Logical reasoning and programming, lab session I (October 1, 2018)

- I.1 Decide which of the following formulae are tautologies:
 - (a) $((p \rightarrow q) \rightarrow q) \rightarrow q$,
 - (b) $((p \to q) \to p) \to p$,
 - (c) $(p \to q) \lor (q \to p)$,
 - (d) $((p \to q) \land q) \to p$,
 - (e) $\neg p \rightarrow \neg (p \lor (p \land q)).$

Although formulae contain only two variables, try to find a better method than truth tables if possible.

- **I.2** Assume that $\varphi \leftrightarrow \psi$ is false, meaning $v(\varphi \leftrightarrow \psi) = 0$ for all valuations v. What can we say about the validity of the following formulae:
 - (a) $\varphi \wedge \psi$,
 - (b) $\varphi \lor \psi$,
 - (c) $\varphi \to \psi$.
- **I.3** If $\varphi \to \psi \in \text{TAUT}$ and $\psi \to \chi \in \text{TAUT}$, then $\varphi \to \chi \in \text{TAUT}$. Why? Does the claim still hold if we replace TAUT with SAT and why?
- **I.4** Let $Cl(\Gamma) = \{ \varphi \colon \Gamma \models \varphi \}$. Decide whether to any two sets of formulae Γ and Δ hold:
 - (a) $\Gamma \subseteq \operatorname{Cl}(\Gamma)$,
 - (b) $\operatorname{Cl}(\operatorname{Cl}(\Gamma)) = \operatorname{Cl}(\Gamma),$
 - (c) $\operatorname{Cl}(\Gamma \cup \Delta) = \operatorname{Cl}(\Gamma) \cup \operatorname{Cl}(\Delta).$

If the equality does not hold in (b) or (c), does at least one of the inclusions hold?

- **I.5** Recall that a Boolean function of *n*-variables is a function $f: \{0, 1\}^n \to \{0, 1\}$. Describe all functions of one variable. How many distinct Boolean functions of *n* variables exist? Try n = 2 first. Do you know, why are functions NAND (\uparrow) and NOR (\downarrow) interesting?¹
- I.6 If we use standard rewriting rules for producing a CNF, then we usually conclude by some simplifications—remove duplicate clauses and literals. Why can we do that? Is it correct that there is no need for a variable to occur more than once in a clause?
- **I.7** Produce a formula in CNF which is equivalent to $\varphi = (a \to (c \land d)) \lor (b \to (c \land e))$. Then use the Tseytin transformation to produce a formula in CNF which is equisatisfiable to φ .

¹These connectives are also called Sheffer stroke and Peirce arrow, respectively. They are defined as $x \uparrow y := \neg(x \land y)$ and $x \downarrow y := \neg(x \lor y)$.