
Logical reasoning and programming, task III

(December 11, 2018)

We have seen that it is easy to add new Boolean connectives, e.g. equiv-
alence, to our systems, because all Boolean connectives are definable there.
However, sometimes we want to add more complex connectives and operators.
This leads to so called non-classical logics. For example, we can add a unary
modal operator necessarily, usually denoted � (called box), where �p means
“necessarily p”. Logics containing such operators are called modal logics and
were studied already by Aristotle. They occur quite frequently in computer
science, e.g., in temporal and description logics.

Clearly, we should define the meaning of box, but we do not provide it.
Instead of that, we shall present proof systems for the weakest normal modal
propositional logic, called K, and define a provability in K using these systems.
Although you are encouraged to find some more details about K, this is not
necessary for completing the task.

The task consists of three parts

I implement in Prolog a tableau system for K (8 points),

II modify it (2 points),

III implement in Prolog a Hilbert style system for K (5 points).

You are supposed to submit all programs in an archive to BRUTE. Note that
this task will be evaluated manually.

Formula representation

The following representation of formulae in Prolog is used

Logic Prolog
p p
¬p n(p)

p ∧ q a(p,q)
p→ q i(p,q)
�p box(p)

and it naturally extends to all formulae. Propositional variables are atoms in
Prolog, negation is expressed by a unary function n, conjunction is a binary
function a, implication is a binary function i, and box is a unary function box.

For example, ¬¬((�p)∧ ((�¬(p∧¬q))∧ (¬�q))) is represented in Prolog
by n(n(a(box(p),a(box(n(a(p,n(q)))),n(box(q)))))).

Note that in Part I and II an implication ϕ → ψ is just a shortcut for ¬(ϕ ∧
¬ψ). On the other hand, in Part III a conjunction ϕ ∧ ψ is just a shortcut for
¬(ϕ→ ¬ψ).

1

I Modaltab

Problem

Your task in this part is to implement a tableau system for K in Prolog. Note
that the tableau system presented here differs slightly from the tableau system
presented at the lecture.

Our tableau system for K deals with the sets of formulae. A formula ϕ is
provable in K iff we can derive that {¬ϕ} is unsatisfiable using the tableau
system for K. The tableau system contains rules that preserve satisfiability; if a
set of formulae (above line) is satisfiable, then at least one of sets of formulae
(below line) is satisfiable as well. It consists of the following rules:

Γ ∪ {ϕ,¬ϕ}
(⊥)⊥

Γ ∪ {ϕ ∧ ψ)}
(∧)

Γ ∪ {ϕ, ψ}

Γ ∪ ∆ (⊂)
Γ

Γ ∪ {¬¬ϕ}
(¬)

Γ ∪ {ϕ}

Γ ∪ {¬(ϕ ∧ ψ)}
(∨)

Γ ∪ {¬ϕ} Γ ∪ {¬ψ}

�Γ ∪ {¬�ϕ}
(K)

Γ ∪ {¬ϕ}

where Γ and ∆ are sets of formulae, ϕ and ψ are formulae, and �Γ = {�ϕ |
ϕ ∈ Γ }. The special symbol ⊥ represents unsatisfiability and the rule (⊥) says
that a set of formulae containing ϕ and ¬ϕ is trivially unsatisfiable, we also
say that (⊥) closes a branch. Only the rule (∨) contains branching — to prove
that Γ ∪ {¬(ϕ ∧ ψ)} is unsatisfiable, we have to prove that both Γ ∪ {¬ϕ} and
Γ ∪ {¬ψ} are unsatisfiable.

A set of formulae is unsatisfiable if there is a derivation of this set using the
given rules such that all branches are closed (end with ⊥).

The following example is a proof of formula ¬((�p) ∧ ((�¬(p ∧ ¬q)) ∧
(¬�q))), which is equivalent to �p→ (�(p→ q)→ �q) in the language with
implication. In other words, it says “if necessarily p and necessarily p → q,
then necessarily q”. A basic principle which is valid in all normal modal logics.

{¬¬((�p) ∧ ((�¬(p ∧ ¬q)) ∧ (¬�q)))}
(¬)

{(�p) ∧ ((�¬(p ∧ ¬q)) ∧ (¬�q))}
(∧)

{�p, (�¬(p ∧ ¬q)) ∧ (¬�q)}
(∧)

{�p,�¬(p ∧ ¬q),¬�q}
(K)

{p,¬(p ∧ ¬q),¬q)}
(∨)

{p,¬p,¬q}
(⊥)⊥

{p,¬¬q,¬q}
(⊥)⊥

The depth of such a proof, which is clearly a binary tree, is 6, because the
longest path from ⊥ to the root contains six applications of rules. Hence we
say that ¬((�p) ∧ ((�¬(p ∧ ¬q)) ∧ (¬�q))) has a proof of depth 6.

For further details about tableau systems for modal logics see, e.g., this text.

