
1AE0B36APO Computer Architectures

Computer Architectures

Memory

Pavel Píša, Michal Štepanovský, Miroslav Šnorek

Ver.1.10

Main source of inspiration: Patterson

English version partially supported by:
European Social Fund Prague & EU: We invests in your future.

Czech Technical University in Prague, Faculty of Electrical Engineering

2AE0B36APO Computer Architectures

Suggested literature for the course

3AE0B36APO Computer Architectures

Lecture motivation

 A:
int matrix[M][N];

int i, j, sum = 0;

…

for(i=0; i<M; i++)

 for(j=0; j<N; j++)

 sum += matrix[i][j];

Quick Quiz 1.: Is the result of both code fragments a same?

Quick Quiz 2.: Which of the code fragments is processed faster and why?

 B:
int matrix[M][N];

int i, j, sum = 0;

…

for(j=0; j<N; j++)

 for(i=0; i<M; i++)

 sum += matrix[i][j];

Is there a rule how to iterate over matrix element efficiently?

4AE0B36APO Computer Architectures

Lecture outline

● Overview of memory related terms and definitions
● Memory hierarchy

● Management and mapping of data between levels
● Cache memory

● Basic concept
● More realistic approach
● Multi-level cache memory

● Virtual memory
● Memory hierarchy and related problems
● Main memory implementation – memory chips
● Secondary(+more) storage (mass storage)

5AE0B36APO Computer Architectures

John von Neumann, Hungarian physicist

28. 12. 1903 - 8. 2. 1957

von Neumann's computer architecture

Memory

ALU
Unit

Control
Unit

Input Output

Processor

6AE0B36APO Computer Architectures

Computer architecture (desktop x86 PC)

generic
example

7AE0B36APO Computer Architectures

From UMA to NUMA development (even in PC segment)

CPU 1 CPU 2

Northbridge
MC

Southbridge

RAM

SATA

USB
PCI-E

MC - Memory controller – contains circuitry responsible for SDRAM read and
writes. It also takes care of refreshing each memory cell every 64 ms.

CPU 1 CPU 2

MC

Southbridge

RAM

SATA

USB
PCI-E

RAM

MC Northbridge

Southbridge
SATA

USB
PCI-E

CPU 1 CPU 2

MC MC

RAM RAM

Non-Uniform
Memory
Architecture

8AE0B36APO Computer Architectures

Intel Core 2 generation

Northbridge became Graphics and Memory Controller Hub (GMCH)

9AE0B36APO Computer Architectures

Intel i3/5/7 generation

10AE0B36APO Computer Architectures

Memory address space

data path,
usual width
32b/4BAddress

width a bits

The most common size of addressable
memory unit is 1B (8 bits)

 a 2↑a

 8 256 distinct locations

16 64K (K=1024)

… ……

32 4G (4096M, M=K↑2)
000000H

FFF…FFH
memory location
holds value – contents

It is an array of addressable units (locations) where each unit can hold a data value.
Number/range of addresses same as addressable units/words are limited in size.

Memory

ALU
Unit

Control
Unit

Input Output

Processor

11AE0B36APO Computer Architectures

 Memory subsystem – terms and definitions

● Memory address – fixed-length sequences of bits or index
● Data value – the visible content of a memory location

Memory location can hold even more control/bookkeeping
information
● validity flag, parity and ECC bits etc.

● Basic memory parameters:
● Access time – delay or latency between a request and the access

being completed or the requested data returned
● Memory latency – time between request and data being available

(does not include time required for refresh and deactivation)
● Throughput/bandwidth – main performance indicator. Rate of

transferred data units per time.
● Maximal, average and other latency parameters

12AE0B36APO Computer Architectures

Memory types and maintenance

● Types: RWM (RAM), ROM, FLASH
● Implementation: SRAM, DRAM

● Data retention time and conditions (volatile/nonvolatile)
● Dynamic memories (DRAM, SDRAM) require specific

care
● Memory refresh – state of each memory cell has to be

internally read, amplified and fed back to the cell once
every refresh period (usually about 60 ms), even in idle
state. Each refresh cycle processes one row of cells.

