Logical reasoning and programming, lab session VIII

 (November 19, 2018)VIII. 1 We have a language that contains only one binary predicate symbol \in and we have an interpretation $\mathcal{M}=(D, i)$ such that $D=\{a, b, c, d\}$ and $i(\in)$ is given by the following diagram:

Meaning that $x \in y$ iff thery is an arrow from x to y. Decide whether the following formulae are valid in \mathcal{M} :
(a) $\exists X \forall Y(\neg(Y \in X))$,
(b) $\exists X \forall Y(Y \in X)$,
(c) $\exists X \forall Y(Y \in X \leftrightarrow Y \in Y)$,
(d) $\exists X \forall Y(Y \in X \leftrightarrow \neg(Y \in Y))$.
VIII. 2 Show that the following formulae are valid and provide counter-examples for the opposite implications:
(a) $\forall X p(X) \vee \forall X q(X) \rightarrow \forall X(p(X) \vee q(X))$,
(b) $\exists X(p(X) \wedge q(X)) \rightarrow \exists X p(X) \wedge \exists X q(X)$,
(c) $\exists X \forall Y p(X, Y) \rightarrow \forall Y \exists X p(X, Y)$,
(d) $\forall X p(X) \rightarrow \exists X p(X)$.
VIII. 3 Decide whether for any formula φ holds:
(a) $\varphi \equiv \forall \varphi$,
(b) $\varphi \equiv \exists \varphi$,
(c) $\models \varphi$ iff $\models \forall \varphi$,
(d) $\models \varphi$ iff $\models \exists \varphi$,
where $\forall \varphi(\exists \varphi)$ is the universal (existential) closure of φ. If not, does at least one implication hold?
VIII. 4 Show that for any set of formulae Γ and a formula φ it holds, if $\Gamma \models \varphi$, then $\forall \Gamma \models \varphi$, where $\forall \Gamma=\{\forall \psi: \psi \in \Gamma\}$. Does the opposite direction hold?
VIII. 5 Find a set of formulae Γ and a formula φ such that $\Gamma \models \varphi$ and $\Gamma \models \neg \varphi$.

