
3. tutorial in Prolog

October 29, 2018

Task 1: Play with arithmetics! Prolog has �imperative-style� arith-
metics using the keyword is. Read and understand the following ex-
amples:

?- X is 1 + 1.

X = 2.

?- N is 3 + 4, M is N * 3.

N = 7,

M = 21.

?- M is N * 3, N is 3 + 4.

ERROR: is/2: Arguments are not sufficiently instantiated

?- A is 13 div 5, B is 13 mod 5.

A = 2,

B = 3.

?- D is round(2 * cos(pi)).

D = -2.

The is predicate does not solve equations, it merely evaluates expres-
sions just like C or Java.

1

Make sure not to confuse �is� with uni�cation �=�. Uni�cation is purely
syntactic, no arithmetics is evaluated:

?- X = 1 + 1.

X = 1+1.

?- X is 1 + 1.

X = 2.

Task 2: Implement factorial using the straightforward idea (with-
out an accumulator):

1. When asked for N !, �rst obtain the factorial of N − 1.

2. Multiply it with N and return the result.

Task 3: Implement factorial using an accumulator.

1. Add a 3rd argument A, which is initialized to 1.

2. When asked for N !, multiply A with N and send it to the recursive
call for (N − 1)!.

3. In the non-recursive clause, merely return the result.

This implementation should somewhat resemple imperative program-

ming. Do you agree?

Task 4: Compare CPU time of both implementations. You should
get a result which looks like follows:

2

?- time(factorial1(10000,_)).

% 20,001 inferences, 3.361 CPU in 3.922 seconds

true .

?- time(factorial2(10000,_,1)).

% 20,001 inferences, 0.198 CPU in 0.245 seconds

true .

Notice the ∼ 17× speedup!

Do both of your factorials run equally fast? Make sure that
fact2 has the recursive call as the very last subcall, just before the
�nal �.�!

If you're interested in the magic of tail-call optimization (which applies
not only to Prolog, but also to C, JavaScript, Scheme, LISP, Haskell. . .),
Wikipedia has a good resource:

https://en.wikipedia.org/wiki/Tail_call

Task 5: Draw SLD trees for factorial1(3,X) and factorial2(3,X,1).
These 2 resources are very instructive:

https://www.cpp.edu/~jrfisher/www/prolog_tutorial/3_2.html

http://cs.union.edu/~striegnk/learn-prolog-now/html/node88.html

Task 6: Study the cut operator �!�. Deduce the result of the following
program and queries:

q(b).

q(c).

p(a).

p(X) :- q(X), !.

p(d).

3

https://en.wikipedia.org/wiki/Tail_call
https://www.cpp.edu/~jrfisher/www/prolog_tutorial/3_2.html
http://cs.union.edu/~striegnk/learn-prolog-now/html/node88.html

Query Your guess True answer

?- p(X).

?- p(a).

?- p(b).

?- p(c).

?- p(d).

Not sure why it works the way it does? Ask your teacher!

Task 7 (optional): Draw SLD trees for these queries.

Task 8: Make two de�nitions of max(X,Y,Z), where Z is the maxi-
mum of {X, Y }. One with the cut and one without. Which is simpler?
More e�ective?

Task 9: Compare these 2 implementations of append:

append([], B, B).

append([H|A], B, [H|AB]) :- append(A, B, AB).

cut_append([], B, B) :- !.

cut_append([H|A], B, [H|AB]) :- cut_append(A, B, AB).

Find some query, where append behaves di�erently from appendCut.

Can you formulate the class of queries, on which the two predicates
behave di�erently?

Task 10: Flatten a nested list:

?- my_flatten([[a,b],[],[c,[d,e],[f]]],X).

X = [a, b, c, d, e, f] .

You might be getting additional answers like X = [a, b, c, d, e, f,

[], []] ; ... If you do, place the cut in your code!

4

Task 11: Take any predicate, no matter how compliacted. Is there a
place for a cut, which does not a�ect the predicate's behavior at all?

Note: The answer can be formulated absolutely precisely!

Task 12 (optional): De�ne your own my_not(Goal) that succeeds
only if the Goal fails. You may need two predicates: call(Goal) which
executes the Goal and fail which always fails.

Task 13 (optional): Consider the ordinary and a not not call:
pred(...) vs. not(not(pred(...))). What are the similarities and
di�erences?

If you struggle, try replacing �pred� with uni�cation �=�.

Task 14 (optional): In the assignment you have already encountered
X \= Y which fails if X and Y can be uni�ed. Now try de�ning your own
implementation of diff(X,Y) with the same behavior. You may need
fail which always fails.

Task 15 (optional): Write matrix multiplication mat_prod:

?- mat_prod([[1,2],[3,4]], [[0,1],[2,3]], X).

X = [[4,7],[8,15]].

Tip: De�ne and use a helper predicate column:

?- column([[1,2,3],[4,5,6]], Col, Rest).

Col = [1,4],

Rest = [[2,3],[5,6]].

Task 16 (optional): Mathematicians usually encode natural num-
bers as follows: Zero is 0. If X is a natural number, then s(X) is also.
For example, number 3 is s(s(s(0))). De�ne plus(...), minus(...)
and product(...) using this representation.

5