● Precharge – necessary phase of access cycle to restore
cell state after its partial discharge by read

● Both contribute to maximal and average access time.

13AE0B36APO Computer Architectures

Memory and CPU speed – Moore's law

Processor-Memory
Performance Gap
Growing

Source: Hennesy, Patterson
CaaQA 4th ed. 2006

CPU
performance

25%
per year

52%
per year

20%
per year

Throughput of memory
only +7% per year

14AE0B36APO Computer Architectures

Bubble sort – algorithm example from seminaries

int pole[5]={5,3,4,1,2};
int main()
{
 int N = 5,i,j,tmp;
 for(i=0; i<N; i++)
 for(j=0; j<N-1-i; j++)
 if(pole[j+1]<pole[j])
 {
 tmp = pole[j+1];
 pole[j+1] = pole[j];
 pole[j] = tmp;
 }
 return 0;
}

 What we can
consider and
expect from our
programs?

Think about
some typical
data access
patterns and
execution flow.

15AE0B36APO Computer Architectures

Memory hierarchy – principle of locality

● Programs access a small proportion of their address
space at any time

● Temporal locality
● Items accessed recently are likely to be accessed again

soon
● e.g., instructions in a loop, induction variables

● Spatial locality
● Items near those accessed recently are likely to be

accessed soon
● E.g., sequential instruction access, array data

Source: Hennesy, Patterson

16AE0B36APO Computer Architectures

Memory hierarchy introduced based on locality

● The solution to resolve capacity and speed requirements is
to build address space (data storage in general) as
hierarchy of different technologies.

● Store input/output data, program code and its runtime data
on large and cheaper secondary storage (hard disk)

● Copy recently accessed (and nearby) items from disk to
smaller DRAM based main memory (usually under
operating system control)

● Copy more recently accessed (and nearby) items from
DRAM to smaller SRAM memory (cache) attached to CPU
(hidden memory, transactions under HW control),
optionally, tightly coupled memory under program's control

● Move currently processed variables to CPU registers
(under machine program/compiler control)

17AE0B36APO Computer Architectures

Memory hierarchy – speed, capacity, price

Source: Wikipedia.org

small size
small capacity

small size
small capacity

medium size
medium capacity

small size
large capacity

large size
very large

capacity

processor registers
very fast, very expensive

processor cache
very fast, very expensive

random access memory
fast, affordable

flash/USB memory
slower, cheap

hard drive
slow, very cheap

tape backup
very slow, affordable

power on

immediate term

power on
very short term

power off
short term

power off
mid term

power off
long term

18AE0B36APO Computer Architectures

Memory/storage in computer system

Logic
unit

ALU/CU

registers

Cache

Main memory
random access

256 MB …
16 GB

Mass storage
Hard disk
120 GB …
many TB

Removable media
CD-RW, DVD-RW

Removable
medium

memory
bus

Robotic
access
system

Removable
medium

Removable
media
drive

Removable
medium

Input/output
channels

Secondary storage Off-line storage

Tertiary storage Primary storage

Central Processing Unit

Source: Wikipedia.org

19AE0B36APO Computer Architectures

Contemporary price/size examples

Data
path

Control unit

L1
cache

Level2
cache

(SRAM)

Main
memory
(DRAM)

Secondary
memory

(disc)

R
egiste rs

CPU

Type/
Size

L1 32kB Sync
SRAM

DDR3
16 GB

HDD 3TB

Price 10 kč/kB 300
kč/MB

123
kč/GB

1 kč/GB

Speed/
throughput

0.2...2ns 0.5...8
ns/word

15
GB/sec

100 MB/sec

Some data can be available in more copies (consider levels and/or SMP).
Mechanisms to keep consistency required if data are modified.

20AE0B36APO Computer Architectures

Mechanism to lookup demanded information?

● According to the address and other management
information (data validity flags etc).

● The lookup starts at the most closely located memory
level (local CPU L1 cache).

