
Logical reasoning and programming
First-order resolution

Karel Chvalovský

CIIRC CTU

Our problem

Let Γ = {𝜓1, . . . , 𝜓𝑛} be a set of senteces and 𝜙 be a sentence.
We know that

Γ |= 𝜙

iff
Γ ∪ {¬𝜙} is unsatisfiable

iff
∀𝜓′

1 ∪ · · · ∪ ∀𝜓′
𝑛 ∪ ∀(¬𝜙)′ is unsatisfiable,

where 𝜓′
1, . . . , 𝜓

′
𝑛, (¬𝜙)′ are 𝜓1, . . . , 𝜓𝑛,¬𝜙 in CNF (=clauses) and

∀Δ = { ∀𝜒 | 𝜒 ∈ Δ } for a set of clauses Δ.

We say that Δ is a set of clauses assuming that it is implicitly
universally quantified.

1 / 25

Instances

Lemma
Let 𝜙 be a clause and 𝜎 be a substitution, then ∀𝜙 |= 𝜙𝜎.

We say that 𝜙𝜎 is an instance of 𝜙. If an instance contains no
variable, then we call it a ground instance.

Example
From ∀𝑋∀𝑌 (𝑝(𝑋) ∨ ¬𝑞(𝑋,𝑌)), for example, follows
𝑝(𝑎) ∨ ¬𝑞(𝑎, 𝑓(𝑍)).

2 / 25

Herbrand models
We can restrict the types of interpretations that have to be
considered. Let Γ be a set of clauses.
Herbrand universe
The Herbrand universe of Γ, denoted HU (Γ), is the set of all
ground terms in the language of Γ. If Γ contains no constant, we
add a fresh constant 𝑐 to the language.

Herbrand base
The Herbrand base of Γ, denoted HB(Γ), is the set of all ground
atomic formulae in the language of Γ, where only terms from
HU (Γ) are allowed.

Herbrand interpretation
A Herbrand interpretation of Γ is a subset of HB(Γ).

Herbrand model
A Herbrand model ℳ of Γ is a Herbrand interpretation of Γ such
that ℳ |= Γ.

3 / 25

Herbrand’s theorem

Theorem
Let Γ be a set of clauses. The following conditions are equivalent:

1. Γ is unsatisfiable,
2. the set of all ground instances of Γ is unsatisfiable,
3. a finite subset of the set of all ground instances of Γ is

unsatisfiable.

Note that Γ has a model, if it has a Herbrand model.

4 / 25

Naïve approach

Herbrand’s theorem provides a propositional criterion for
unsatisfiability of a set of clauses Γ, because a ground atomic
formula can be seen as a propositional atom.

Several early approaches (Gilmore; David and Putnam in 1960)
work as follows—generate ground instances and use propositional
resolution. If you fail, then produce more instances and repeat.

However, such an approach is generally very inefficient (but it
works for ASP).

5 / 25

Lifting lemma

A technique to prove completeness theorems for the non-ground
case using completeness for a ground instance.

For example, we have clauses

{𝑞(𝑌, 𝑓(𝑋)), 𝑝(𝑋, 𝑎)} and {¬𝑝(𝑈, 𝑉), 𝑟(𝑈, 𝑉)}.

We want to represent infinitely many ground instances and possible
resolution steps by a single non-ground instance.

{𝑞(𝑌, 𝑓(𝑋), 𝑝(𝑋, 𝑎)} {¬𝑝(𝑈, 𝑉), 𝑟(𝑈, 𝑉)}
{𝑞(𝑌, 𝑓(𝑋)), 𝑟(𝑋, 𝑎)}

Use unification!

6 / 25

Unifiers

Let 𝑠 and 𝑡 be terms. A unifier of 𝑠 and 𝑡 is a substitution 𝜎 such
that 𝑠𝜎 and 𝑡𝜎 are identical (𝑠𝜎 = 𝑡𝜎).

A unifier 𝜎 of 𝑠 and 𝑡 is said to be a most general unifier (or mgu
for short), denoted 𝜎 = mgu(𝑠, 𝑡), if for any unifier 𝜃 of 𝑠 and 𝑡
there is a substitution 𝜂 such that 𝜃 = 𝜎𝜂 that is 𝜃 is a
composition of 𝜎 and 𝜂.

