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First-Order Logic (recap)
We have already used First-Order Logic (FOL), also called
predicated logic, in Prolog. We have

I logical symbols
I variables—an infinite (countable) set denoted Var
I quantifier symbols ∀ and ∃
I logical connectives
I auxiliary symbols — parentheses, punctuation symbols . . .

I non-logical symbols accompanied by their arity (the number of
arguments)
I function symbols

I nullary functions are called constants
I predicate (ralation) symbols

I nullary predicate symbols are essentially propositional variables

The logical symbols are fixed, but the non-logical symbols form a
language L.
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Variants

Equality
Some symbols like = can be either logical, or non-logical. We start
with the later variant (FOL without equality), but later on we will
use the former variant (FOL with equality). In FOL without
equality we are allowed to interpret = as needed. For example, it
can be a general equivalence relation.

Many-sorted language
Sometimes it is convenient to talk about different types of objects
and hence variables, function and predicate symbols can be
accompanied by types. We can easily simulate finitely many sorts
by introducing new predicates.
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Terms

The set of all terms in a language L, denoted TermL, is the
smallest set satisfying
I every variable is a term in L,
I if 𝑓 is an 𝑛-ary function in L and 𝑡1, . . . , 𝑡𝑛 are terms in L,

then 𝑓(𝑡1, . . . , 𝑡𝑛) is a a term in L.
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Formulae

Let 𝑝 be an 𝑛-ary predicate symbol in L and 𝑡1, . . . , 𝑡𝑛 be terms in
L, then 𝑝(𝑡1, . . . , 𝑡𝑛) is an atomic formula (or atom) in L.

The set of all formulae in a language L, denoted FmlL, is the
smallest set such that
I every atomic formula in L is a formula in L,
I if 𝜙 and 𝜓 are formulae in L, 𝑋 is a variable, then ∀𝑋𝜙, ∃𝑋𝜙,

(¬𝜙), (𝜙 → 𝜓), (𝜙 ∧ 𝜓), and (𝜙 ∨ 𝜓) are formulae1 in L.

A formula 𝜓 is a subformula of 𝜙 if 𝜓 is a substring of 𝜙.

We usually write only parentheses that are necessary for
unambiguous reading.

1A formula 𝜙 ↔ 𝜓 is a shortcut for (𝜙 → 𝜓) ∧ (𝜓 → 𝜙).
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Free and bounded variables
We distinguish two types of variables in a formula 𝜙
I free — not under a scope of a quantifier, denoted FV (𝜙),
I bounded — under a scope of a quantifier, denoted BV (𝜙).

FV (𝜙) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{𝑋 | 𝑋 occurs in 𝜙 }, if 𝜙 is atomic,
FV (𝜓), if 𝜙 = ¬𝜓,
FV (𝜓) ∪ FV (𝜒), if 𝜙 = 𝜓 ∘ 𝜒 for ∘ ∈ {∧,∨,→},
FV (𝜓) ∖ {𝑋}, if 𝜙 = 𝑄𝑋𝜓 for 𝑄 ∈ {∀,∃}.

BV (𝜙) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∅, if 𝜙 is atomic,
BV (𝜓), if 𝜙 = ¬𝜓,
BV (𝜓) ∪ BV (𝜒), if 𝜙 = 𝜓 ∘ 𝜒 for ∘ ∈ {∧,∨,→},
BV (𝜓) ∪ {𝑋}, if 𝜙 = 𝑄𝑋𝜓 for 𝑄 ∈ {∀,∃}.

It is possible that FV (𝜙) ∩ BV (𝜙) ̸= ∅.
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Semantics
Interpretation
An interpretation for a language L, denoted ℳ = (𝐷, 𝑖), consists
of a non-empty set 𝐷 (domain) and a function 𝑖 (interpretation)
on 𝐷 such that
I if 𝑓 is an 𝑛-ary function symbol in L, then 𝑖(𝑓) : 𝐷𝑛 → 𝐷,
I if 𝑝 is an 𝑛-ary preditace symbol in L, then 𝑖(𝑝) ⊆ 𝐷𝑛.

Evaluation
Let ℳ = (𝐷, 𝑟) be an interpretation for L, an evaluation in ℳ is
any function 𝑒 : Var → 𝐷. Note that 𝑒(𝑋 ↦→ 𝑎), for 𝑋 ∈ Var and
𝑎 ∈ 𝐷, is the same as 𝑒, but gives 𝑎 to 𝑋.