● Requirements:
● Memory consistency/coherency.

● Used means:
● Memory management unit to translate virtual address

to physical and signal missing data on given level.
● Mechanisms to free (swap) memory locations and

migrate data between hierarchy levels
● Hit (data located in upper level – fast), miss (copy from

lower level required)

21AE0B36APO Computer Architectures

Processor-memory performance gap solution – cache

22AE0B36APO Computer Architectures

Performance gap between CPU and main memory

● Solution – cache memory
● Cache – component that (transparently) stores data so

that future requests for that data can be served faster
● Transparent cache – hidden memory

● Placed between two subsystems with different data
throughput. It speeds-up access to (recently) used data.

● This is achieved by maintaining copy of data on memory
device faster than the original storage

23AE0B36APO Computer Architectures

Initial idea – fully associative cache
● Tag – the key to locate data (value) in the cache. The original

address in the main memory for fully associative case. Size of this
field is given by number of bits in an address – i.e. 32, 48 or 64

● Data – the stored information, basic unit – word – is usually 4 bytes
● Flags – additional bits to keep service information.

Tag Data Flags

Cache line of fully associative cache

Hit

comparator

comparator

comparator

Address

Tag Data Flags

Data

24AE0B36APO Computer Architectures

Definitions for cache memory

● Cache line or cache block – basic unit
copied between levels
● May be multiple words
● Usual cache line size from 8B up to 1KB

● If accessed data is present in upper level
● Hit: access satisfied by upper level

– Hit rate: hits/accesses
● If accessed data is absent

● Miss: block copied from lower level
– Time taken: miss penalty
– Miss rate: misses/accesses

= 1 – hit rate
● Then the accessed data is supplied from

upper level

25AE0B36APO Computer Architectures

Fully associative cache implementation

● The Tag field width is equivalent to address width (not counting
address bits equivalent to byte in word or line)

● Each cache line requires its own multiplexer input and same
number of one-bit comparators as is size of the tag field.

● Cache line count determines capacity of the cache
● Cache requires complex replacement policy logic to find out

which of all lines is the best candidate for new request.

● Such cache implementation is very expensive to implement
in HW (ratio of gate count/capacity is high) and slow

● That is why other cache types are used in practice
● Direct mapped
● n-way associative – with limited associativity

26AE0B36APO Computer Architectures

CPU writes to main memory

● There is cache in the way
● Data consistency – requirement for data coherency for same

address accessed through different paths
● Write through – data are written to the cache and write

buffer/queue simultaneously
● Write back – data are written to the cache only and dirty bit is

set. Write to the other level is delayed until cache line
replacement time or to cache flush event

● Dirty bit – an additional flag for cache line. It Indicates that
cached value is updated and does not correspond with the main
memory.

V Other bits, i.e. D Tag Data

27AE0B36APO Computer Architectures

The process to resolve cache miss

● Data has to be filled from main memory, but quite often all available cache
locations which address can be mapped to are allocated

● Cache content replacement policy (offending cache line is invalidated either
immediately or after data are placed in the write queue/buffer)

● Random – random cache line is evicted
● LRU (Least Recently Used) – additional information is required to find cache line

that has not been used for the longest time
● LFU (Least Frequently Used) – additional information is required to find cache

line that is used least frequently – requires some kind of forgetting
● ARC (Adaptive Replacement Cache) – combination of LRU and LFU concepts
● Write-back – content of the modified (dirty) cache line is moved to the write

queue

28AE0B36APO Computer Architectures

CPU including cache – Harvard cache architecture

Separated instruction and data cache
The concept of Von Neumann's CPU with Harvard cache is illustrated on
a MIPS CPU family member, i.e. real CPU which is superset of the design
introduced during lectures 2 and 4.

