## Computer Architectures

## Number Representation and Computer Arithmetics

Pavel Píša, Michal Štepanovský, Miroslav Šnorek


Czech Technical University in Prague, Faculty of Electrical Enaineerina English version partially supported by: European Social Fund Prague \& EU: We invests in your future.

## Reasons to study computer architectures

- To invent/design new computer architectures
- To be able to integrate selected architecture into silicon
- To gain knowledge required to design computer hardware/systems (big ones or embedded)
- To understand generic questions about computers, architectures and performance of various architectures
- To understand how to use computer hardware efficiently (i.e. how to write good software)
- It is not possible to efficiently use resources provided by any (especially by modern) hardware without insight into their constraints, resource limits and behavior
- It is possible to write some well paid applications without real understanding but this requires abundant resources on the hardware level. But no interesting and demanding tasks can be solved without this understanding.


## More motivation and examples

- The knowledge is necessary for every programmer who wants to work with medium size data sets or solve little more demanding computational tasks
- No multimedia algorithm can be implemented well without this knowledge
- The $1 / 3$ of the course is focussed even on peripheral access
- Examples
- Facebook - HipHop for PHP $\rightarrow$ C++/GCC $\rightarrow$ machine code
- BackBerry (RIM) - our consultations for time source
- RedHat - JAVA JIT for ARM for future servers generation
- Multimedia and CUDA computations


## The course's background and literature

- Course is based on worldwide recognized book and courses
Paterson, D., Henessy, J.: Computer Organization and Design, The HW/SW Interface. Elsevier, ISBN: 978-0-12-370606-5
- John L. Henessy - president of Stanford University, one of founders of MIPS Computer Systems Inc.
- David A. Patterson - leader of Berkeley RISC project and RAID disks research
- Our experience even includes distributed systems, embedded systems design (of mobile phone like complexity), peripherals design, cooperation with carmakers, medical and robotics systems design


## Topics of the lectures

- Architecture, structure and organization of computers and its subsystems.
- Central Processing Unit (CPU)
- Memory
- Pipelined instruction execution
- Input/output subsystem of the computer
- Input/output subsystem (part 2)
- External events processing and protection
- Processors and computers networks
- Parameter passing
- Classic register memory-oriented CISC architecture
- INTEL x86 processor family
- CPU concepts development (RISC/CISC) and examples
- Multi-level computer organization, virtual machines
- Analog and digital I/O interfacing


## The 1. lecture contents

- Number representation in computers
- numeral systems
- integer numbers, unsigned and signed
- floating point representation for real numbers
- boolean values
- Basic arithmetic operations and their implementation
- addition, subtraction
- shift right/left
- multiplication and division


## Motivation: What is the output of next code snippet?

int main() \{
int a = -200;
printf("value: \%u = \%d = \%f = \%c \n", a, a, *((float*)(\&a)), a);
return 0;
\}
value: $4294967096=-200=$ nan $=8$
and memory content is: 0x38 0xff 0xff 0xff when run on little endian 32 bit CPU.

## Terminology basics

- Positional (place-value) notation
- Decimal/radix point
- z ... base of numeral system
- smallest representable number $\varepsilon=z^{-m}$
radix point
- Module $=\mathcal{Z}$, one increment/unit higher than biggest representable number in the given grid
- A, the representable number for given grid, where $\mathbf{k}$ is natural number in

$$
0 \leq A=k \cdot \varepsilon<\mathcal{Z}
$$ range $\left\langle\mathbf{0}, \mathbf{z}^{n+m+1}-\mathbf{1}\right\rangle$

- The representation and value

$$
\begin{aligned}
& A \sim a_{n} a_{n-1} \ldots a_{0}, a_{1} \ldots a_{-m} \\
& A=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{0}+a_{1} z^{-1} \ldots a_{-m} z^{-m}
\end{aligned}
$$

Integer number representation (unsigned, non-negative)

- The most common numeral system base in computers is $\mathrm{z}=2$
- The value of $\mathbf{a}_{\mathbf{i}}$ is in range $\{0,1, \ldots z-1\}$, i.e. $\{0,1\}$ for base 2
- This maps to true/false and unit of information (bit)
- We can represent number $0 \ldots \mathbf{2 n - 1}$ when $n$ bits are used
- Which range can be represented by one byte?

