Logical reasoning and programming, lab session VIII (November 19, 2018)

VIII.1 We have a language that contains only one binary predicate symbol \in and we have an interpretation $\mathcal{M} = (D, i)$ such that $D = \{a, b, c, d\}$ and $i(\in)$ is given by the following diagram:

Meaning that $x \in y$ iff there is an arrow from x to y. Decide whether the following formulae are valid in \mathcal{M} :

- (a) $\exists X \forall Y (\neg (Y \in X)),$
- (b) $\exists X \forall Y (Y \in X),$
- (c) $\exists X \forall Y (Y \in X \leftrightarrow Y \in Y),$
- (d) $\exists X \forall Y (Y \in X \leftrightarrow \neg (Y \in Y)).$
- VIII.2 Show that the following formulae are valid and provide counter-examples for the opposite implications:
 - (a) $\forall X p(X) \lor \forall X q(X) \to \forall X (p(X) \lor q(X)),$
 - (b) $\exists X(p(X) \land q(X)) \rightarrow \exists Xp(X) \land \exists Xq(X),$
 - (c) $\exists X \forall Y p(X, Y) \rightarrow \forall Y \exists X p(X, Y),$
 - (d) $\forall X p(X) \rightarrow \exists X p(X).$
- **VIII.3** Decide whether for any formula φ holds:
 - (a) $\varphi \equiv \forall \varphi$, (b) $\varphi \equiv \exists \varphi$, (c) $\models \varphi$ iff $\models \forall \varphi$, (d) $\models \varphi$ iff $\models \exists \varphi$,

where $\forall \varphi \ (\exists \varphi)$ is the universal (existential) closure of φ . If not, does at least one implication hold?

- **VIII.4** Show that for any set of formulae Γ and a formula φ it holds, if $\Gamma \models \varphi$, then $\forall \Gamma \models \varphi$, where $\forall \Gamma = \{ \forall \psi : \psi \in \Gamma \}$. Does the opposite direction hold?
- **VIII.5** Find a set of formulae Γ and a formula φ such that $\Gamma \models \varphi$ and $\Gamma \models \neg \varphi$.