29AE0B36APO Computer Architectures

Example to illustrate base cache types

● The cache capacity 8 blocks. Where can be
block/address 12 placed for
● Fully associative
● Direct mapped
● N-way (set) associative – i.e. N=2 (2-way cache)

0 1 2 3 4 5 6 7

Only one set

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Set
0

Set
1

Set
2

Set
3

Block
number

Block
number

Block
number

Fully associative:
Address 12 can be
placed anywhere

Direct mapped:
Address 12 placed only
to block 4 (12 mod 8)

2-way associative:
Address 12 is placed
into set 0 (12 mod 4)

Set

30AE0B36APO Computer Architectures

Direct mapped cache

Capacity – C

Number of sets – S

Block size – b

Number of blocks – B

Degree of associativity – N

C = 8 (8 words),

S = B = 8,

b = 1 (one word in the block),

N = 1

direct mapped cache: one block in each set

31AE0B36APO Computer Architectures

Direct mapped cache

Set = (Address/(4·b)) mod S

Set = (Address/4) mod 8

32AE0B36APO Computer Architectures

Real cache organization

● Tag is index of the block corresponding to the cache set
size in the main memory (that is address divided by block
length and number or the cache lines in the set)

● Data are organized in cache line blocks, multiple words.
● Valid bit – marks line contents (or sometimes individual

words) as valid.
● Dirty bit – corresponding cache line (word) was modified

and write back will be required later
● Possible cache line states (for coherence protocols) –

Invalid, Owned, Shared, Modified, Exclusive – out of the
scope for this lecture

V Flags, i.e. dirty bit D Tag Data

33AE0B36APO Computer Architectures

Direct mapped cache implementation

Quick Quiz: Is bigger block
size (always) advantageous?

34AE0B36APO Computer Architectures

Capacity – C

Number of sets – S

Block size – b

Number of blocks – B

Degree of associativity – N

C = 8 (8 words),

S = 4,

b = 1 (one word in the block),

B = 8

N = 2 What is main advantage of higher associativity?

2-way set associative cache

35AE0B36APO Computer Architectures

4-way set associative cache

36AE0B36APO Computer Architectures

Fully associative cache as special N-way case

● From the above, a fully associative cache can be
considered as N-way with only one set. N=B=C/(b·4)

● The same way we can define direct mapped cache as a special case
where the number of ways is one.

37AE0B36APO Computer Architectures

Important cache access statistical parameters

● Hit Rate – number of memory accesses satisfied by
given level of cache divided by number of all memory
accesses

● Miss Rate – same, but for requests resulting in

access to slower memory = 1 – Hit Rate
● Miss Penalty – time required to transfer block (data)

from lower/slower memory level
● Average Memory Access Time (AMAT)

 AMAT = Hit Time + Miss Rate × Miss Penalty

● Miss Penalty for multi-level cache can be computed by
recursive application of AMAT formula

38AE0B36APO Computer Architectures

Comparison of different cache sizes and organizations

Remember: 1. miss rate is not cache parameter/feature!
2. miss rate is not parameter/feature of the program!

39AE0B36APO Computer Architectures

What can be gained from spatial locality?

Miss rate of consecutive accesses can be reduced by increasing block size.
On the other hand, increased block size for same cache capacity results in
smaller number of sets and higher probability of conflicts (set number aliases)
and then to increase of miss rate.

40AE0B36APO Computer Architectures

Multi-level cache organization

41AE0B36APO Computer Architectures

Multiple cache levels – development directions

● Primary/L1 cache – tightly coupled to the CPU
● Fast but small. Main objective: minimal Hit Time/latency
● Usually separated caches for instruction and for data
● Size usually selected so that cache lines can be virtually tagged without

aliasing. (set/way size is smaller than page size)
● L2 cache resolves cache misses of the primary cache

● Much bigger and slower but still faster than main memory. Main goal: low
Miss Rate

● L2 cache misses are resolved by main memory
● Trend to introduce L3 caches, inclusive versus exclusive cache