1 B (byte) ... 8 bits, $2^{8}=256_{d}$ combinations, values $0 \ldots$ $255_{\mathrm{d}}=0 \mathrm{~b} 11111111_{\mathrm{b}}$

- Use of multiple consecutive bytes
- 2 B ... $2^{16}=65536_{d}, 0 \ldots 65535_{d}=0 x F F F F_{h},(h \ldots$ hexadecimal, base 16, a in range $0, \ldots 9, A, B, C, D, E, F)$
- $4 \mathrm{~B} . .2^{32}=4294967296_{d}, 0 \ldots 4294967295_{d}=$ $0 x F F F F F F F F_{h}$


## Signed integer numbers

- Work with negative numbers is required for many applications
- When appropriate representation is used then same hardware (with minor extension) can be used for many operations with signed and unsigned numbers
- Possible representations
- sign-magnitude code, direct representation, sign bit
- two's complement
- ones' complement
- excess-K, offset binary or biased representation


## Integer - sign-magnitude code

- Sign and magnitude of the value (absolute value)

- Common use 0 ₹ " + ", 1 ₹ "-"

$$
-2^{n-1}+1 \ldots 0 \ldots 2^{n-1}-1
$$

- Disadvantages:
- When location is $\mathbf{k}$ bits long then only $\mathbf{k - 1}$ bits hold magnitude and each operation has to separate sign and magnitude
- Two representations of the value 0


## Integer - two's complement

- Other option is to designate one half of range/combinations for non-negative numbers and other one for positive numbers
- Transform to the representation

$$
\begin{array}{ll}
D(A)=A & \text { iff } A \geq 0 \\
D(A)=Z-|A| & \text { iff } A<0
\end{array}
$$



- Continuous range when cyclic arithmetics is considered
- Single and one to one mapping of value 0
- Same HW for signed and unsigned adder
- Disadvantage
- Asymmetric range (-(-1/2Z))


## Integers - ones' complement

- Transform to the representation

$$
-2^{n-1}+1 \ldots 0 \ldots 2^{n-1}-1
$$

$$
\begin{array}{ll}
D(A)=A & \text { iff } A \geq 0 \\
D(A)=Z-1-|A| & \text { iff } A<0 \text { (i.e. subtract from all ones) }
\end{array}
$$

- Advantages
- Symmetric range
- Almost continuous, requires hot one addition when sign changes
- Disadvantage
- Two representations of value 0
- More complex hardware
- Negate (-A) value can be computed by bitwise complement (flipping) of each bit in representation


## Integer - biased representation

- Known as excess-K or offset binary as well
- Transform to the representation -K ... 0 ... 2n-1-K

$$
D(A)=A+K
$$

- Usually $\mathrm{K}=\mathrm{Z} / 2$
- Advantages
- Preserves order of original set in mapped set/representation
- Disadvantages
- Needs adjustment by -K after addition and +K after subtraction processed by unsigned arithmetic unit
- Requires full transformation before and after multiplication


## Back to two's complement and the C language

- Two's complement is most used signed integer numbers representation in computers
- Complement arithmetic is often used as its synonym
- "C" programing language speaks about integer numeric type without sign as unsigned integers and they are declared in source code as unsigned int.
- The numeric type with sign is simply called integers and is declared as signed int.
- Examples of the values representations when 32 bits are used:
- $0 \mathrm{~d}=00000000 \mathrm{H}$,
- $1 \mathrm{~d}=00000001 \mathrm{H},-1 \mathrm{~d}=$ FFFFFFFF н,
- $2 \mathrm{~d}=00000002 \mathrm{н},-2 \mathrm{~d}=$ FFFFFFFFн,
- $3 \mathrm{~d}=00000003 \mathrm{н},-3 \mathrm{~d}=$ FFFFFFFFDн,
- Considerations about value overflow and underflow from order grit are discussed later.


