
1 Description Logics

1.1 Towards Description Logics

Formal Ontologies

• deal with proper representation of conceptual knowledge in a domain

• background for many AI techniques, e.g.:

– knowledge management – search engines, data integration

– multiagent systems – communication between agents

– machine learning – language bias

• involves many graphical/textual languages ranging from informal to formal ones,
e.g. relational algebra, Prolog, RDFS, OWL, topic maps, thesauri, conceptual
graphs

• Most of them are based on some logical calculus.

Logics for Ontologies

• propositional logic

Example

“John is clever.′′ ⇒ ¬“John fails at exam.′′

• first order predicate logic

Example

(∀x)(Clever(x)⇒ ¬((∃y)(Exam(y) ∧ Fails(x, y)))).

• (propositional) modal logic

Example

�((∀x)(Clever(x)⇒ 3¬((∃y)(Exam(y) ∧ Fails(x, y))))).

• ... what is the meaning of these formulas ?

1

1 Description Logics

Logics for Ontologies (2)
Logics are defined by their

• Syntax – to represent concepts (defining symbols)

• Semantics – to capture meaning of the syntactic constructs (defining concepts)

• Proof Theory – to enforce the semantics

Logics trade-off
A logical calculus is always a trade-off between expressiveness and tractability of reason-
ing.

Propositional Logic

Example
How to check satisfiability of the formula A ∨ (¬(B ∧A) ∨B ∧ C) ?

syntax – atomic formulas and ¬, ∧, ∨, ⇒

semantics (|=) – an interpretation assigns true/false to each formula.

proof theory (`) – resolution, tableau

complexity – NP-Complete (Cook theorem)

First Order Predicate Logic

Example
What is the meaning of this sentence ?

(∀x1)((Student(x1) ∧ (∃x2)(GraduateCourse(x2) ∧ isEnrolledTo(x1, x2)))
⇒ (∀x3)(isEnrolledTo(x1, x3)⇒ GraduateCourse(x3)))

Student u ∃isEnrolledTo.GraduateCourse v ∀isEnrolledTo.GraduateCourse

First Order Predicate Logic – quick informal review

syntax – constructs involve
term (variable x, constant symbol JOHN , function symbol applied to terms

fatherOf(JOHN))
axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), pos-

sibly glued together with ¬, ∧, ∨, ⇒, ∀,∃)
universally closed formula formula without free variable ((∀x)(∃y)hasFather(x, y)∧

Person(y))

2

1.2 Towards Description Logics

semantics – an interpretation (with valuation) assigns:
domain element to each term
true/false to each closed formula

proof theory – resolution; Deduction Theorem, Soundness Theorem, Completeness The-
orem

complexity – undecidable (Goedel)

Open World Assumption

OWA
FOPL accepts Open World Assumption, i.e. whatever is not known is not necessarily
false.

As a result, FOPL is monotonic, i.e.

monotonicity
No conclusion can be invalidated by adding extra knowledge.

This is in contrary to relational databases, or Prolog that accept Closed World As-
sumption.

1.2 Towards Description Logics
Languages sketched so far aren’t enough ?

• Why not First Order Predicate Logic ?
/ FOPL is undecidable – many logical consequences cannot be verified in finite

time.
– We often do not need full expressiveness of FOL.

• Well, we have Prolog – wide-spread and optimized implementation of FOPL, right
?

/ Prolog is not an implementation of FOPL – OWA vs. CWA, negation as
failure, problems in expressing disjunctive knowledge, etc.

What are Description Logics ?

Description logics (DLs) are (almost exclusively) decidable subsets of FOPL aimed
at modeling terminological incomplete knowledge.

• first languages emerged as an experiment of giving formal semantics to semantic
networks and frames. First implementations in 80’s – KL-ONE, KAON, Classic.

3

1 Description Logics

• 90’s ALC

• 2004 SHOIN (D) – OWL

• 2009 SROIQ(D) – OWL 2

1.3 ALC Language

Concepts and Roles

• Basic building blocks of DLs are :

4

1.3 ALC Language

(atomic) concepts - representing (named) unary predicates / classes, e.g. Parent,
or Person u ∃hasChild · Person.

