
1AE0B36APO Computer Architectures

Computer Architectures

Central Processing Unit (CPU)

Pavel Píša, Michal Štepanovský, Miroslav Šnorek

Czech Technical University in Prague, Faculty of Electrical Engineering

Ver.1.10

The lecture is based on A0B36APO lecture. Some parts are inspired by the
book Paterson, D., Henessy, V.: Computer Organization and Design, The HW/SW
Interface. Elsevier, ISBN: 978-0-12-370606-5 and it is used with authors'
permission.

English version partially supported by:
European Social Fund Prague & EU: We invests in your future.

2AE0B36APO Computer Architectures

Computer based on von Neumann's concept

● Control unit
● ALU
● Memory
● Input
● Output

Processor/microprocessor

Input/output subsystem

von Neumann architecture uses common
memory, whereas Harvard architecture uses
separate program and data memories

The control unit is responsible for control of the operation
processing and sequencing. It consists of:
● registers – they hold intermediate and programmer visible state
● control logic circuits which represents core of the control unit (CU)

3AE0B36APO Computer Architectures

The most important registers of the control unit

● PC (Program Counter)

holds address of a recent or next instruction to be processed
● IR (Instruction Register)

holds the machine instruction read from memory
● Another usually present registers

● General purpose registers (GPRs)
may be divided to address and data or (partially)
specialized registers

● SP (Stack Pointer) – points to the top of the stack; (The stack
is usually used to store local variables and subroutine return
addresses)

● PSW (Program Status Word)
● IM (Interrupt Mask)
● Optional Floating point (FPRs) and vector/multimedia regs.

4AE0B36APO Computer Architectures

The main instruction cycle of the CPU

1. Initial setup/reset – set initial PC value, PSW, etc.

2. Read the instruction from the memory
● PC → to the address bus
● Read the memory contents (machine instruction) and

transfer it to the IR
● PC+l → PC, where l is length of the instruction

3. Decode operation code (opcode)

4. Execute the operation
● compute effective address, select registers, read

operands, pass them through ALU and store result

5. Check for exceptions/interrupts (and service them)

6. Repeat from the step 2

5AE0B36APO Computer Architectures

Compilation: C Assembler Machine Code

int pow = 1;
int x = 0;

while(pow != 128)
{
 pow = pow*2;
 x = x + 1;
}

addi s0, $0, 1 // pow = 1

addi s1, $0, 0 // x = 0

addi t0, $0, 128 // t0 = 128

while:

 beq s0, t0, done // if pow==128, go to done

 sll s0, s0, 1 // pow = pow*2

 addi s1, s1, 1 // x = x+1

 j while

done:

6AE0B36APO Computer Architectures

Hardware realization of basic (main) CPU cycle

Program counter, 32 b

Instruction
memory

instruction, 32 bits

constant 4

Instruction address

Next instruction address

7AE0B36APO Computer Architectures

The goal of this lecture

● To understand the implementation of a simple computer
consisting of CPU and separated instruction and data memory

● Our goal is to implement following instructions:
● Read and write a value from/to the data memory
lw – load word, sw – store word

● Arithmetic and logic instructions
add, sub, and, or, slt

● Program flow change/jump instruction beq
● CPU will consist of control unit and ALU.
● Notes:

● The implementation will be minimal (single cycle CPU – all
operations processed in the single step/clock period)

● The lecture 4 focuses on more realistic pipelined CPU
implementation

8AE0B36APO Computer Architectures

The instruction format and instruction types

● The three types of the instructions are considered:

● the R type instructions → opcode=000000, funct – operation
● rs – source, rd – destination, rt – source/destination
● shamt – for shift operations, immediate – direct operand

● 5 bits allows to encode 32 GPRs ($0 is hardwired to
0/discard)