## Two's complement - addition and subtraction

- Addition
- $000000000000^{0111_{B}} \approx 7$ D Symbols use: $0=O_{\text {H }}, 0=O_{\text {B }}$
- $+000000000000110_{\mathrm{B}} \approx 6_{0}$
- 00000000000 1011 ${ }_{\text {s }} \approx 13_{\text {D }}$
- Subtraction can be realized as addition of negated number
- 00000000000 0111 $\approx 7$ D
-     + FFFFFFF 1111 1010 $\approx-6_{0}$
- $000000000000^{0001} 1_{\mathrm{B}} \approx 1_{\mathrm{D}}$
- Question for revision: how to obtain negated number in two's complement binary arithmetics?


## Hardware of ripple-carry adder



S

Internal structure
Realized by 1-bit full adders


## Fast parallel adder realization and limits

- The previous, cascade based adder is slow - carry propagation delay
- The parallel adder is combinatorial circuit, it can be realized through sum of minterms (product of sums), two levels of gates (wide number of inputs required)
- But for 64-bit adder $10^{20}$ gates is required

Solution \#1

- Use of carry-lookahead circuits in adder combined with adders without carry bit
Solution \#2
- Cascade of adders with fraction of the required width

Combination (hierarchy) of \#1 and \#2 can be used for wider inputs

## Speed of the adder

- Parallel adder is combinational logic/circuit. Is there any reason to speak about its speed? Try to describe!
- Yes, and it is really slow. Why?
- Possible enhancement - adder with carry-lookahead (CLA) logic!



## CLA - carry-lookahead

- Adder combined with CLA provides enough speedup when compared with parallel ripple-carry adder and yet number of additional gates is acceptable
- CLA for 64-bit adder increases hardware price for about $50 \%$ but the speed is increased (signal propagation time decreased) 9 times.
- The result is significant speed/price ratio enhancement.


## The basic equations for the CLA logic

- Let:
- the generation of carry on position (bit) j is defined as:

$$
g_{j}=x_{j} y_{j}
$$

- the need for carry propagation from previous bit:

$$
p_{j}=x_{j} \oplus y_{j}=x_{j} \bar{y}_{j} \vee \bar{x}_{j} y_{j}
$$

- Then:
- the result of sum for bit j is given by:
$S_{j}=c_{j}\left(\overline{x_{j} \oplus y_{j}}\right) \vee \bar{c}_{j}\left(x_{j} \oplus y_{j}\right)=c_{j} \bar{p}_{j} \vee \bar{c}_{j} p_{j}=p_{j} \oplus c_{j}$
- and carry to the higher order bit ( $\mathrm{j}+1$ ) is given by:

$$
c_{j+1}=x_{j} y_{j} \vee\left(x_{j} \oplus y_{j}\right) c_{j}=g_{j} \vee p_{j} c_{j}
$$

## CLA

The carry can be computed as:
$c_{1}=g_{0} \vee p_{0} c_{0}$
$c_{2}=g_{1} \vee p_{1} c_{1}=g_{1} \vee p_{1}\left(g_{0} \vee p_{0} c_{0}\right)=g_{1} \vee p_{1} g_{0} \vee p_{1} p_{0} c_{0}$
$c_{3}=g_{2} \vee p_{2} c_{2}=g_{2} \vee p_{2}\left(g_{1} \vee p_{1} g_{0} \vee p_{1} p_{0} c_{0}\right)=g_{2} \vee p_{2} g_{1} \vee p_{2} p_{1} g_{0} \vee p_{2} p_{1} p_{0} c_{0}$
$c_{4}=g_{3} \vee p_{3} c_{3}=\ldots=g_{3} \vee p_{3} g_{2} \vee p_{3} p_{2} g_{1} \vee p_{3} p_{2} p_{1} g_{0} \vee p_{3} p_{2} p_{1} p_{0} c_{0}$
$C_{5}=\ldots$
Description of the equation for $\mathrm{C}_{3}$ as an example:
The carry input for bit 3 is active when carry is generated in bit 2 or carry propagates condition holds for bit 2 and carry is generated in the bit 1 or both bits 2 and 1 propagate carry and carry is generated in bit 0

## Arithmetic unit for add/subtract operations



Inspiration: X36JPO, A. Pluháček

## Arithmetic overflow (underflow)

- Result of the arithmetic operation is incorrect because, it does not fit into given fraction grid (number of the representation bits)
- But for the signed arithmetics, it is not equivalent to the carry from the most significant bit.
- The arithmetic overflow is signaled if result sign is different from operand signs if both operand has same sign
- or can be detected with exclusive-OR of carry to and from the most