(atomic) roles - represent (named) binary predicates / relations, e.g. hasChild
individuals - represent ground terms / individuals, e.g. JOHN

• Theory K = (T ,A) (in OWL refered as Ontology) consists of a
TBOX T - representing axioms generally valid in the domain, e.g. T = {Man v

Person}
ABOX A - representing a particular relational structure (data), e.g. A = {Man(JOHN), loves(JOHN,MARY)}

• DLs differ in their expressive power (concept/role constructors, axiom types).

Semantics, Interpretation

• as ALC is a subset of FOPL, let’s define semantics analogously (and restrict inter-
pretation function where applicable):

• Interpretation is a pair I = (∆I , ·I), where ∆I is an interpretation domain and
·I is an interpretation function.

• Having atomic concept A, atomic role R and individual a, then

AI ⊆ ∆I

RI ⊆ ∆I ×∆I

aI ∈ ∆I

ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for interpretation I :
concept conceptI description
> ∆I (universal concept)
⊥ ∅ (unsatisfiable concept)
¬C ∆I \ CI (negation)
C1 u C2 CI1 ∩ CI2 (intersection)
C1 t C2 CI1 ∪ CI2 (union)
∀R · C {a | ∀b((a, b) ∈ RI =⇒ b ∈ CI)} (universal restriction)
∃R · C {a | ∃b((a, b) ∈ RI ∧ b ∈ CI)} (existential restriction)

TBOX
axiom I |= axiom iff description
C1 v C2 CI1 ⊆ CI2 (inclusion)
C1 ≡ C2 CI1 = CI2 (equivalence)

ABOX (UNA = unique name assumption1)
axiom I |= axiom iff description
C(a) aI ∈ CI (concept assertion)
R(a1, a2) (aI1 , aI2) ∈ RI (role assertion)

1two different individuals denote two different domain elements

5

1 Description Logics

Logical Consequence
For an arbitrary set S of axioms (resp. theory K = (T ,A), where S = T ∪ A) :

Model
I |= S if I |= α for all α ∈ S (I is a model of S, resp. K)

Logical Consequence
S |= β if I |= β whenever I |= S (β is a logical consequence of S, resp. K)

• S is consistent, if S has at least one model

ALC – Example
Example
Consider an information system for genealogical data. Information integration from
various sources is crucial – databases, information systems with different data models.
As an integration layer, let’s use a description logic theory. Let’s have atomic concepts
Person,Man,GrandParent and atomic role hasChild.

• Set of persons that have just men as their descendants, if any ? (specify a concept)
– Person u ∀hasChild ·Man

• How to define concept GrandParent ? (specify an axiom)
– GrandParent ≡ Person u ∃hasChild · ∃hasChild · >

• How does the previous axiom look like in FOPL ?

∀x (GrandParent(x) ≡ (Person(x) ∧ ∃y (hasChild(x, y)
∧∃z (hasChild(y, z)))))

ALC Example – T
Example

Woman ≡ Person u Female
Man ≡ Person u ¬Woman

Mother ≡ Woman u ∃hasChild · Person
Father ≡ Man u ∃hasChild · Person
Parent ≡ Father tMother

Grandmother ≡ Mother u ∃hasChild · Parent
MotherWithoutDaughter ≡ Mother u ∀hasChild · ¬Woman

Wife ≡ Woman u ∃hasHusband ·Man

6

1.3 ALC Language

Interpretation – Example

Example

• Consider a theoryK1 = ({GrandParent ≡ Personu∃hasChild·∃hasChild · >}, {GrandParent(JOHN)}).
Find some model.

• a model of K1 can be interpretation I1 :
– ∆I1 = ManI1 = PersonI1 = {John, Phillipe,Martin}
– hasChildI1 = {(John, Phillipe), (Phillipe,Martin)}
– GrandParentI1 = {John}
– JOHNI1 = {John}

• this model is finite and has the form of a tree with the root in the node John :

Shape of DL Models

The last example revealed several important properties of DL models:

Tree model property (TMP)
Every consistent K = ({}, {C(I)}) has a model in the shape of a rooted tree.

Finite model property (FMP)
Every consistent K = (T ,A) has a finite model.

Both properties represent important characteristics ofALC that significantly speed-
up reasoning.