Type 31… 0

R opcode(6), 31:26 rs(5), 25:21 rt(5), 20:16 rd(5), 15:11 shamt(5) funct(6), 5:0

I opcode(6), 31:26 rs(5), 25:21 rt(5), 20:16 immediate (16), 15:0

J opcode(6), 31:26 address(26), 25:0

9AE0B36APO Computer Architectures

Opcode encoding

Instruction Opcode Func Operation ALU function ALU control

lw 100011 XXXXXX load word add 0010

sw 101011 XXXXXX store word add 0010

beq 000100 XXXXXX branch equal subtract 0110

add 000000
R-type

100000 add add 0010

sub 100010 subtract subtract 0110

and 100100 AND AND 0000

or 100101 OR OR 0001

slt 101010 set-on-less-than set-on-less-than 0111

Decode opcode to the ALU operation
●Load/Store (I-type): F = add – add offset to the address base
●Branch (I-type): F = subtract – used to compare operands
●R-type: F depends on funct field
There are more I-type operations which use ALU in the real MIPS ISA

10AE0B36APO Computer Architectures

CPU building blocks

Instr.
Memory
(ROM)

A RD
32 32PC’ PC

32 32

CLK
5

Reg.
 File

A1

A2
A3

WE3
RD1

RD2

WD3

5
5

32

32

CLK

32

Data
Memory

A RD

WD

WE
32

32

32

CLK

Write at the rising edge of CLK when WE = 1

Read after “enough time” for data propagation
Multiplexer

11AE0B36APO Computer Architectures

The load word instruction

Description A word is loaded into a register from the specified address

Operation: $t = MEM[$s + offset];

Syntax: lw $t, offset($s)

Encoding: 1000 11ss ssst tttt iiii iiii iiii iiii

lw – load word – load word from data memory into a register

Example: Read word from memory address 0x4 into register number 11:
lw $11, 0x4($0)

1000 11ss ssst tttt iiii iiii iiii iiii
1000 1100 0000 1011 0000 0000 0000 0100

0 11 4

0x 8C 0B 00 04 – machine code for instruction lw $11, 0x4($0)
Note: Register $0 is hardwired to the zero

12AE0B36APO Computer Architectures

Single cycle CPU – implementation of the load instruction

PC’ PC Instr 25:21

15:0

SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr.
Memory

A RD

Data
Memory

A RD

WD

WE

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3

20:16

Sign Ext

ALU

I opcode(6), 31:26 rs(5), 25:21 rt(5), 20:16 immediate (16), 15:0

ALUControl

lw: type I, rs – base address, imm – offset, rt – register where to store fetched data

13AE0B36APO Computer Architectures

Single cycle CPU – implementation of the load instruction

PC’ PC Instr 25:21

15:0

SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr.
Memory

A RD

Data
Memory

A RD

WD

WE

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3

20:16

Sign Ext

ALU

I opcode(6), 31:26 rs(5), 25:21 rt(5), 20:16 immediate (16), 15:0

lw: type I, rs – base address, imm – offset, rt – register where to store fetched data

Write at the rising edge of the clock

ALUControl
RegWrite = 1

14AE0B36APO Computer Architectures

Single cycle CPU – implementation of the load instruction

PC’ PC Instr 25:21

15:0

SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr.
Memory

A RD

Data
Memory

A RD

WD

WE

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3

20:16

Sign Ext

ALU

I opcode(6), 31:26 rs(5), 25:21 rt(5), 20:16 immediate (16), 15:0

ALUControl
RegWrite = 1

4

PCPlus4

+

lw: type I, rs – base address, imm – offset, rt – register where to store fetched data

15AE0B36APO Computer Architectures

Single cycle CPU – implementation of the store instruction

PC’ PC Instr 25:21

15:0

SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr.
Memory

A RD

Data
Memory

A RD

WD

WE

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3

20:16

Sign Ext

ALU

I opcode(6), 31:26 rs(5), 25:21 rt(5), 20:16 immediate (16), 15:0

sw: type I, rs – base address, imm – offset, rt – select register to store into memory