The value of term 𝑡 under an evaluation 𝑒 in ℳ = (𝐷, 𝑖), denoted
𝑡ℳ[𝑒], is defined recursively
I 𝑋ℳ[𝑒] = 𝑒(𝑋), if 𝑋 ∈ Var ,
I 𝑓(𝑡1, . . . , 𝑡𝑛)ℳ[𝑒] = 𝑖(𝑓)(𝑡ℳ1 [𝑒], . . . , 𝑡ℳ𝑛 [𝑒]), if 𝑓 is 𝑛-ary

function symbol.
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Tarski’s definition of truth
Let ℳ = (𝐷, 𝑖) be an interpretation for L, 𝑒 be an evaluation in
ℳ, then we say that a formula 𝜙 is satisfied in ℳ by 𝑒, denoted
ℳ |= 𝜙[𝑒], or 𝑒 satisfies 𝜙 in ℳ if
I ℳ |= 𝑝(𝑡1, . . . , 𝑡𝑛)[𝑒] iff (𝑡ℳ1 [𝑒], . . . , 𝑡ℳ𝑛 [𝑒]) ∈ 𝑖(𝑝), where 𝑝 is
𝑛-ary predicate symbol in L,

I ℳ |= (¬𝜓)[𝑒] iff ℳ ̸|= 𝜓[𝑒],
I ℳ |= (𝜓 → 𝜒)[𝑒] iff ℳ ̸|= 𝜓[𝑒] or ℳ |= 𝜒[𝑒],
I ℳ |= (𝜓 ∧ 𝜒)[𝑒] iff ℳ |= 𝜓[𝑒] and ℳ |= 𝜒[𝑒],
I ℳ |= (𝜓 ∨ 𝜒)[𝑒] iff ℳ |= 𝜓[𝑒] or ℳ |= 𝜒[𝑒],
I ℳ |= (∀𝑋𝜓)[𝑒] iff for every 𝑎 ∈ 𝐷 holds ℳ |= 𝜓[𝑒(𝑋 ↦→ 𝑎)],
I ℳ |= (∃𝑋𝜓)[𝑒] iff exists 𝑎 ∈ 𝐷 s.t. ℳ |= 𝜓[𝑒(𝑋 ↦→ 𝑎)].

A formula 𝜙 is satisfiable, if there is ℳ and 𝑒 s.t. ℳ |= 𝜙[𝑒]. A
set of formulae Γ is satisfiable, if there is ℳ and 𝑒 s.t. ℳ |= 𝜙[𝑒],
for every 𝜙 ∈ Γ.
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Semantic consequence relation

A formula 𝜙 is valid (or holds) in ℳ, denoted ℳ |= 𝜙, if 𝜙 is
satisfied in ℳ by any evaluation 𝑒.

A formula 𝜙 follows from (or is a consequence of) a set of formula
Γ, denoted Γ |= 𝜙, if and only if for any interpretation ℳ and
evaluation 𝑒, if for every 𝜓 ∈ Γ holds ℳ |= 𝜓[𝑒], then ℳ |= 𝜙[𝑒].
We write |= 𝜙, if Γ = ∅ and say that 𝜙 is valid (or holds).

Γ |= 𝜙 iff ∀ℳ∀𝑒(∀𝜓 ∈ Γ(ℳ |= 𝜓[𝑒]) ⇒ ℳ |= 𝜙[𝑒])

Note that

Γ |= 𝜙 iff Γ ∪ {¬𝜙} is unsatisfiable

We say that two formulae 𝜙 and 𝜓 are (semantically) equivalent,
denoted 𝜙 ≡ 𝜓, if {𝜙} |= 𝜓 and {𝜓} |= 𝜙.
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Basic properties

Let 𝜙, 𝜓, and 𝜒 be formulae such that 𝑋 does not occur free in 𝜓,
then

I ¬∀𝑋𝜙 ≡ ∃𝑋¬𝜙,
I ¬∃𝑋𝜙 ≡ ∀𝑋¬𝜙,
I ∀𝑋∀𝑌 𝜙 ≡ ∀𝑌 ∀𝑋𝜙,
I ∃𝑋∃𝑌 𝜙 ≡ ∃𝑋∃𝑌 𝜙,
I ∀𝑋(𝜙 ∧ 𝜒) ≡ ∀𝑋𝜙 ∧ ∀𝑋𝜒,
I ∃𝑋(𝜙 ∨ 𝜒) ≡ ∃𝑋𝜙 ∨ ∃𝑋𝜒,
I ∃𝑋(𝜙→𝜒) ≡ ∀𝑋𝜙→∃𝑋𝜒,