We can easily extend our definitions to
I a (most general) unifier of a set of terms,
I a (most general) unifier of two formulae,
I a (most general) unifier of a set of formulae.

7 / 25

Unification algorithm
A set of equations {𝑋1

.= 𝑡1, . . . , 𝑋𝑛
.= 𝑡𝑛 } is said to be in solved

form if 𝑋1, . . . , 𝑋𝑛 are distinct variables that do not appear in
terms 𝑡1, . . . , 𝑡𝑛.

Given a finite set of pairs of terms 𝑇 = { 𝑠1
.= 𝑡1, . . . , 𝑠𝑛

.= 𝑡𝑛 }.
The following algorithm either produces a set of equations in
solved form that defines an mgu 𝜎 such that 𝑠𝑖𝜎 = 𝑡𝑖𝜎, for
1 ≤ 𝑖 ≤ 𝑛, or it fails. If it fails, then there is no unifier for the set.
I 𝑆 ∪ {𝑢 .= 𝑢 } 𝑆,
I 𝑆 ∪ { 𝑓(𝑢1, . . . , 𝑢𝑘) .= 𝑓(𝑣1, . . . , 𝑣𝑘) }

𝑆 ∪ {𝑢1
.= 𝑣1, . . . , 𝑢𝑘

.= 𝑣𝑘},
I 𝑆 ∪ { 𝑓(𝑢1, . . . , 𝑢𝑘) .= 𝑔(𝑣1, . . . , 𝑣𝑙) } fail, if 𝑓 ̸= 𝑔 or 𝑘 ̸= 𝑙,
I 𝑆 ∪ { 𝑓(𝑢1, . . . , 𝑢𝑘) .= 𝑋 } 𝑆 ∪ {𝑋 .= 𝑓(𝑢1, . . . , 𝑢𝑘) },
I 𝑆∪{𝑋 .= 𝑢 } 𝑆{𝑋 ↦→ 𝑢}∪{𝑋 .= 𝑢 }, if 𝑋 /∈ 𝑢 and 𝑋 ∈ 𝑆,
I 𝑆 ∪ {𝑋 .= 𝑢 } fail, if 𝑋 ∈ 𝑢,

where 𝑢, 𝑢𝑗 , 𝑣𝑗 are terms and 𝑆 is a finite set of pairs of terms.
Moreover, 𝑆{𝑋 ↦→ 𝑢} means that we substitute a term 𝑢 for all
occurrences of a variable 𝑋 in 𝑆. 8 / 25

Properties of the unification algorithm
Termination
The algorithm always terminates. Assume the following triplet

1. the number of distinct variables that occur more than once
in 𝑆,

2. the number of function (and constant) symbols that occur on
the left hand sides in 𝑆,

3. the number of pairs in 𝑆.
Clearly, under the lexicographic order, the triple decreases after an
application of any rule.

It produces an mgu
A routine induction proof on the number of steps of the algorithm
proves that
I it finds an mgu, if there is a unifier of the set,
I it fails, if there is no unifier of the set.

9 / 25

Resolution
Let 𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛 be literals and 𝑝 and 𝑞 be atomic
formulae.

{𝑙1, . . . , 𝑙𝑚, 𝑝} {¬𝑞, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}
{𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}𝜎

where 𝜎 = mgu(𝑝, 𝑞) and {𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}𝜎 is equal to
{𝑙1𝜎, . . . , 𝑙𝑚𝜎, 𝑙𝑚+1𝜎, . . . , 𝑙𝑚+𝑛𝜎}. The clause
{𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}𝜎 produced by the (binary) resolution
rule is called the resolvent of the two input clauses. We assume
that the input clauses do not share variables (renaming away).

Theorem (correctness)
{𝑙1, . . . , 𝑙𝑚, 𝑝}, {¬𝑞, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛} |=
{𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}𝜎, where 𝜎 = mgu(𝑝, 𝑞).

Hence the resolution rule preserves satisfiability.
10 / 25

Factoring

We need to add the factoring rule. Let 𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, 𝑙, 𝑘 be
literals.