Usual for L1 Usual for L2

Block count 250-2000 15 000-250 000

KB 16-64 2 000-3 000

Block size in bytes 16-64 64-128

Miss penalty (cycles) 10-25 100-1 000

Miss rates 2-5% 0,1-2%

42AE0B36APO Computer Architectures

Intel Nehalem – example of Harvard three-level cache

• IMC: integrated memory
controller with 3 DDR3 memory
channels,

• QPI: Quick-Path Interconnect
ports

43AE0B36APO Computer Architectures

Intel Nehalem – memory subsystem structure

44AE0B36APO Computer Architectures

Notes for Intel Nehalem example

● Block size: 64B
● CPU reads whole cache line/block from

 main memory and each is 64B aligned
● (6 LS bits are zeros), partial line fills allowed
● L1 – Harvard. Shared by two (H)threads

instruction – 4-way 32kB, data 8-way 32kB
● L2 – unified, 8-way, non-inclusive, WB
● L3 – unified, 16-way, inclusive (each line stored in L1 or L2 has copy in L3), WB
● Store Buffers – temporal data store for each write to eliminate wait for write to

the cache or main memory. Ensure that final stores are in original order and
solve “transaction” rollback or forced store for:

- exceptions, interrupts, serialization/barrier instructions, lock prefix,..
● TLBs (Translation Lookaside Buffers) are separated for the first level

Data L1 32kB/8-ways results in 4kB range (same as page) which allows to use
12 LSBs of virtual address to select L1 set in parallel with MMU/TLB

45AE0B36APO Computer Architectures

Virtual memory

46AE0B36APO Computer Architectures

Virtual memory

● Virtual memory (VM) – a separate address space is provided
to each process, it is (can be) organized independently on the
physical memory ranges and can be even bigger than the
whole physical memory

● Programs/instructions running on the CPU operate with data
only through virtual addresses

● Translation from virtual address (VA) to physical address (PA)
is implemented in HW (MMU, TLB).

● Common OSes implement virtual memory through paging
which extends concept even to swapping memory content onto
secondary storage

Program works
in its virtual

address space
mapping

Physical
memory

(+caches)

VA – virtual
address

PA –
physical
address

47AE0B36APO Computer Architectures

Virtual memory – paging

● Process virtual memory content is divided into aligned pages
of same size (power of 2, usually 4 or 8 kB)

● Physical memory consists of page frames of the same size
● Note: huge pages option on modern OS and HW – 2n pages

Page size = frame size

Virtual
address
space
process-A

Virtual
address
space
process-B

Physical memory

Page
frame

Disk

48AE0B36APO Computer Architectures

Virtual/physical address and data

A0-A31 A0-A31

D0-D31 D0-D31

Virtual Physical

Virtual address Physical address

Data

CPU
Address

translation
MMU

Memory

49AE0B36APO Computer Architectures

Address translation

● Page Table
● Root pointer/page directory base register (x86 CR3=PDBR)
● Page table directory PTD
● Page table entries PTE

● Basic mapping unit is a page (page frame)
● Page is basic unit of data transfers between main

memory and secondary storage
● Mapping is implemented as look-up table in most cases
● Address translation is realized by Memory Management

Unit (MMU)
● Example follows on the next slide:

50AE0B36APO Computer Architectures

Single-level page table (MMU)

● Page directory is represented as data structure stored in main memory. OS task is to
allocate physically continuous block of memory (for each process/memory context) and
assign its start address to special CPU/MMU register.

● PDBR - page directory base register – for x86 register CR3 – holds physical address of
page directory start, alternate names PTBR - page table base register – the same thing,
page table root pointer URP, SRP on m68k

PDBR

51AE0B36APO Computer Architectures

But consider memory consumed by page table …

● Typical page size is 4 kB = 2^12
● 12 bits (offset) are enough to address data in page (frame).

There are 20 bits left for address translation on 32-bit
address/architecture.

● The fastest map/table look-up is indexing ⇒ use array
structure

● The page directory is an array of 2^20 entries (PTE). That
is big overhead for processes that do not use whole virtual
address range. There are another problems as well
(physical space allocation fragmentation when large
compact table is used for each process, etc.)

● Solution: multi-level page table – lower levels populated
only for used address ranges

52AE0B36APO Computer Architectures

Multi-levels page table

53AE0B36APO Computer Architectures

What is in page table entries?

