – example of Harvard three-level cache

• IMC:  integrated memory 
controller with 3 DDR3 memory 
channels,

• QPI: Quick-Path Interconnect 
ports
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Intel Nehalem – memory subsystem structure
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Notes for Intel Nehalem example

● Block size: 64B
● CPU reads whole cache line/block from

 main memory and each is 64B aligned
● (6 LS bits are zeros), partial line fills allowed
● L1 – Harvard. Shared by two (H)threads

instruction – 4-way 32kB, data 8-way 32kB
● L2 – unified, 8-way, non-inclusive, WB
● L3 – unified, 16-way, inclusive (each line stored in L1 or L2 has copy in L3), WB
● Store Buffers – temporal data store for each write to eliminate wait for write to 

the cache or main memory. Ensure that final stores are in original order and 
solve “transaction” rollback or forced store for:

- exceptions, interrupts, serialization/barrier instructions, lock prefix,..
● TLBs (Translation Lookaside Buffers) are separated for the first level

Data L1 32kB/8-ways results in 4kB range (same as page) which allows to use 
12 LSBs of virtual address to select L1 set in parallel with MMU/TLB
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Virtual memory
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Virtual memory

● Virtual memory (VM) – a separate address space is provided 
to each process, it is (can be) organized independently on the 
physical memory ranges and can be even bigger than the 
whole physical memory

● Programs/instructions running on the CPU operate with data 
only through virtual addresses  

● Translation from virtual address (VA) to physical address (PA) 
is implemented in HW (MMU, TLB).

● Common OSes implement virtual memory through paging 
which extends concept even to swapping memory content onto 
secondary storage

Program works
in its virtual

address space
mapping

Physical
memory

(+caches)

VA – virtual
address

PA –
physical
address
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Virtual memory – paging

● Process virtual memory content is divided into aligned pages 
of same size (power of 2, usually 4 or 8 kB) 

● Physical memory consists of page frames of the same size
● Note: huge pages option on modern OS and HW – 2n pages

Page size = frame size

Virtual 
address 
space 
process-A

Virtual 
address 
space 
process-B

Physical memory

Page
frame

Disk
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Virtual/physical address and data

A0-A31 A0-A31

D0-D31 D0-D31

Virtual Physical

Virtual address Physical address

Data

CPU
Address 

translation 
MMU

Memory
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Address translation

● Page Table
● Root pointer/page directory base register (x86 CR3=PDBR)
● Page table directory PTD
● Page table entries PTE

● Basic mapping unit is a page (page frame)
● Page is basic unit of data transfers between main 

memory and secondary storage 
● Mapping is implemented as look-up table in most cases
● Address translation is realized by Memory Management 

Unit (MMU)
● Example follows on the next slide:
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Single-level page table (MMU)

● Page directory is represented as data structure stored in main memory. OS task is to 
allocate physically continuous block of memory (for each process/memory context) and 
assign its start address to special CPU/MMU register.

● PDBR - page directory base register – for x86 register CR3 – holds physical address of 
page directory start, alternate names PTBR - page table base register – the same thing, 
page table root pointer URP, SRP on m68k

PDBR
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But consider memory consumed by page table …

● Typical page size is 4 kB = 2^12
● 12 bits (offset) are enough to address data in page (frame). 

There are 20 bits left for address translation on 32-bit 
address/architecture.

● The fastest map/table look-up is indexing ⇒ use array 
structure

● The page directory is an array of 2^20 entries (PTE). That 
is big overhead for processes that do not use whole virtual 
address range. There are another problems as well  
(physical space allocation fragmentation when large 
compact table is used for each process, etc.)

● Solution: multi-level page table – lower levels populated 
only for used address ranges
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Multi-levels page table



53AE0B36APO   Computer Architectures

What is in page table entries? 

Page # Offset

V Access rights Frame#

+Index into 
pagetable

Page table

PA – physical address

Page table placed in physical memory

VA – virtual 
address

Page Table
Base Register

PTBR

Page valid bit – if = 0,
page not in the memory

results in page fault
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Remarks

V    AR  Frame#

● Each process has its own page table
● Process specific value of CPU PTBRT register is loaded by 

OS when given process is scheduled to run
● This ensures memory separation and protection between 

processes
● Page table entry format

● V – Validity Bit. V=0  page is not valid (is invalid)
● AR – Access Rights (Read Only, Read/Write, Executable, 

etc.),
● Frame# - page frame number (location in physical memory)
● Other management information, Modified/Dirty, (more bits 

discussed later, permission, system, user etc.).



55AE0B36APO   Computer Architectures

Virtual memory – Hardware and software interaction

Processor

Address
translation

Page fault
procession by OS

Main
memory

Secondary
store

a
Z

a'

Virtual address Physical address
OS process 
data transfer

missing page, i.e. PTE.V = 0



56AE0B36APO   Computer Architectures

How to resolve page-fault

● Check first that fault address belongs to process mapped areas
● If free physical frame is available

● The missing data are found in the backing store (usually swap or file 
on disk)

● Page content is read (usually through DMA, Direct Memory Access, 
part of some future lesson) to the allocated free frame. If read 
blocks, the OS scheduler switches to another process.