{𝑙1, . . . , 𝑙𝑚, 𝑙, 𝑘}
{𝑙1, . . . , 𝑙𝑚, 𝑙}𝜎

where 𝜎 = mgu(𝑙, 𝑘). Note that 𝑙 and 𝑘 are either both positive,
or both negative. Moreover, {𝑙1, . . . , 𝑙𝑚, 𝑙, 𝑘} |= {𝑙1, . . . , 𝑙𝑚, 𝑙}𝜎.

In propositional logic we avoided this problem completely by using
sets as clauses.

Example
Using only the binary resolution rule, we cannot derive 2 from
clauses {𝑝(𝑋), 𝑝(𝑌)} and {¬𝑝(𝑈),¬𝑝(𝑉)}.

11 / 25

Resolution calculus
The resolution calculus has no axioms and the only deduction rules
are the binary resolution rule and the factoring.

Resolution proof
A (resolution) proof of clause 𝜙 from clauses 𝜓1, . . . , 𝜓𝑛 is a finite
sequence of clauses 𝜒1, . . . , 𝜒𝑚 such that
I every 𝜒𝑖 is

I among 𝜓1, . . . , 𝜓𝑛, or
I derived by the binary resolution rule from input clauses 𝜒𝑗 and

𝜒𝑘, for 1 ≤ 𝑗 < 𝑘 < 𝑖 ≤ 𝑚, or
I derived by the factoring rule from an input clause 𝜒𝑗 , for

1 ≤ 𝑗 < 𝑖 ≤ 𝑚.
I 𝜙 = 𝜒𝑚.

We say that a clause 𝜙 is provable (derivable) from a set of clauses
{𝜓1, . . . , 𝜓𝑛}, we write {𝜓1, . . . , 𝜓𝑛} ⊢ 𝜙, if there is a proof of 𝜙
from 𝜓1, . . . , 𝜓𝑛.

12 / 25

Resolution proof

Example
We prove 2 from a set of clauses

{{¬𝑝(𝑋), 𝑞(𝑋), 𝑟(𝑋)}, {𝑝(𝑎), 𝑝(𝑏)}, {¬𝑞(𝑌)}, {¬𝑟(𝑎)}, {¬𝑟(𝑏)}}.

¬𝑝(𝑋), 𝑞(𝑋), 𝑟(𝑋) ¬𝑞(𝑌)
¬𝑝(𝑋), 𝑟(𝑋) ¬𝑟(𝑎)

¬𝑝(𝑎) 𝑝(𝑎), 𝑝(𝑏)
𝑝(𝑏)

¬𝑝(𝑋), 𝑞(𝑋), 𝑟(𝑋) ¬𝑞(𝑌)
¬𝑝(𝑋), 𝑟(𝑋) ¬𝑟(𝑏)

¬𝑝(𝑏)
2

Strictly speaking the presented derivation is not a sequence, but it
is easy to produce a sequence from it. For example,
{¬𝑝(𝑋), 𝑟(𝑋)} is derived only once in the sequence.

13 / 25

More resolvents

Unlike in propositional logic, it is possible to resolve two clauses in
multiple ways and still obtain useful resolvents.

Example
From {𝑝(𝑎), 𝑝(𝑏)} and {¬𝑝(𝑋), 𝑞(𝑋)} we can derive both
{𝑝(𝑏), 𝑞(𝑏)} and {𝑝(𝑎), 𝑞(𝑋)}.

14 / 25

Completeness of resolution calculus

It is not true that we can derive every valid formula in the
resolution calculus, e.g., from the empty set we derive nothing.
However, it is so called refutationally complete.

Theorem (completeness)
Let Γ be a set of clauses. If Γ is unsatisfiable, then Γ ⊢ 2.

Note that from the correctness theorem we already know the
converse implication.

Theorem
Let Γ be a set of clauses. If Γ ⊢ 2, then Γ is unsatisfiable.

15 / 25

Subsumption

A clause 𝜙 subsumes a clause 𝜓, denoted 𝜙 ⊑ 𝜓, if there is a
substitution 𝜎 such that 𝜙𝜎 ⊆ 𝜓.

If 𝜙 ⊑ 𝜓, then 𝜙 |= 𝜓.

