XI.1

XI.2

XI.3

XI.4

XI.5

Logical reasoning and programming, lab session XI

(December 10, 2018)

Use the model finder Paradox to produce counterexamples for unprovable
claims in X.5 (the last exercise from the previous lab session).

Formalize in the TPTP format a simple example with the following axioms

VX -r(X,X),
VXVYVZ(H(X,Y) Ar(Y, Z) — (X, Z)),
VX3Yr(X,Y)

and check how fast can Paradox generate possible finite models for this
simple problem. Clearly, it will never find a model, because the problem
has only infinite models.

Try the|Vampire prover on the problem |GRP140-1|from the TPTP library.
We demonstrate the effect of the limited resource strategy (LRS), which
discards unprocessed clauses that will be unlikely processed in a given
time limit, by this example. For the intended behavior you need a special
setting—age:weight ratio is 5:1 and the forward subsumption is turned off:

vampire -awr 5:1 -fsr off -t 30 GRP140-1.p

First, try the timelimit 30s, then try 15s, 7s, You can try even shorter
times than 1s, e.g., -t 5d means 5 deciseconds.

For comparison you can try the competition mode on the same problem
vampire --mode casc GRP140-1.p

Try the E prover on the problem |GRP001-1|from the TPTP library. Com-
pare how can the use of a literal selection strategy influence the behavior
of the prover:

eprover —-literal-selection-strategy=NoSelection GRP0OO1-1.p
eprover --literal-selection-strategy=SelectLargestNegLit \
GRPOO1-1.p

A notoriously hard task for humans is to prove formulae in Hilbert style
proof systems. We have the following schemata of axioms
o= (=) (1)
(¢ = @—=x) = (¢=9) = (¢ = x) (2)
(= = —p) = (¢ = ¢) 3)

where @, ¥, and y are propositional formulae. It means that any instance
of them is trivially provable. We also have a rule, called modus ponens,
which says that if ¢ and ¢ — ¢ are provable, then also 1 is provable.

We can encode this whole problem about propositional provability as a
first-order problem. We can treat propositional formulae as terms in first-
order logic and we can introduce a new unary predicate, say pr, which
says that a term is provable. Then can be encoded as

https://vprover.github.io/
http://www.tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=GRP&File=GRP140-1.p
http://www.eprover.org
http://www.tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=GRP&File=GRP001-1.p

cnf (ax3, axiom, pr(i(i(an(B), n(A)), i(4, B)))).

where we use a binary function symbol i for implication and a unary
function symbol n for negation. Similarly, we can encode and the
rule modus ponens. Now we can ask the E prover whether the following
formulae are provable in our system

(&) ¢ = o,

(b) ~=p = o,

(c) ((p =) =) =),

(d) ((p =) = p) = @) with removed,
(e) (mp =) = (e =) = o),

) (e =) = (¥ = o),

(8) (mp =) = (¥ — o).

Try also -—auto-schedule mode and if you are unable to find a proof,
try to find a counterexample using Paradox.