In particular (generalized) TMP is a characteristics that is shared by most DLs
and significantly reduces their computational complexity.

Example – CWA × OWA

Example

ABOX
hasChild(JOCAST A, OEDIP US) hasChild(JOCAST A, P OLY NEIKES)
hasChild(OEDIP US, P OLY NEIKES) hasChild(P OLY NEIKES, T HERSANDROS)
P atricide(OEDIP US) ¬P atricide(T HERSANDROS)

Edges represent role assertions of hasChild; red/green colors distinguish concepts instances – P atricide
a ¬P atricide

JOCAST A //
**

P OLY NEIKES // T HERSANDROS

OEDIP US

33

7

1 Description Logics

Q1 (∃hasChild · (P atricide u ∃hasChild · ¬P atricide))(JOCAST A),

JOCAST A // • // •

Q2 Find individuals x such that K |= C(x), where C is

¬P atricide u ∃hasChild− · (P atricide u ∃hasChild−) · {JOCAST A}

What is the difference, when considering CWA ?

JOCAST A // • // x

1.4 From ALC to OWL(2)-DL

Extending . . .ALC ...

• We have introduced ALC, together with a decision procedure. Its expressiveness
is higher than propositional calculus, still it is insufficient for many practical ap-
plications.

• Let’s take a look, how to extend ALC while preserving decidability.

Extending . . .ALC ... (2)

N (Number restructions) are used for restricting the number of successors in the given
role for the given concept.

syntax (concept) semantics

(≥ n R)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}
∣∣∣ ≥ n

}

(≤ n R)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}
∣∣∣ ≤ n

}

(= n R)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}
∣∣∣ = n

}

Example

– Concept Woman u (≤ 3 hasChild) denotes women who have at most 3 chil-
dren.

– What denotes the axiom Car v (≥ 4 hasWheel) ?

– ... and Bicycle ≡ (= 2 hasWheel) ?

Extending . . .ALC ... (3)

8

1.4 From ALC to OWL(2)-DL

Q (Qualified number restrictions) are used for restricting the number of successors of
the given type in the given role for the given concept.

syntax (concept) semantics

(≥ n R C)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}
∣∣∣ ≥ n

}

(≤ n R C)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}
∣∣∣ ≤ n

}

(= n R C)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}
∣∣∣ = n

}

Example

– Concept Womanu (≥ 3 hasChild Man) denotes women who have at least 3
sons.

– What denotes the axiom Car v (≥ 4 hasPart Wheel) ?

– Which qualified number restrictions can be expressed in ALC ?

Extending . . .ALC ... (4)

O (Nominals) can be used for naming a concept elements explicitely.
syntax (concept) semantics
{a1, . . . , an} {aI1 , . . . , aIn}

Example

– Concept {MALE,FEMALE} denotes a gender concept that must be inter-
preted with at most two elements. Why at most ?

– Continent ≡ {EUROPE,ASIA,AMERICA,AUSTRALIA,AFRICA,ANTARCTICA}
?

Extending . . .ALC ... (5)

I (Inverse roles) are used for defining role inversion.
syntax (role) semantics
R− (RI)−1

Example

– Role hasChild− denotes the relationship hasParent.

– What denotes axiom Person v (= 2 hasChild−) ?

– What denotes axiom Person v ∃hasChild− · ∃hasChild · > ?

9

1 Description Logics

Extending . . .ALC ... (6)

·trans (Role transitivity axiom) denotes that a role is transitive. Attention – it is not a
transitive closure operator.

syntax (axiom) semantics
trans(R) RI is transitive

Example

– Role isPartOf can be defined as transitive, while role hasParent is not.
What about roles hasPart, hasPart−, hasGrandFather− ?

– What is a transitive closure of a relationship ? What is the difference between
a transitive closure of hasDirectBossI and hasBossI .

Extending . . .ALC ...(7)

H (Role hierarchy) serves for expressing role hierarchies (taxonomies) – similarly to
concept hierarchies.

syntax (axiom) semantics
R v S RI ⊆ SI

Example

– Role hasMother can be defined as a special case of the role hasParent.

– What is the difference between a concept hierarchy Mother v Parent and
role hierarchy hasMother v hasParent.