Let Γ and Δ be sets of clauses. We write Γ ⊑ Δ if for every clause
𝜓 ∈ Δ exists a clause 𝜙 ∈ Γ such that 𝜙 ⊑ 𝜓.

Lemma
If Δ ⊢ 2 and Γ ⊑ Δ, then Γ ⊢ 2 and this proof is no longer than
Δ ⊢ 2.

Example
{𝑝(𝑋)} ⊑ {𝑝(𝑓(𝑎))}, {𝑝(𝑋)} ⊑ {𝑝(𝑌), 𝑞(𝑌)}, and
{𝑝(𝑋), 𝑞(𝑌)} ⊑ {𝑝(𝑍), 𝑞(𝑍)}, but {𝑝(𝑍), 𝑞(𝑍) ̸⊑ {𝑝(𝑋), 𝑞(𝑌)}.

16 / 25

Subsumption example

Assume we have the following resolution refutation

𝑝(𝑓(𝑋)), 𝑞(𝑋,𝑌), 𝑟(𝑋) ¬𝑝(𝑓(𝑓(𝑐)))
𝑞(𝑓(𝑐), 𝑌), 𝑟(𝑓(𝑐)) ¬𝑞(𝑈, 𝑉)

𝑟(𝑓(𝑐)) ¬𝑟(𝑓(𝑐))
2

Then after deriving {𝑝(𝑌), 𝑟(𝑍)}, we can simplify the previous
proof into

𝑝(𝑌), 𝑟(𝑍) ¬𝑝(𝑓(𝑓(𝑐)))
𝑟(𝑍) ¬𝑟(𝑓(𝑐))

2

thanks to {𝑝(𝑌), 𝑟(𝑍)} ⊑ {𝑝(𝑓(𝑋)), 𝑞(𝑋,𝑌), 𝑟(𝑋)}.

17 / 25

Forward and backward subsumptions

Forward subsumption
If we derive a clause 𝜓 and we already have a clause 𝜙 such that
𝜙 ⊑ 𝜓, then we can remove 𝜓, because 𝜙 is stronger.

Backward subsumption
If we derive a clause 𝜙 and we already have a clause 𝜓 such that
𝜙 ⊑ 𝜓, then we can remove 𝜓, because 𝜙 is stronger. We can
remove all such 𝜓s.

18 / 25

Saturation procedure

We have already seen a saturated set in the propositional case—we
systematically process a set of clauses in such a way that if there is
no clause to be processed, then it is impossible to derive 2 from
the original set. It is also called ANL loop.

The next slides are from the presentation by Stefan Schultz, the
author of the E prover, at the SAT/SMT/AR Summer School
2018.

19 / 25

The Given-Clause Algorithm

U
(unprocessed clauses)

P
(processed clauses)

We represent the proof state
S by two sets of clauses:

I P holds the processed
clauses (originally
empty)

I U holds the unprocessed
clauses (originally all
clauses in S)

22
20 / 25

The Given-Clause Algorithm

U
(unprocessed clauses)

g

P
(processed clauses)

I Aim: Move everything
from U to P

I Invariant: All generating
inferences with premises
from P have been
performed

I Invariant: P is
interreduced

I Clauses added to U are
simplified with respect
to P

22
20 / 25

The Given-Clause Algorithm

U
(unprocessed clauses)

g

P
(processed clauses)

g=☐
?

I Aim: Move everything
from U to P

I Invariant: All generating
inferences with premises
from P have been
performed

I Invariant: P is
interreduced

I Clauses added to U are
simplified with respect
to P

22
20 / 25

The Given-Clause Algorithm

U
(unprocessed clauses)

Gene-
rate

g

P
(processed clauses)

g=☐
?

I Aim: Move everything
from U to P

I Invariant: All generating
inferences with premises
from P have been
performed

I Invariant: P is
interreduced

I Clauses added to U are
simplified with respect
to P

22
20 / 25

The Given-Clause Algorithm

U
(unprocessed clauses)

Gene-
rate

Simplify

g

P
(processed clauses)

g=☐
?

Simpli-
fiable?