ALUControl
RegWrite = 0

4

PCPlus4

+

MemWrite = 1

20:16

16AE0B36APO Computer Architectures

Single cycle CPU – implementation of the add instruction

PC’ PC Instr 25:21

15:0

SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr.
Memory

A RD

Data
Memory

A RD

WD

WE

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3

Sign Ext

ALU

add: type R, rs, rt – source, rd – destination, funct – select ALU operation = add

ALUControl
RegWrite = 1

4

PCPlus4

+

20:16

R opcode(6), 31:26 rs(5), 25:21 rt(5), 20:16 rd(5), 15:11 shamt(5) funct(6), 5:0

WriteReg0
1

20:16

15:11

RegDst = 1

ALUSrc = 0

Result0
1

MemToReg = 0

WriteData
Rt

Rd

0
1

17AE0B36APO Computer Architectures

Single cycle CPU – sub, and, or, slt

PC’ PC Instr 25:21

15:0

SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr.
Memory

A RD

Data
Memory

A RD

WD

WE

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3

Sign Ext

ALU

Only difference is another ALU operation selection (ALUcontrol). The data path is
the same as for add instruction

ALUControl
RegWrite = 1

4

PCPlus4

+

20:16

WriteReg0
1

20:16

15:11

RegDst = 1

ALUSrc = 0

Result0
1

MemToReg = 0

WriteData
Rt

Rd

0
1

18AE0B36APO Computer Architectures

Single cycle CPU – implementation of beq

PC’ PC Instr 25:21

15:0

SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr.
Memory

A RD

Data
Memory

A RD

WD

WE

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3

Sign Ext

ALU

beq – branch if equal; imm–offset; PC´ = PC+4 + SignImm*4

ALUControl
RegWrite = 0

4

PCPlus4

+

20:16

WriteReg0
1

20:16

15:11

RegDst = X

ALUSrc = 0

Result0
1

MemToReg = x

WriteData

Branch = 1

+

0
1

<<2

I opcode(6), 31:26 rs(5), 25:21 rt(5), 20:16 immediate (16), 15:0

Rt

Rd

0
1

19AE0B36APO Computer Architectures

Single cycle CPU – Throughput: IPS = IC / T = IPC
str

.f
CLK

● What is the maximal possible frequency of the CPU?
● It is given by latency on the critical path – it is lw instruction in our case:
T

c
 = t

PC
 + t

Mem
 + t

RFread
 + t

ALU
 + t

Mem
 + t

Mux
 + t

RFsetup

PC’ PC Instr 25:21

15:0

SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr.
Memory

A RD

Data
Memory

A RD

WD

WE

Sign Ext

ALU

4

PCPlus4

+

20:16

WriteReg0
1

20:16

15:11

Result0
1

WriteData

+

0
1

<<2

Rt

Rd

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3

0
1

20AE0B36APO Computer Architectures

Single cycle CPU – Throughput: IPS = IC / T = IPC
str

.f
CLK

● What is the maximal possible frequency of the CPU?
● It is given by latency on the critical path – it is lw instruction in

our case:
T

c
 = t

PC
 + t

Mem
 + t

RFread
 + t

ALU
 + t

Mem
 + t

Mux
 + t

RFsetup

Consider following parameters:
● t

PC
= 30 ns

● t
Mem

= 300 ns
● t

RFread
= 150 ns

● t
ALU

= 200 ns
● t

Mux
= 20 ns

● t
RFsetup

= 20 ns

Then T
c
 = 1020 ns → f

CLK
max = 980 kHz,

IPS = 980e3 = 980 000 instructions per second

21AE0B36APO Computer Architectures

Notes

● Remember the result, so you can compare it with result
for pipelined CPU during lecture 4

● You should compare this with actual 30e9 IPS per core,
i.e. total 128 300 MIPS for today high-end CPUs

● How many clever enhancements in hardware and
programming/compilers are required for such advance!!!

● After this course you should see behind the first two hills
on that road.