2

http://rsise.anu.edu.au/~rpg/Publications/Handbook-Tableau-Methods/TR-ARP-15-95.ps.gz

Program

You are supposed to upload a program modaltab.pl, in an archive, containing
a binary predicate prove, where the first argument is an input formula and the
second argument is a number. Hence we have prove(-Formula, -Depth) and
it succeeds iff Formula has a proof of depth at most Depth. You can assume
that implications do not occur in Formula.

For example,

?- prove(n(a(box(p), a(box(n(a(p, n(q)))), n(box(q))))), 6).
true.

and it also succeeds for the second argument being 7, 8,

Tips

It is wise to represent sets of formulae using lists. In this case you can use the
predicate select/3, see help for further details.

There is no need to optimize your program for efficiency, your task is to
write a simple program. A strightforward implementation of the presented
tableau system is just fine.

Examples

?- prove(n(a(box(p), n(n(a(box(n(a(p, n(q)))), n(box(q))))))), 7).
true.

?- prove(n(a(box(p), n(p))), 10).
false.

?- prove(n(a(n(p), n(box(n(a(n(p), n(n(p)))))))), 7).
true.

II Modaltab 2

Note that the only reason to have the rule (⊂) in the previous part is to make
it possible to apply the rule (K). Modify the program from Part I in such a way
that you replace two rules (⊂) and (K) by a single rule; combine them together.

Note that formulae can have shorter proofs now, but we are not very con-
cerned by that, because the second argument Depth in prove is really not nec-
essary. The maximal depth of a proof is given by the size of Formula. Hence
remove it—you can ignore it completely as long as you are sure that no cycle
is possible; note that after an application of a rule you should obtain a smaller
set.

Program

You are supposed to upload a program modaltab2.pl, in an archive, imple-
menting the two above mentioned ideas. Hence we have prove(-Formula)
and it succeeds iff Formula has a proof in a modified calculus. You can assume
that implications do not occur in Formula.

3

http://www.swi-prolog.org/pldoc/man?predicate=select/3

III Modalhil

In this part your goal is to write a program that generates formulae provable in
a (propositional) Hilbert style proof system for K in a naïve way. Namely you
have the following schemata of axioms

A→ (B→ A)

(A→ (B→ C))→ ((A→ B)→ (A→ C))
(¬B→ ¬A)→ (A→ B)
�(A→ B)→ (�A→ �B)

meaning that any instance of them has a proof of depth 1. For example, (p →
q)→ ((q→ p)→ (p→ q)), which we write as i(i(p,q),i(i(q,p),i(p,q))),
is an instance of the first schema. We also say that all these schemata have
proofs of depth 1.

You can derive new schemata by using the following two rules:

(CD) If a schema A has a proof of depth k and a schema B → C has a proof of
depth l, then a schema Cσ, where σ = mgu(A, B), has a proof of depth
max(k, l) + 1. Moreover, Cσ is a schema that is the result of applying the
substitution σ on the schema C.

(Nec) If a schema A has a proof of depth k, then the schema �A has a proof of
depth k + 1.

For example, from �(A → B) → (�A → �B) and (C → (D → E)) →
((C → D) → (C → E)) we can derive (�(A → B) → �A) → (�(A → B) →
�B) by (CD), because we use the substitution σ = {C 7→ �(A → B), D 7→
�A, E 7→ �B} that is a mgu of �(A→ B)→ (�A→ �B) and C → (D → E).
Moreover, the depth of the proof is 2.

We say that a formula ϕ has a proof of depth k, if a schema A has a proof
of depth k and ϕ is an instance of A. For example, �(A → A) has a proof of
depth 4 and hence �((p→ q)→ (p→ q)) has a proof of depth 4.

Program

You are supposed to upload a program modalhil.pl, in an archive, containing
a binary predicate derive, where the first argument is an input formula and
the second argument is a number. Hence we have derive(-Formula, -Depth)
and it succeeds iff Formula has a proof of depth at most Depth. You can assume
that conjunctions do not occur in Formula.

For example,

?- derive(i(box(p), i(box(i(p, q)), box(q))), 4).
true.

and it also succeeds for the second argument being 5, 6,

Tips

You can use the predicate max/2, see help. If you need unification with the
occurs check, then use the predicate unify_with_occurs_check/2, see help.

4

http://www.swi-prolog.org/pldoc/man?function=max/2
http://www.swi-prolog.org/pldoc/man?predicate=unify_with_occurs_check/2

There is no need to optimize your program for efficiency, your task is to
write a simple program. A strightforward implementation of the presented
Hilbert style system is just fine, although it is very inefficient compare to the
approach presented during labs; a translation to first-order logic.

Examples

?- derive(i(box(q), i(box(p), box(p))), 4).
true.

?- derive(i(box(p), p), 4).
false.

?- derive(i(box(i(p, p)), i(q, q)), 4).
true.

?- derive(i(p, box(p)), 5).
false.

The last example can take long time to compute (depending on your imple-
mentation). There is need to wait for it (or rewrite your program), if you believe
that your implementation is correct.

5

	Modaltab
	Modaltab 2
	Modalhil