I Aim: Move everything
from U to P

I Invariant: All generating
inferences with premises
from P have been
performed

I Invariant: P is
interreduced

I Clauses added to U are
simplified with respect
to P

22
20 / 25

The Given-Clause Algorithm

U
(unprocessed clauses)

Gene-
rate

Cheap
Simplify

Simplify

g

P
(processed clauses)

g=☐
?

Simpli-
fiable?

I Aim: Move everything
from U to P

I Invariant: All generating
inferences with premises
from P have been
performed

I Invariant: P is
interreduced

I Clauses added to U are
simplified with respect
to P

22
20 / 25

The Given-Clause Loop in Fewer Words

while U 6= {}
g = delete best(U)
g = simplify(g ,P)
if g == �

SUCCESS, Proof found
if g is not subsumed by any clause in P (or otherwise redundant w.r.t. P)

P = P\{c ∈ P | c subsumed by (or otherwise redundant w.r.t.) g}
T = {c ∈ P | c can be simplified with g}
P = (P\T) ∪ {g}
T = T ∪ generate(g ,P)
foreach c ∈ T
c = cheap simplify(c ,P)
if c is not trivial

U = U ∪ {c}
SUCCESS, original U is satisfiable

23
20 / 25

Compare and Contrast

U
(unprocessed clauses)

Gene-
rate

Cheap
Simplify

Simplify

g

P
(processed clauses)

g=☐
?

Simpli-
fiable?

24
20 / 25

“You can’t handle the truth!”

Gene-
rate

Cheap
Simplify

Simplify

g

P
(processed clauses)

g =☐
?

Simpli-
fiable?

U
(unprocessed clauses)

25
20 / 25

TPTP and TSTP

The TPTP (Thousands of Problems for Theorem Provers) is a
library of test problems for ATP systems. The TSTP (Thousands
of Solutions from Theorem Provers) is a library of solutions to
TPTP problems.

Language
Prolog like language both for input (problems) and output
(solutions). For details see TPTP and TSTP Quick Guide.

21 / 25

http://www.tptp.org/
http://www.tptp.org/TSTP
http://www.tptp.org/TPTP/QuickGuide/

TPTP example
fof(usa,axiom,(country(usa))).

fof(country_big_city,axiom,(! [C] : (country(C)
=> (big_city(capital_of(C))

& beautiful(capital_of(C)))))).

fof(usa_capital_axiom,axiom,(? [C] : (city(C)
& C = capital_of(usa)))).

fof(crime_axiom,axiom,(! [C] : (big_city(C)
=> has_crime(C)))).

fof(big_city_city,axiom,(! [C] : (big_city(C)
=> city(C)))).

fof(some_beautiful_crime,conjecture,(? [C] : (city(C)
& beautiful(C) & has_crime(C)))).

22 / 25

TPTP roles (official definitions)
I axioms are accepted, without proof. There is no guarantee that the

axioms of a problem are consistent.
I hypothesiss are assumed to be true for a particular problem, and are used

like axioms.
I definitions are intended to define symbols. They are either universally

quantified equations, or universally quantified equivalences with an
atomic lefthand side. They can be treated like axioms.

I assumptions can be used like axioms, but must be discharged before a
derivation is complete.

I lemmas and theorems have been proven from the axioms. They can be
used like axioms in problems, and a problem containing a non-redundant
lemma or theorem is ill-formed. They can also appear in derivations.
theorems are more important than lemmas from the user perspective.

I conjectures are to be proven from the axiom(-like) formulae. A problem is
solved only when all conjectures are proven.

I negated_conjectures are formed from negation of a conjecture (usually in
a FOF to CNF conversion).

I plains have no specified user semantics.
Morever, there are fi_domain, fi_functors, fi_predicates, type, and unknown
roles.

23 / 25

http://tptp.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html

System before TPTP

System before TPTP is an interface for preprocessing systems.

cnf(i_0_4,plain, (capital_of(usa) = esk1_0)).
cnf(i_0_1,plain, (country(usa))).
cnf(i_0_5,plain, (city(esk1_0))).
cnf(i_0_7,plain, (city(X1) | ~ big_city(X1))).
cnf(i_0_6,plain, (has_crime(X1) | ~ big_city(X1))).
cnf(i_0_3,plain,

(big_city(capital_of(X1)) | ~ country(X1))).
cnf(i_0_2,plain,

(beautiful(capital_of(X1)) | ~ country(X1))).
cnf(i_0_8,negated_conjecture,

(~ beautiful(X1) | ~ city(X1) | ~ has_crime(X1))).