Page # Offset

V Access rights Frame#

+Index into
pagetable

Page table

PA – physical address

Page table placed in physical memory

VA – virtual
address

Page Table
Base Register

PTBR

Page valid bit – if = 0,
page not in the memory

results in page fault

54AE0B36APO Computer Architectures

Remarks

V AR Frame#

● Each process has its own page table
● Process specific value of CPU PTBRT register is loaded by

OS when given process is scheduled to run
● This ensures memory separation and protection between

processes
● Page table entry format

● V – Validity Bit. V=0 page is not valid (is invalid)
● AR – Access Rights (Read Only, Read/Write, Executable,

etc.),
● Frame# - page frame number (location in physical memory)
● Other management information, Modified/Dirty, (more bits

discussed later, permission, system, user etc.).

55AE0B36APO Computer Architectures

Virtual memory – Hardware and software interaction

Processor

Address
translation

Page fault
procession by OS

Main
memory

Secondary
store

a
Z

a'

Virtual address Physical address
OS process
data transfer

missing page, i.e. PTE.V = 0

56AE0B36APO Computer Architectures

How to resolve page-fault

● Check first that fault address belongs to process mapped areas
● If free physical frame is available

● The missing data are found in the backing store (usually swap or file
on disk)

● Page content is read (usually through DMA, Direct Memory Access,
part of some future lesson) to the allocated free frame. If read
blocks, the OS scheduler switches to another process.

● End of the DMA transfer raises interrupt, OS updates page table of
original process.

● Scheduler switches to (resumes) original process.
● If no free frame is available, some frame has to be released

● The LRU algorithm finds (unpinned – not locked in physical memory
by OS) frame, which can be released.

● If the Dirty bit is set, frame content is written to the backing store
(disc). If store is a swap – store to the PTE or other place block nr.

● Then continue with gained free physical frame.

57AE0B36APO Computer Architectures

Multi-level page table – translation overhead

● Translation would take long time, even if entries for all levels were present
in cache. (One access per level, they cannot be done in parallel.)

● The solution is to cache found/computed physical addresses
● Such cache is labeled as Translation Look-Aside Buffer
● Even multi-level translation caching are in use today

58AE0B36APO Computer Architectures

Fast MMU/address translation using TLB

● Translation-Lookaside Buffer, or may it be, more descriptive name –
Translation-Cache

● Cache of frame numbers where key is page virtual addresses

59AE0B36APO Computer Architectures

Typical sizes of today I/D and TLB caches comparison

Typical paged memory
parameters

Typical TLB

Size in blocks 16 000-250 000 40-1024

Size 500-1 000 MB 0,25-16 KB

Block sizes in B 4 000-64 000 4-32

Miss penalty
(clock cycles)

10 000 000 –
100 000 000

10-1 000

Miss rates 0,00001-0,0001% 0,01-2

Backing store Pages on the disk Page table in the
main memory

Fast access location Main memory frames TLB

60AE0B36APO Computer Architectures

Hierarchical memory caveats

61AE0B36APO Computer Architectures

Some problems to be aware of

● Memory coherence – definition on next slide
● Single processor (single core) systems

● Solution: D-bit and Write-back based data transactions
● Even in this case, consistency with DMA requited (SW or

HW)
● Multiprocessing (symmetric) SMP with common and

shared memory – more complicated. Solutions:
● Common memory bus: Snooping, MESI, MOESI protocol
● Broadcast
● Directories

● More about these advanced topics in A4M36PAP

62AE0B36APO Computer Architectures

Coherency definition

● Memory coherence is an issue that affects the design of computer
systems in which two or more processors, cores or bus master
controllers share a common area of memory.

● Intuitive definition: The memory subsystem is coherent if the value
returned by each read operation is always the same as the value
written by the most recent write operation to the same address.