I (𝜓 ∧ ∀𝑋𝜙) ≡ ∀𝑋(𝜓 ∧ 𝜙),
I (𝜓 ∧ ∃𝑋𝜙) ≡ ∃𝑋(𝜓 ∧ 𝜙),
I (𝜓 ∨ ∀𝑋𝜙) ≡ ∀𝑋(𝜓 ∨ 𝜙),
I (𝜓 ∨ ∃𝑋𝜙) ≡ ∃𝑋(𝜓 ∨ 𝜙),
I (𝜓 → ∀𝑋𝜙) ≡ ∀𝑋(𝜓 → 𝜙),
I (𝜓 → ∃𝑋𝜙) ≡ ∃𝑋(𝜓 → 𝜙),
I (∀𝑋𝜙 → 𝜓) ≡ ∃𝑋(𝜙 → 𝜓),
I (∃𝑋𝜙 → 𝜓) ≡ ∀𝑋(𝜙 → 𝜓).
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Equivalent formulae

We can freely replace (sub)formulae by equivalent formulae. More
formally

Lemma
Let 𝜓 be a subformula of a formual 𝜙, and 𝜒 be a formula such
that 𝜓 ≡ 𝜒. A formula 𝜙′ is obtained by replacing 𝜓 in 𝜙 by 𝜒. It
holds that 𝜙 ≡ 𝜙′.
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Prenexing

We say that a formula 𝜙 is in prenex form, if
𝜙 = 𝑄1𝑋1, . . . , 𝑄𝑛𝑋𝑛𝜓, where 𝑄1, . . . , 𝑄𝑛 are quantifiers and 𝜓
is an open formula.

Lemma
For every formula 𝜙, there exists a formula 𝜓 in prenex normal
form such that 𝜙 ≡ 𝜓.

Proof.
By induction on the structure of the formula 𝜙 using previous
equalities and renaming of bounded variables.
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Substitutions
A substitution is a function that gives terms to variables. An
application of a substitution 𝜎 on a formula 𝜙, denoted 𝜙𝜎, is a
formula 𝜙 with all free occurrences of variables replaced
simultaneously by their 𝜎 images. We usually denote substitutions
𝜎, 𝜃, and 𝜂.
A term 𝑡 is substituable into a formula 𝜙 for a variable 𝑋, if no
occurrence of a variable in 𝑡 becomes bounded in 𝜙 with all free
occurrences of 𝑋 replaced by 𝑡. This directly extends to
substitutions. From now one, we assume that every substitution is
substituable. However, we can always avoid this by renaming
bounded variables.
Note that we usually provide only the non-identity part of a
substitution.
Example
Let 𝜎 = {𝑋 ↦→ 𝑓(𝑋,𝑌 ), 𝑌 ↦→ 𝑔(𝑋)), 𝑍 ↦→ 𝑔(𝑋)}, then
∀𝑍𝑝(𝑋,𝑌, 𝑍)𝜎 = ∀𝑍𝑝(𝑓(𝑋,𝑌 ), 𝑔(𝑋), 𝑍) and ∀𝑌 𝑝(𝑋,𝑌, 𝑍)𝜎 is
not substituable, but ∀𝑈𝑝(𝑋,𝑈,𝑍)𝜎 = ∀𝑈(𝑓(𝑋,𝑌 ), 𝑈, 𝑔(𝑋)). 12 / 19



Sentences

A term is closed, if it contains no variables. A formula 𝜙 is a
sentence (or closed), if it contains no free occurrence of variables.
A formula 𝜙 is open, if it contains no quantifiers.

Lemma
Let 𝜙 be a sentence, 𝜎 be a substitution, ℳ be an interpretation,
and 𝑒 be an evaluation, then

1. 𝜙𝜎 = 𝜙,
2. ℳ |= 𝜙[𝑒] iff ℳ |= 𝜙[𝑒′] for every evaluation 𝑒′,
3. ℳ |= 𝜙 or ℳ |= ¬𝜙.
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Skolem functions

It is possible to get rid of existential quantifiers by introducing
Skolem functions (or Skolem constants) that behave as witnesses
(or choice functions).