24 / 25

http://www.tptp.org/cgi-bin/SystemB4TPTP

System on TPTP

System on TPTP is an interface for solvers.

Proof found!
SZS status Theorem
SZS output start CNFRefutation
fof(some_beautiful_crime, conjecture, ?[X1]:((city(X1)&beautiful(X1))&has_crime(X1)), file(’/tmp/SystemOnTPTPFormReply111578/SOT_mQKyc4’, some_beautiful_crime)).
fof(crime_axiom, axiom, ![X1]:(big_city(X1)=>has_crime(X1)), file(’/tmp/SystemOnTPTPFormReply111578/SOT_mQKyc4’, crime_axiom)).
fof(country_big_city, axiom, ![X1]:(country(X1)=>(big_city(capital_of(X1))&beautiful(capital_of(X1)))), file(’/tmp/SystemOnTPTPFormReply111578/SOT_mQKyc4’, country_big_city)).
fof(usa_capital_axiom, axiom, ?[X1]:(city(X1)&X1=capital_of(usa)), file(’/tmp/SystemOnTPTPFormReply111578/SOT_mQKyc4’, usa_capital_axiom)).
fof(usa, axiom, country(usa), file(’/tmp/SystemOnTPTPFormReply111578/SOT_mQKyc4’, usa)).
fof(c_0_5, negated_conjecture, ~(?[X1]:((city(X1)&beautiful(X1))&has_crime(X1))), inference(assume_negation,[status(cth)],[some_beautiful_crime])).
fof(c_0_6, negated_conjecture, ![X6]:(~city(X6)|~beautiful(X6)|~has_crime(X6)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_5])])).
fof(c_0_7, plain, ![X4]:(~big_city(X4)|has_crime(X4)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[crime_axiom])])).
fof(c_0_8, plain, ![X2]:((big_city(capital_of(X2))|~country(X2))&(beautiful(capital_of(X2))|~country(X2))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[country_big_city])])])).
fof(c_0_9, plain, (city(esk1_0)&esk1_0=capital_of(usa)), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[usa_capital_axiom])])).
cnf(c_0_10, negated_conjecture, (~city(X1)|~beautiful(X1)|~has_crime(X1)), inference(split_conjunct,[status(thm)],[c_0_6])).
cnf(c_0_11, plain, (has_crime(X1)|~big_city(X1)), inference(split_conjunct,[status(thm)],[c_0_7])).
cnf(c_0_12, plain, (beautiful(capital_of(X1))|~country(X1)), inference(split_conjunct,[status(thm)],[c_0_8])).
cnf(c_0_13, plain, (esk1_0=capital_of(usa)), inference(split_conjunct,[status(thm)],[c_0_9])).
cnf(c_0_14, plain, (country(usa)), inference(split_conjunct,[status(thm)],[usa])).
cnf(c_0_15, plain, (big_city(capital_of(X1))|~country(X1)), inference(split_conjunct,[status(thm)],[c_0_8])).
cnf(c_0_16, negated_conjecture, (~city(X1)|~beautiful(X1)|~big_city(X1)), inference(spm,[status(thm)],[c_0_10, c_0_11])).
cnf(c_0_17, plain, (city(esk1_0)), inference(split_conjunct,[status(thm)],[c_0_9])).
cnf(c_0_18, plain, (beautiful(esk1_0)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_12, c_0_13]), c_0_14])])).
cnf(c_0_19, plain, (big_city(esk1_0)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_15, c_0_13]), c_0_14])])).
cnf(c_0_20, negated_conjecture, ($false), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_16, c_0_17]), c_0_18]), c_0_19])]), [’proof’]).

25 / 25

http://www.tptp.org/cgi-bin/SystemOnTPTP

Bibliography I

Robinson, John Alan and Andrei Voronkov, eds. (2001). Handbook
of Automated Reasoning. Vol. 1. Elsevier Science.

	References