● More formal: P – set of CPU's. xm∈X locations. ∀pi,pk∈P: pi≠pk.
Memory system is coherent if

1. pi read after pi write value a to xm returns a if there is no pi or pk

write between these read and write operations

2. if pi reads xm after pk write b to xm and there is no other pi or pk write
to xm then pi reads b if operations are separated by enough time (in
other case previous value of xm can be read) or architecture
specified operations are inserted after write and before read.

3. writes by multiple CPU's to the given location are serialized such
than no CPU reads older value when it already read recent one

63AE0B36APO Computer Architectures

Comparison of virtual memory and cache memory

● Remarks.: TLB for address translation can be fully associative,
but for bigger sizes is 4-way.

● Do you understand the terms?
● What does victim represent?

● Important: adjectives cache and virtual mean different things.

Virtual memory Cache memory

Page Block/cache line

Page Fault Read/Write Miss

Page size: 512 B – 8 KB Block size: 8 – 128 B

Fully associative DM, N-way set associative

Victim selection: LRU LRU/Random

Write Back Write Thru/Write Back

64AE0B36APO Computer Architectures

Inclusive versus exclusive cache/data backing store

● Mapping of contents of the main memory to the cache
memory is inclusive, i.e. main memory location cannot
be reused for other data when corresponding or updated
contents is held in the cache

● If there are more cache levels it can be waste of the
space to keep stale/old data in the previous cache level.
Snoop cycle is required anyway. The exclusive
mechanism is sometimes used in such situation.

● Inclusive mapping is the rule for secondary storage files
mapped into main memory.

● But for swapping of physical contents to swap device/file
exclusive or mixed approach is quite common.

65AE0B36APO Computer Architectures

Memory realization – memory chips

66AE0B36APO Computer Architectures

Flip-flop circuits – reminder from previous courses

RS

D latch, level-controlled flip-flop D flip-flop, edge-controlled flip-flop

http://upload.wikimedia.org/wikipedia/commons/8/8c/D-Type_Flip-flop.svg

67AE0B36APO Computer Architectures

Usual SRAM chip and SRAM cell

Usual SRAM chip

Bigger memory size?

SRAM memory cell
CMOS technology

68AE0B36APO Computer Architectures

Detail of static and dynamic memory bit cell

Single transistor cell of dynamic
memory

6 transistor static memory cell (single bit)

69AE0B36APO Computer Architectures

Internal architecture of the DRAM memory chip

This 4M × 1 DRAM is internally realized as an 2048x2048 array of 1b
memory cells

70AE0B36APO Computer Architectures

History of DRAM chips development

Year Capacity Price[$]/GB Access time [ns]

1980 64 Kb 1 500 000 250
1983 256 Kb 500 000 185
1985 1 Mb 200 000 135
1989 4 Mb 50 000 110
1992 16 Mb 15 000 90
1996 64 Mb 10 000 60
1998 128 Mb 4 000 60
2000 256 Mb 1 000 55
2004 512 Mb 250 50
2007 1 Gb 50 40

71AE0B36APO Computer Architectures

Old school DRAM – asynchronous access

RAS – Row Address Strobe,
CAS – Column Address Strobe

● The address is transferred in two phases – reduces
number of chip module pins and is natural for internal
DRAM organization

● This method is preserved even for today chips

72AE0B36APO Computer Architectures

Phases of DRAM memory read

73AE0B36APO Computer Architectures

EDO-RAM – about 1995

● Output register holds data during overlap of next read
CAS phase with previous access data transfer

this overlap (“pipelining”) increases throughput

74AE0B36APO Computer Architectures

SDRAM – end of 90-ties – synchronous DRAM

● SDRAM chip is equipped by counter that can be used to define
continuous block length (burst) which is read together

75AE0B36APO Computer Architectures

SDRAM – the most widely used main memory technology

● SDRAM – clock frequency up to 100 MHz, 2.5V.
● DDR SDRAM – data transfer at both CLK edges, 2.5V.
● DDR2 SDRAM – lower power consumption 1.8V,

frequency up to 400 MHz.
● DDR3 SDRAM – even lower power consumption at 1.5V,

frequency up to 800 MHz.
● DDR4 SDRAM …
● There are also other dynamic memory types, I.e.