● End of the DMA transfer raises interrupt, OS updates  page table of 
original process.

● Scheduler switches to (resumes) original process.
● If no free frame is available, some frame has to be released

● The LRU algorithm finds (unpinned – not locked in physical memory 
by OS) frame, which can be released.

● If the Dirty bit is set, frame content is written to the backing store 
(disc). If store is a swap – store to the PTE or other place block nr.

● Then continue with gained free physical frame.
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Multi-level page table – translation overhead

● Translation would take long time, even if entries for all levels were present 
in cache. (One access per level, they cannot be done in parallel.) 

● The solution is to cache found/computed physical addresses
● Such cache is labeled as Translation Look-Aside Buffer
● Even multi-level translation caching are in use today
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Fast MMU/address translation using TLB

● Translation-Lookaside Buffer, or may it be, more descriptive name – 
Translation-Cache

● Cache of frame numbers where key is page virtual addresses 
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Typical sizes of today I/D and TLB caches comparison

Typical paged memory 
parameters

Typical  TLB

Size in blocks 16 000-250 000 40-1024

Size 500-1 000 MB 0,25-16 KB

Block sizes in B 4 000-64 000 4-32

Miss penalty 
(clock cycles)

10 000 000 –
100 000 000

10-1 000

Miss rates 0,00001-0,0001% 0,01-2

Backing store Pages on the disk Page table in the 
main memory

Fast access location Main memory frames TLB
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Hierarchical memory caveats



61AE0B36APO   Computer Architectures

Some problems to be aware of

● Memory coherence – definition on next slide
● Single processor (single core) systems 

● Solution: D-bit and Write-back based data transactions
● Even in this case, consistency with DMA requited (SW or 

HW)
● Multiprocessing (symmetric) SMP with common and 

shared memory – more complicated. Solutions:
● Common memory bus: Snooping, MESI, MOESI protocol
● Broadcast
● Directories

● More about these advanced topics in A4M36PAP
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Coherency definition

● Memory coherence is an issue that affects the design of computer 
systems in which two or more processors, cores or bus master 
controllers share a common area of memory.

● Intuitive definition: The memory subsystem is coherent if the value 
returned by each read operation is always the same as the value 
written by the most recent write operation to the same address.

● More formal: P – set of CPU's. xm∈X locations. ∀pi,pk∈P: pi≠pk. 
Memory system is coherent if

1.  pi read after pi write value a to xm returns a if there is no pi or pk 

write between these read and write operations

2. if pi reads xm after pk write b to xm and there is no other pi or pk write 
to xm then pi reads b if operations are separated by enough time (in 
other case previous value of xm can be read) or architecture 
specified operations are inserted after write and before read.

3. writes by multiple CPU's to the given location are serialized such 
than no CPU reads older value when it already read recent one
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Comparison of virtual memory and cache memory

● Remarks.: TLB for address translation can be fully associative, 
but for bigger sizes is 4-way.

● Do you understand the terms?
● What does victim represent?

● Important: adjectives cache and virtual mean different things.

Virtual memory Cache memory

Page Block/cache line

Page Fault Read/Write Miss

Page size: 512 B – 8 KB Block size: 8 – 128 B

Fully associative DM, N-way set associative

Victim selection: LRU LRU/Random

Write Back Write Thru/Write Back
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Inclusive versus exclusive cache/data backing store

● Mapping of contents of the main memory to the cache 
memory is inclusive, i.e. main memory location cannot 
be reused for other data when corresponding or updated 
contents is held in the cache

● If there are more cache levels it can be waste of the 
space to keep stale/old data in the previous cache level. 
Snoop cycle is required anyway. The exclusive 
mechanism is sometimes used in such situation.

● Inclusive mapping is the rule for secondary storage files 
mapped into main memory.

● But for swapping of physical contents to swap device/file 
exclusive or mixed approach is quite common.
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Memory realization – memory chips
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Flip-flop circuits – reminder from previous courses

RS

D latch, level-controlled flip-flop     D flip-flop, edge-controlled flip-flop

http://upload.wikimedia.org/wikipedia/commons/8/8c/D-Type_Flip-flop.svg
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Usual SRAM chip and SRAM cell

Usual SRAM chip 

Bigger memory size?