We know that
∃𝑋∀𝑌 ∃𝑍𝑝(𝑋,𝑌, 𝑍) (1)

follows from
∀𝑌 𝑝(𝑐, 𝑌, 𝑓(𝑌 )) (2)

where 𝑐 and 𝑓 are fresh. Although (2) does not follow from (1),
they are equisatisfiable.
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Skolemization
We say that a formula is in Skolem normal form if it is in prenex
normal form and it contains no existential quantifiers.

We can obtain a formula in Skolem normal form from a formula 𝜙
in prenex normal form by eliminating the first existential quantifier
in

𝜙 = ∀𝑋1, . . . ,∀𝑋𝑛∃𝑌 𝜓.

We obtain

𝜙′ = ∀𝑋1, . . . ,∀𝑋𝑛𝜓{𝑌 ↦→ 𝑓(𝑋1, . . . , 𝑋𝑛)}

where 𝑓 is a fresh function. Then we repeat the whole process
with 𝜙′ until there is no existential quantifier in the formula. The
resulting formula is equisatisfiable with 𝜙.

We want Skolem functions with small arity.
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Usual transformations
NNF (negation normal form)
Apply the following rewriting steps as long as possible:

¬¬𝜙  𝜙

𝜙 → 𝜓  ¬𝜙 ∨ 𝜓

¬(𝜙 ∧ 𝜓)  ¬𝜙 ∨ ¬𝜓
¬(𝜙 ∨ 𝜓)  ¬𝜙 ∧ ¬𝜓
¬(∀𝑋𝜙)  ∃𝑋¬𝜙
¬(∃𝑋𝜙)  ∀𝑋¬𝜙

Rectified formulae
A formula 𝜙 is rectified if
I no variable occurs both free and bounded in 𝜙,
I no two quantifiers in 𝜙 quantify over the same variable.

We obtain a rectified formula by renaming bounded variables.
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Clauses in FOL

We adapt our terminology from propositional logic.

A literal 𝑙 is an atomic formula (positive), or a negation of an
atomic formula (negative).

A clause is a disjunction of finitely many literals. An important
special case is the empty clause, denoted 2.

A formula 𝜙 is in conjunctive normal form (CNF) if 𝜙 is a
conjunction of clauses.

Recall two special cases. The empty clause 2 (empty disjunction)
is unsatisfiable. The empty conjunction is satisfiable.
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CNF
The universal closure of a formula 𝜙, denoted ∀𝜙, is a formula
∀𝑋1, . . .∀𝑋𝑛𝜙, where 𝑋1,. . . ,𝑋𝑛 are all free variables in 𝜙.

We produce a CNF 𝜙′ (implicitly universally quantified) from a
sentence 𝜙 by performing the following steps

1. produce a NNF,
2. rectify,
3. skolemize (an obvious generalization for sentences not in

prenex form),
4. remove all universal quantifiers,
5. produce a CNF as in propositional logic.

Let 𝜙′ be a set of clauses 𝜒1,. . . ,𝜒𝑛. It holds that

𝜙 is satisf. iff ∀
⋀︁
𝜙′ is satisf. iff ∀𝜒1 ∧ · · · ∧ ∀𝜒𝑛 is satisf.

where ∀
⋀︀
𝜙′ is ∀(𝜒1 ∧ · · · ∧ 𝜒𝑛).
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Our problem

Let Γ = {𝜓1, . . . , 𝜓𝑛} be a set of senteces and 𝜙 be a sentence.
We know that

Γ |= 𝜙

iff
Γ ∪ {¬𝜙} is unsatisfiable

iff
∀𝜓′

1 ∪ · · · ∪ ∀𝜓′
𝑛 ∪ ∀(¬𝜙)′ is unsatisfiable,

where 𝜓′
1, . . . , 𝜓

′
𝑛, (¬𝜙)′ are 𝜓1, . . . , 𝜓𝑛,¬𝜙 in CNF (=clauses) and

∀Δ = { ∀𝜒 | 𝜒 ∈ Δ } for a set of clauses Δ.

We say that Δ is a set of clauses assuming that it is implicitly
universally quantified.
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