● We will continue with control unit implementation and its
function

22AE0B36APO Computer Architectures

Single cycle CPU – Control unit

R opcode(6), 31:26 rs(5), 25:21 rt(5), 20:16 rd(5), 15:11 shamt(5) funct(6), 5:0

I opcode(6), 31:26 rs(5), 25:21 rt(5), 20:16 immediate (16), 15:0

J opcode(6), 31:26 address(26), 25:0

Main decoder ALU op decoder
ALUOp

Opcode funct5 5

2
3 ALUControl…

Control signals values reflect opcode and funct fields ALUOp

00 addition

01 subtraction

10 according to funct

11 -not used-

Opcode Reg
Write

RegDst ALUSrc ALUOp Branch Mem
Write

MemTo
Reg

R-type 000000 1 1 0 10 0 0 0

lw 100011 1 0 1 00 0 0 1

sw 101011 0 X 1 00 0 1 X

beq 000100 0 X 0 01 1 0 X

23AE0B36APO Computer Architectures

ALU Control (ALU function decoder)

ALUOp (selector) Funct ALUControl

00 X 010 (add)

01 X 110 (sub)

1X add (100000) 010 (add)

1X sub (100010) 110 (sub)

1X and (100100) 000 (and)

1X or (100101) 001 (or)

1X slt (101010) 111 (set les than)

24AE0B36APO Computer Architectures

The control unit of the single cycle cpu

MemWrite
MemToReg

Branch
ALUControl 2:0
ALUScr
RegDest

RegWrite

4

PC’ PC Instr 25:21

20:16

20:16

15:11

15:0

SrcA

SrcB

Zero

AluOut

WriteData
WriteReg

SignImm PCBranch

ReadData

Result

PCPlus4

Rt

Rd

Instr.
Memory

A RD

Data
Memory

A RD

WD

WE

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3

+

+

0
1

0
1

0
1

Sign Ext <<2

0
1

ALU

31:26

5:0

Control
Unit

Opcode

Funct

25AE0B36APO Computer Architectures

The control unit (CU)

● The control unit is typically a sequential circuit
● It generates the control signals at appropriate time (CU

outputs)
– storage select, write enable (WE) and clock gating
– data route – multiplexers control
– function select – ALU operation/activation

● It reacts to the status signals (CU inputs)
– it only selects how to react on Zero in our case
– many more things,
– many more conditions can influence instruction

cycle in case of real CPU – interrupts, exceptions
etc.

26AE0B36APO Computer Architectures

Control unit – more detailed/generic

The task of CU is to control other units. It coordinates their activities and data
exchanges between them. It controls fetching of the instructions from the
(main/instruction) memory. It ensures their decoding and it sets gates, control
and data paths to such state that instruction (can be) is executed.

Generally, the task of CU is to generate sequences of control signals for
computer subsystems in such order that prescribed operations (arithmetic,
program flow change, data exchange, control etc.) are executed.

Each step of this sequence can be considered or implemented as
micro-operation. The micro-operation is elementary operation which reads and
can change single or multiple registers (programmer visible or hidden in
micro-architecture of CPU).

Usual effect of the micro-operation is change of the content of some register
(in our case R0 to R31 or PC) or memory or both.

27AE0B36APO Computer Architectures

Some illustrative examples of micro-operation sequence

● R(MAR) ← R(CIAC)

Move the content of Current Instruction Address Counter to
the Memory Address Register

● R(CIAC) ← R(CIAC)+1

Increment CIAC register

● M(MBR) ← M(MAR)

read the value from the memory

● IF F(S) THEN R(A) ← R(MDR)

28AE0B36APO Computer Architectures

Possible hardware realizations of the control unit

● Hardwired control unit – implemented by sequential
circuit – next-state function/sequencer
● one flip-flop per state chain (like ring counter)
● with explicit counter
● finite state machine (FSM – Mealy, Moore)
● other implementation

● Microprogram control unit
● horizontal microcode
● vertical microcode
● diagonal

29AE0B36APO Computer Architectures

One flip-flop per state control unit

The function of CU can be prescribed by FSM. It can be straightforwardly
implemented in VERILOG/VHDL (for the case that one instruction is executed in
more cycles and there is no/minimal activities overlap).
Note: The names of signals and states shown in this example do not correspond
to the previously discussed MIPS CPU model!