SRAM memory cell
CMOS technology
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Detail of static and dynamic memory bit cell

Single transistor cell of dynamic 
memory

6 transistor static memory cell (single bit)
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Internal architecture of the DRAM memory chip

This 4M × 1 DRAM is internally realized as an 2048x2048 array of 1b 
memory cells
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History of DRAM chips development

Year Capacity Price[$]/GB Access time [ns]

1980 64 Kb 1 500 000 250
1983 256 Kb 500 000 185
1985 1 Mb 200 000 135
1989 4 Mb 50 000 110
1992 16 Mb 15 000 90
1996 64 Mb 10 000 60
1998 128 Mb 4 000 60
2000 256 Mb 1 000 55
2004 512 Mb 250 50
2007 1 Gb 50 40
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Old school DRAM – asynchronous access

RAS – Row Address Strobe,
CAS – Column Address Strobe

● The address is transferred in two phases – reduces 
number of chip module pins and is natural for internal 
DRAM organization

● This method is preserved even for today chips
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Phases of DRAM memory read
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EDO-RAM – about 1995

● Output register holds data during overlap of next read 
CAS phase with previous access data transfer

this overlap (“pipelining”) increases throughput
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SDRAM – end of 90-ties – synchronous DRAM

● SDRAM chip is equipped by counter that can be used to define 
continuous block length (burst) which is read together
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SDRAM – the most widely used main memory technology

● SDRAM – clock frequency up to 100 MHz, 2.5V.
● DDR SDRAM – data transfer at both CLK edges, 2.5V.
● DDR2 SDRAM – lower power consumption 1.8V, 

frequency up to 400 MHz.
● DDR3 SDRAM – even lower power consumption at 1.5V, 

frequency up to 800 MHz.
● DDR4 SDRAM …
● There are also other dynamic memory types, I.e. 

RAMBUS, that use entirely different concept 
● All these innovations are focused mainly on throughput, 

not on the random access latency.
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Notes for todays SDRAMs and slides

● Use of the banked architecture that enables throughput to 
be increased by hiding latency of the opening and closing 
rows. These operations can proceed in parallel on 
different banks (sequential and interleaved banks 
mapping). The change result in a minimal pin count 
increase that is critical for price and density.

● FIXME: More information about DDR2/3 should be added
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Other memory technologies – secondary storage 
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Flash

● Combines properties of E2PROM, DRAM, ROM
● Data are stored in transistor (floating gates) array (cells)
● Each block can be programmed separately
● But be aware of large erase segments

● Nor type RAM access
● NAND block addressing and access

● Nonvolatile computer memory 
● Endures about 100 000 erase-write cycles
● Read access time (50 - 110 ns)
● Writes are slow, erase even slower
● Data retention is 10 or more years
● Uses: 

● memory cards
● USB flash disk
● memory chips
● SSD disk
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Flash memory cell

● Modified MOSFET transistor with electrically isolated 
floating gate

● Memory cell operations:
● Programming

– F-N tunneling
– Hot-carrier injection

● Erase
● Read
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Programming – Fowler-Nordheim's tunneling

● The Ucgvoltage is applied to the control gate
● This voltage creates an electric field that creates a 

potential barrier
● This barrier simplifies the way for electrons in the 

substrate to the floating gate
● Alternative to programing by Fowler-Nordheim's tunneling 

is Drain-side tunneling
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Hot-carrier injection programming

● There are two methods of Hot-carrier injection
a) hot-electron injection (for N type MOSFET placed on 

P-substrate) – used in practice for higher speed
b) hot-hole injection (for P type on N-substrate) 

●Hot-electron injection :
1)The Ucg - Ud voltage creates an 

electric field in the semiconductor
2)This field accelerates electrons from 

source electrode to drain electrode
3)The do not land to the drain 

electrode because of they have 
enough kinetic energy to cross 
isolation layer to the floating gate 
with higher potential



82AE0B36APO   Computer Architectures

Flash cell erase

● Erase can be realized by Fowler-Nordheim's tunneling as 
well

● Electrons are expelled from floating point gate by 
opposite polarity of Ucg than polarity used for 
programming
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Flash cell read operation

● The current flowing through transistor depends on floating 
gate charge value (in combination with word selector 
Ucg). 

● The current on common rail is compared to same 
threshold(s) and converted to digital bit(s) value
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Optic storage – CD-ROM – detail

track pit land
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How to record „0“ and „1“?

Record on 
media (one 
track)

Encoded 
data

● Ones are encoded by signal change!
● Zeros as no change. Bit stuffing etc. 
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Physical principle of magnetic media record

Disk plateRecording head 

Random ordered 
magnetic 
domains of 
magnetic media 
layer

Magnetic domains are 
ordered by current flowing 
through coil on 
recording/write head Organized magnetic domains cause 

changes of field under read head

Important: the 
data are carried by 
signal changes 
(reservation)!
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Quick Quiz

● Are associative memory and cache memory 
synonymous?
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Literature to read

Read:
● What Every Programmer Should Know About Memory by Ulrich 

Drepper, Red Hat, Inc.
http://www.akkadia.org/drepper/cpumemory.pdf

● Chapter 5 (Large and Fast: Exploiting memory hierarchy) from 
Hennesy, Patterson CaaQA

For brave ones
● Memory Ordering in Modern Microprocessors by Paul 

McKenney
http://www.rdrop.com/users/paulmck/scalability/paper/ordering.2
007.09.19a.pdf
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