Extending . . .ALC ... (8)

R (role extensions) serve for defining expressive role constructs, like role chains, role
disjunctions, etc.

syntax semantics
R ◦ S v P RI ◦ SI v P I

Dis(R, R) RI ∩ SI = ∅
∃R · Self {a|(a, a) ∈ RI}

Example

– How would you define the role hasUncle by means of hasSibling and hasParent
?

– how to express that R is transitive, using a role chain ?

– Whom does the following concept denote Person u ∃likes · Self ?

10

1.4 From ALC to OWL(2)-DL

Global restrictions

• Simple roles have no (direct or indirect) subroles that are either transitive or are
defined by means of property chains

hasFather ◦ hasBrother v hasUncle

hasUncle v hasRelative

hasBiologicalFather v hasFather

hasRelative and hasUncle are not simple.

• Each concept construct and each axiom from this list contains only simple roles:
– number restrictions – (≥ n R), (= n R), (≤ n R) + their qualified versions
– ∃R · Self
– specifying functionality/inverse functionality (leads to number restrictions)
– specifying irreflexivity, asymmetry, and disjoint object properties.

Extending . . .ALC ... – OWL-DL a OWL2-DL

• From the previously introduced extensions, two prominent decidable supersets of
ALC can be constructed:

– SHOIN is a description logics that backs OWL-DL.
– SROIQ is a description logics that backs OWL2-DL.
– Both OWL-DL and OWL2-DL are semantic web languages – they extend the

corresponding description logics by:
syntactic sugar – axioms NegativeObjectPropertyAssertion, AllDisjoint, etc.
extralogical constructs – imports, annotations
data types – XSD datatypes are used

Extending ALC – Reasoning

• What is the impact of the extensions to the automated reasoning procedure ? The
introduced tableau algorithm for ALC has to be adjusted as follows:

– additional inference rules reflecting the semantics of newly added constructs
(O,N ,Q)

– definition of R-neighbourhood of a node in a completion graph. R-neighbourhood
notion generalizes simple tests of two nodes being connected with an edge,
e.g. in ∃-rule. (H,R, I)

– new conditions for direct clash detection
– more strict blocking conditions (blocking over graph structures).

11

1 Description Logics

• This results in significant computation blowup – from EXPTIME (ALC) to
– NEXPTIME for SHOIN
– N2EXPTIME for SROIQ

Rules and Description Logics

• How to express e.g. that “A cousin is someone whose parent is a sibling of your
parent.” ?

• ... we need rules, like

hasCousin(?c1, ?c2)← hasParent(?c1, ?p1), hasParent(?c2, ?p2),
Man(?c2), hasSibling(?p1, ?p2)

• in general, each variable can bind domain elements; however, such version is
undecidable.

DL-safe rules
DL-safe rules are decidable conjunctive rules where each variable only binds in-
dividuals (not domain elements themselves).

Other extensions

Modal Logic introduces modal operators – possibility/necessity, used in multiagent systems.

Example

• (� represents e.g. the ”believe” operator of an agent)

�(Man v P erson u ∀hasF ather ·Man) (1.1)

• As ALC is a syntactic variant to a multi-modal propositional logic, where each role represents the
accessibility relationa between worlds in Kripke structure, the previous example can be transformed
to the modal logic as:

•
�(Man =⇒ P erson ∧ �hasF atherMan) (1.2)

Vague Knowledge - fuzzy, probabilistic and possibilistic extensions

Data Types (D) allow integrating a data domain (numbers, strings), e.g. P erson u ∃hasAge · 23 represents the
concept describing “23-years old persons”.

References

12

Bibliography

[1] * Vladimı́r Mař́ık, Olga Štěpánková, and Jǐŕı Lažanský. Umělá inteligence 6 [in
czech], Chapters 2-4. Academia, 2013.

[2] * Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter Patel-Schneider, editors. The Description Logic Handbook, Theory, Imple-
mentation and Applications, Chapters 2-4. Cambridge, 2003.

[3] * Enrico Franconi. Course on Description Logics. http://www.inf.unibz.it/ fran-
coni/dl/course/, cit. 22.9.2013.

13

	Description Logics
	Towards Description Logics
	Towards Description Logics
	ALC Language
	From ALC to OWL(2)-DL