RAMBUS, that use entirely different concept
● All these innovations are focused mainly on throughput,

not on the random access latency.

76AE0B36APO Computer Architectures

Notes for todays SDRAMs and slides

● Use of the banked architecture that enables throughput to
be increased by hiding latency of the opening and closing
rows. These operations can proceed in parallel on
different banks (sequential and interleaved banks
mapping). The change result in a minimal pin count
increase that is critical for price and density.

● FIXME: More information about DDR2/3 should be added

77AE0B36APO Computer Architectures

Other memory technologies – secondary storage

78AE0B36APO Computer Architectures

Flash

● Combines properties of E2PROM, DRAM, ROM
● Data are stored in transistor (floating gates) array (cells)
● Each block can be programmed separately
● But be aware of large erase segments

● Nor type RAM access
● NAND block addressing and access

● Nonvolatile computer memory
● Endures about 100 000 erase-write cycles
● Read access time (50 - 110 ns)
● Writes are slow, erase even slower
● Data retention is 10 or more years
● Uses:

● memory cards
● USB flash disk
● memory chips
● SSD disk

79AE0B36APO Computer Architectures

Flash memory cell

● Modified MOSFET transistor with electrically isolated
floating gate

● Memory cell operations:
● Programming

– F-N tunneling
– Hot-carrier injection

● Erase
● Read

80AE0B36APO Computer Architectures

Programming – Fowler-Nordheim's tunneling

● The Ucgvoltage is applied to the control gate
● This voltage creates an electric field that creates a

potential barrier
● This barrier simplifies the way for electrons in the

substrate to the floating gate
● Alternative to programing by Fowler-Nordheim's tunneling

is Drain-side tunneling

81AE0B36APO Computer Architectures

Hot-carrier injection programming

● There are two methods of Hot-carrier injection
a) hot-electron injection (for N type MOSFET placed on

P-substrate) – used in practice for higher speed
b) hot-hole injection (for P type on N-substrate)

●Hot-electron injection :
1)The Ucg - Ud voltage creates an

electric field in the semiconductor
2)This field accelerates electrons from

source electrode to drain electrode
3)The do not land to the drain

electrode because of they have
enough kinetic energy to cross
isolation layer to the floating gate
with higher potential

82AE0B36APO Computer Architectures

Flash cell erase

● Erase can be realized by Fowler-Nordheim's tunneling as
well

● Electrons are expelled from floating point gate by
opposite polarity of Ucg than polarity used for
programming

83AE0B36APO Computer Architectures

Flash cell read operation

● The current flowing through transistor depends on floating
gate charge value (in combination with word selector
Ucg).

● The current on common rail is compared to same
threshold(s) and converted to digital bit(s) value

84AE0B36APO Computer Architectures

Optic storage – CD-ROM – detail

track pit land

85AE0B36APO Computer Architectures

How to record „0“ and „1“?

Record on
media (one
track)

Encoded
data

● Ones are encoded by signal change!
● Zeros as no change. Bit stuffing etc.

86AE0B36APO Computer Architectures

Physical principle of magnetic media record

Disk plateRecording head

Random ordered
magnetic
domains of
magnetic media
layer

Magnetic domains are
ordered by current flowing
through coil on
recording/write head Organized magnetic domains cause

changes of field under read head

Important: the
data are carried by
signal changes
(reservation)!

87AE0B36APO Computer Architectures

Quick Quiz

● Are associative memory and cache memory
synonymous?

88AE0B36APO Computer Architectures

Literature to read

Read:
● What Every Programmer Should Know About Memory by Ulrich

Drepper, Red Hat, Inc.
http://www.akkadia.org/drepper/cpumemory.pdf

● Chapter 5 (Large and Fast: Exploiting memory hierarchy) from
Hennesy, Patterson CaaQA

For brave ones
● Memory Ordering in Modern Microprocessors by Paul

McKenney
http://www.rdrop.com/users/paulmck/scalability/paper/ordering.2
007.09.19a.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