## Arithmetic shift to the left and to the right

- arithmetic shift by one to the left/right is equivalent to signed multiply/divide by 2 (movement in the fraction grid)
- Notice difference between arithmetic, logic and cyclic shift operations

- Remark: Barrel shifter can be used for fast variable shifts


## Addition and subtraction for the biased representation

- Short note about other signed number representation

$$
\begin{aligned}
& \mathcal{A}(A+B)=\mathcal{A}(A)+\mathcal{A}(B)-K \\
& \mathcal{A}(A-B)=\mathcal{A}(A)-\mathcal{A}(B)+K
\end{aligned}
$$

- Overflow detection
- for addition:
same sign of addends and different result sign
- for subtraction:
signs of minuend and subtrahend are opposite and sign of the result is opposite to the sign of minuend


## Unsigned binary numbers multiplication

$$
\begin{aligned}
& \text { A B } \\
& \begin{aligned}
& 1101 \cdot 1011 \\
& \hline \downarrow \downarrow \downarrow \downarrow
\end{aligned} \\
& 0000 \\
& \begin{array}{l}
1101 \\
\hline 01101
\end{array} \\
& \begin{array}{l}
1101 \\
\hline 10011
\end{array} \\
& \begin{array}{c}
0000 \\
\hline 01001
\end{array}
\end{aligned}
$$

## Sequential hardware multiplier (32b case)




The speed of the multiplier is horrible

## Algorithm for multiplication

A = multiplicand;
$\mathrm{MQ}=$ multiplier;
$A C=0$;
for ( int $\mathrm{i}=1 ; \mathrm{i}<=n ; \mathrm{i}++$ ) $/ / n$-represents number of bits
\{

$$
\operatorname{if}\left(\mathrm{MQ}_{0}==1\right) \quad \mathrm{AC}=\mathrm{AC}+\mathrm{A} ; \quad / / \mathrm{MQ}_{0}=\mathrm{LSB} \text { of } \mathrm{MQ}
$$

SR (shift AC MQ by one bit right and insert information about carry from the MSB from previous step)
\}
end.
when loop ends AC MQ holds 64-bit result

## Example of the multiply X by Y

## Multiplicand $\mathrm{x}=110$ and multiplier $\mathrm{y}=101$.

$$
\begin{array}{llllll}
\mathbf{i} & \text { operation } & \text { AC } & \text { MQ } & \text { A } & \begin{array}{l}
\text { comment } \\
\\
\\
1
\end{array} \\
& \text { AC }=\text { AC+MB } & 110 & 101 & 110 & \text { initial setup } \\
& \text { SR } & 011 & 010 & & \text { start of the cycle } \\
2 & \text { nothing } & 011 & 010 & & \text { because of } \mathrm{MQ}_{0}==0 \\
& \text { SR } & 001 & 101 & & \\
3 & \text { AC }=\text { AC+MB } & 111 & 101 & & \\
& \text { SR } & 011 & 110 & \text { end of the cycle }
\end{array}
$$

The whole operation: $x \times y=110 \times 101=011110,(6 \times 5=30)$

## Signed multiplication by unsigned HW for two's complement

One possible solution
$C=A \cdot B$
Let $A$ and $B$ representations are $n$ bits and result is $2 n$ bits

$$
\begin{array}{cll}
D(C)=D(A) \cdot D(B) & & \\
-(D(B) \ll n) & & \text { if } A<0 \\
-(D(A) \ll n) & & \text { if } B<0
\end{array}
$$

Consider for negative numbers
$\left(2^{n}+A\right) \cdot\left(2^{n}+B\right)=2^{2 n}+2^{n} A+2^{n} B+A \cdot B$
where $2^{2 n}$ is out of the result representation, next two elements have to be eliminated if input is negative

## Wallace tree based multiplier

$Q=X . Y, \quad X$ and $Y$ are considered as and 8bit unsigned numbers

$$
\left(x_{7} x_{6} x_{5} x_{4} x_{-3}{ }_{3} x_{2} x_{1} x_{0}\right) \cdot\left(y_{7} y_{6} y_{5} y_{4} y_{3} y_{2} y_{1} y_{0}\right)=
$$