Control signals

finite state
machine flip-flop control

chain

Status signals

30AE0B36APO Computer Architectures

Explicit counter based control unit

30

Status signals

Note: again for concept illustration only

control
reaction
to status

counter

decoder

Control signals

31AE0B36APO Computer Architectures

Microprogrammed control unit

OR – Operation code register
CMIAR - Current Microinstruction Address Register

32AE0B36APO Computer Architectures

Horizontal microprogrammed control unit

control signals

status
signals

Microcode memory

33AE0B36APO Computer Architectures

Signals and next state encoding in microinstruction

34AE0B36APO Computer Architectures

Wrap up structure of microprogrammed control unit

● Microprogrammed control unit is a computer in computer
● RaµI is equivalent to PC,
● Microcode memory is equivalent to program memory
● µOP is equivalent to IR

35AE0B36APO Computer Architectures

Microprogrammed versus hardwired control unit

● Hardwired CU is faster and modifications for pipelined
execution are possible (multiple execution stages activated in
parallel)

● Price/gate count considerations
● Hardwired is cheaper if simple (optimized instructions

encoding)
● Microprogrammed is cheaper when complex

instructions/operations have to be processed
● Flexibility – microprogrammed CU can be modified more

easily
● Microcode memory

● ROM – fixed
● RWM – instruction set can be changed/extended/fixed at CPU

startup/configuration phase (i.e. used to patch bugs)

36AE0B36APO Computer Architectures

Conclusion for microprogrammed control units

● Microprogram is yet another layer between externally visible
machine instructions and execution units.

● The concept of translating or interpreting (externally visible)
instructions by control unit is common in CPUs, GPUs, disc
and network controllers.

● The software/micro-program based implementation allows
to realize more complex machine instructions without
significant HW complexity increase.

● This microprogramming allows to define final function(s).
Microcode is stored in (ROM, PLA, flash) inside CU.

● However, the sequential execution of microinstructions by
CU leads to the low IPS rate, so more sophisticated
solutions are used or microcode is left only for legacy part
of instruction set support.

37AE0B36APO Computer Architectures

RISC versus CISC CPU

● RISC (Reduced Instruction Set Computers)
● The CPU architectures where machine instructions

encoding is optimized for simple decoding and fast
execution. Exact structure is not prescribed and definition is
fuzzy. More unambiguous is Load-Store concept.

● Usual properties: all instructions are of the same length and
can be executed in “single” cycle.

● MIPS, SPARC, PowerPC, ARM
● CISC (Complex Instruction Set Computers)

● Different machine instructions have different lengths.
● Instructions are usually designed for dense code.
● Motorola, Intel x86.

38AE0B36APO Computer Architectures

The instruction cycle with exception processing

1. Initial setup/reset – set initial PC value, PSW, etc.

2. Read the instruction from the memory
● PC → to the address bus
● Read the memory contents (machine instruction) and

transfer it to the IR,
● PC+l → PC, where l is length of the instruction

3. Decode operation code (opcode)

4. Execute the operation
● compute effective address, select registers, read

operands, pass them through ALU and store result

5. Check for exceptions/interrupts. If pending, service
them

6. If not repeat from the step 2

39AE0B36APO Computer Architectures

Interrupts and exceptions

● External interrupts/exceptions
● Method to process external asynchronous events.

Processing cycle is stopped, CPU state is saved then the
event is serviced. After the service is finished, CPU state is
restored and the execution of interrupted program flow
continues

● Exceptions synchronous with code execution
● abnormal events – page faults, protection, debugging
● software exceptions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