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $x_{7} y_{0}$ | $x_{6} y_{0}$ | $x_{5} y_{0}$ | $x_{4} y_{0}$ | $x_{3} y_{0}$ | $x_{2} y_{0}$ | $x_{1} y_{0}$ | $x_{0} y_{0}$ | $P 0$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | $x_{7} y_{1}$ | $x_{6} y_{1}$ | $x_{5} y_{1}$ | $x_{4} y_{1}$ | $x_{3} y_{1}$ | $x_{2} y_{1}$ | $x_{1} y_{1}$ | $x_{0} y_{1}$ | 0 | $P 1$ |
| 0 | 0 | 0 | 0 | 0 | 0 | $x_{7} y_{2}$ | $x_{6} y_{2}$ | $x_{5} y_{2}$ | $x_{4} y_{2}$ | $x_{3} y_{2}$ | $x_{2} y_{2}$ | $x_{1} y_{2}$ | $x_{0} y_{2}$ | 0 | 0 | $P 2$ |
| 0 | 0 | 0 | 0 | 0 | $x_{7} y_{3}$ | $x_{6} y_{3}$ | $x_{5} y_{3}$ | $x_{4} y_{3}$ | $x_{3} y_{3}$ | $x_{2} y_{3}$ | $x_{1} y_{3}$ | $x_{0} y_{3}$ | 0 | 0 | 0 | $P 3$ |
| 0 | 0 | 0 | 0 | $x_{7} y_{4}$ | $x_{6} y_{4}$ | $x_{5} y_{4}$ | $x_{4} y_{4}$ | $x_{3} y_{4}$ | $x_{2} y_{4}$ | $x_{1} y_{4}$ | $x_{0} y_{4}$ | 0 | 0 | 0 | 0 | $P 4$ |
| 0 | 0 | 0 | $x_{7} y_{5}$ | $x_{6} y_{5}$ | $x_{5} y_{5}$ | $x_{4} y_{5}$ | $x_{3} y_{5}$ | $x_{2} y_{5}$ | $x_{1} y_{5}$ | $x_{0} y_{5}$ | 0 | 0 | 0 | 0 | 0 | $P 5$ |
| 0 | 0 | $x_{7} y_{6}$ | $x_{6} y_{6}$ | $x_{5} y_{6}$ | $x_{4} y_{6}$ | $x_{3} y_{6}$ | $x_{2} y_{6}$ | $x_{1} y_{6}$ | $x_{0} y_{6}$ | 0 | 0 | 0 | 0 | 0 | 0 | $P 6$ |
| 0 | $x_{7} y_{7}$ | $x_{6} y_{7}$ | $x_{5} y_{7}$ | $x_{4} y_{7}$ | $x_{3} y_{7}$ | $x_{2} y_{7}$ | $x_{1} y_{7}$ | $x_{0} y_{7}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $P 7$ |
| $Q_{15}$ | $Q_{14}$ | $Q_{13}$ | $Q_{12}$ | $Q_{11}$ | $Q_{10}$ | $Q_{9}$ | $Q_{8}$ | $Q_{7}$ | $Q_{6}$ | $Q_{5}$ | $Q_{4}$ | $Q_{3}$ | $Q_{2}$ | $Q_{1}$ | $Q_{0}$ |  |

The sum of $\mathrm{P} 0+\mathrm{P} 1+\ldots+\mathrm{P} 7$ gives result of X and Y multiplication.

$$
\mathrm{Q}=\mathrm{X} . \mathrm{Y}=\mathrm{P} 0+\mathrm{P} 1+\ldots+\mathrm{P} 7
$$

## Wallace tree based fast multiplier

The basic element is an CSA circuit (Carry Save Adder)


## Hardware divider

$$
\begin{aligned}
& \text { 111: 011 }
\end{aligned}
$$

$$
\begin{aligned}
& \boxplus \\
& \begin{array}{llllll}
\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0
\end{array} & 0 & 1
\end{array} \quad+\quad \Rightarrow 1 \\
& \begin{array}{cccc}
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array} \\
& \begin{array}{lllllll} 
\\
& & & 1 \\
\hline & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & \\
\hline & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 &
\end{array} \quad \begin{array}{l}
\text { return }
\end{array} \\
& 001 \text { - reminder } 010 \text { - quotient }
\end{aligned}
$$

## Hardware divider logic (32b case)

| 1 | 1 | 1 | : | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| divident |  |  |  |  |  |  |$=$ quotient $\times$ divisor + reminder



## Algorithm of the sequential division

```
MQ = dividend;
B = divisor; (Condition: divisor is not 0!)
AC = 0;
for( int i=1; i <= n; i++) {
    SL (shift AC MQ by one bit to the left, the LSB bit is kept on zero)
    if(AC >= B) {
        AC = AC - B;
        MQ = 1; // the LSB of the MQ register is set to 1
    }
}
```

$\rightarrow$ Value of MQ register represents quotient and AC remainder

## Example of $\mathrm{X} / \mathrm{Y}$ division

| Dividend $x=1010$ and divisor $y=0011$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| i | operation | AC | MQ | B | comment |
|  |  | 0000 | 1010 | 0011 | initial setup |
| 1 | SL | 0001 | 0100 |  |  |
|  | nothing | 0001 | 0100 |  | the if condition not true |
| 2 | SL | 0010 | 1000 |  |  |
|  |  | 0010 | 1000 |  | the if condition not true |
| 3 | SL | 0101 | 0000 |  | $r \geq y$ |
|  | $\begin{aligned} & A C=A C-B ; \\ & M Q_{0}=1 ; \end{aligned}$ | 0010 | 0001 |  |  |
| 4 | SL | 0100 | 0010 |  | $\mathrm{r} \geq \mathrm{y}$ |
|  | $\begin{aligned} & A C=A C-B ; \\ & M Q_{0}=1 ; \end{aligned}$ | 0001 | 0011 |  | end of the cycle |
|  | 1010:0011 = | 1 rem | der | , | : 3 = 3 reminder 1) |

## Higher dynamic range for numbers (REAL/float)

- Scientific notation, semilogarithmic, floating point
- The value is represented by:
- EXPONENT (E) - represents scale for given value
- MANTISSA (M) - represents value in that scale
- the sign(s) are usually separated as well
- Normalized notation
- The exponent and mantissa are adjusted such way, that mantissa is held in some standard range. $\langle 0.5,1$ ) or $\langle 1,2$ ) for considered base $\mathrm{z}=2$
- Generally: the first digit is non-zero or mantissa range is $\langle 1, \mathrm{z})$


## Standardized format for REAL type numbers

- Standard IEEE-754 defines next REAL representation and precision
- single-precision - in the C language declared as float
- double-precision - C language double


## Examples of (de)normalized numbers in base 10 and 2

$-+987.02 \times 10^{9}$
not normalized
not normalized
not normalized
binary
$\pm \pm 1 . x x x x x x x_{2} \times 2^{y y y y}$

Sign of M

## The representation/encoding of floating point number

- Mantissa encoded as the sign and absolute value (magnitude) - equivalent to the direct representation
- Exponent encoded in biased representation (K=127 for single precision)
- The implicit leading one can be ommited due to normalization of $m \in\langle 1,2$ ) - 23+1 implicit bit for single

$$
\begin{array}{ll}
X=-1^{s} 2^{A(E)-127} m & \text { where } m \in\langle 1,2) \\
m=1+2^{-23} M
\end{array}
$$

Sign of $M$


Radix point position for E and M

## Implied (hidden) leading 1 bit

- Most significant bit of the mantissa is one for each normalized number and it is not stored in the representation for the normalized numbers
- If exponent representation is zero then encoded value is zero or denormalized number which requires to store most significant bit
- Denormalized numbers allow to keep resolution in the range from the smallest normalized number to zero


## Underflow/lost of the precision for IEEE-754 representation

- The case where stored number value is not zero but it is smaller than smallest number which can be represented in the normalized form
- The direct underflow to the zero can be prevented by extension of the representation range by denormalized numbers



## ANSI/IEEE Std 754-1985 - 32b a 64b formats

ANSI/IEEE Std 754-1985 - single precision format - 32b


ANSI/IEEE Std 754-1985 - double precision format - 64b

$$
g \ldots 11 b \quad f \ldots 52 b
$$

## Representation of the fundamental values

## Zero

| Positive zero | 00000000000000000000000000000000 | +0.0 |
| :--- | :--- | :--- | :--- |
| Negative zero | $\mathbf{1} 0000000000000000000000000000000$ | -0.0 |

Infinity

| Positive infinity | $\mathbf{0} 11111111$ | 00000000000000000000000 | $\mathbf{+ 0 . 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Negative infinity | $\mathbf{1} 11111111$ | 00000000000000000000000 | $\mathbf{- 0 . 0}$ |

Representation corner values


## Not a number ( NaN )

- All ones in the exponent
- Mantissa not equal to the zero
- Used, where no other value fits (i.e. +Inf + -Inf, 0/0)
- Compare to ( $\mathrm{X}++\mathrm{Inf}$ ) where +Inf is sane result


## IEEE-754 special values summary

| sign bit | Exponent <br> representation | Mantissa | Represented value/meaning |
| :--- | :--- | :--- | :--- |
| 0 | $0<e<255$ | any value | normalized positive number |
| 1 | $0<e<255$ | any value | normalized negative number |
| 0 | 0 | $>0$ | denormalized positive number |
| 1 | 0 | $>0$ | denormalized negative number |
| 0 | 0 | 0 | positive zero |
| 1 | 0 | 0 | negative zero |
| 0 | 255 | 0 | positive infinity |
| 1 | 255 | 0 | negative infinity |
| 0 | 255 | $\neq 0$ | NaN - does not represent a number |
| 1 | 255 | $\neq 0$ | NaN - does not represent a number |

## Comparison

- Comparison of the two IEEE-754 encoded numbers requires to solve signs separately but then it can be processed by unsigned ALU unit on the representations

$$
A \geq B \Leftrightarrow A-B \geq 0 \Leftrightarrow D(A)-D(B) \geq 0
$$

- This is advantage of the selected encoding and reason why sign is not placed at start of the mantissa


## Addition of floating point numbers

- The number with bigger exponent value is selected
- Mantissa of the number with smaller exponent is shifted right - the mantissas are then expressed at same scale
- The signs are analyzed and mantissas are added (same sign) or subtracted (smaller number from bigger)
- The resulting mantissa is shifted right (max by one) if addition overflows or shifted left after subtraction until all leading zeros are eliminated
- The resulting exponent is adjusted according to the shift
- Result is normalized after these steps
- The special cases and processing is required if inputs are not regular normalized numbers or result does not fit into normalized representation


## Hardware of the floating point adder



## Multiplication of floating point numbers

- Exponents are added and signs xor-ed
- Mantissas are multiplied
- Result can require normalization max 2 bits right for normalized numbers
- The result is rounded
- Hardware for multiplier is of the same or even lower complexity as the adder hardware - only adder part is replaced by unsigned multiplier


## Floating point arithmetic operations overview

Addition:
$A \cdot z^{\text {a }}, B \cdot z^{b}, b<a \quad$ unify exponents
$B \cdot z^{b}=\left(B \cdot z^{b-a}\right) \cdot z^{b-(b-a)} \quad$ by shift of mantissa

$$
A \cdot z^{a}+B \cdot z^{b}=\left[A+\left(B \cdot z^{b-a}\right)\right] \cdot z^{a} \text { sum }+ \text { normalization }
$$

Subtraction: unification of exponents, subtraction and normalization

Multiplication: $A \cdot \mathbf{z}^{\mathrm{a}} \cdot \mathbf{B} \cdot \mathbf{z}^{\mathrm{b}}=\mathrm{A} \cdot \mathrm{B} \cdot \mathbf{z}^{\mathrm{a}+\mathrm{b}}$
$A \cdot B \quad$ - normalize if required
$A \cdot B \cdot z^{a+b}=A \cdot B \cdot z \cdot z^{a+b-1} \quad$ - by left shift
Division:
$A \cdot z^{a} / B \cdot z^{b}=A / B \cdot z^{a-b}$
A/B

- normalize if required
$A / B \cdot z^{a-b}=A / B \cdot z \cdot z^{a-b+1}-$ by right shift

