Logical reasoning and programming

First-order tableaux and model finding

Karel Chvalovsky

CIIRC CTU

Section 1

Tableaux

Free-variable tableaux

We again want to solve the problem
I'Ee

where T is a finite set of formulae and ¢ is a formula. This
problem is equivalent to

EAT =
and hence
/\F A = is unsatisfiable.
We no longer require that they are in a CNF. On the contrary, we

will have rules for different connectives and quantifiers.

Our approach will be simple—we will expand formulae hoping to
show that they are trivially inconsistent, or no further expansion is
possible.

1/28

Proof tree and branches

We construct a tree where in the root we have a formula that we

want to show is unsatisfiable.

Closed branch
We say that a branch is closed, if it contains complementary
literals p and —¢q, where p and ¢ are atomic predicates.

2/28

Conjunctive rule (a-rule)

If we have a conjunction on a branch that contributes to
unsatisfiability, then at least one conjunct in it contributes to
unsatisfiability as well. Hence we can use all of them and select the
suitable one later on.

AN S WA AW
s ")

a2

3/28

Disjunctive rule (S-rule)

If we have a disjunction on a branch that contributes to
unsatisfiability, then every disjunct in it contributes to
unsatisfiability as well. Hence we can split our current branch into
new branches and show that every new branch is unsatisfiable.

arVasV:---Va,
a1 (6] C. (079 (V)

4/28

Universal rule (y-rule)

If we have a formula starting with a universal quantifier on a
branch that contributes to unsatisfiability, then an instance (or
instances) of it contributes to unsatisfiability as well. We can keep
this open as long as possible by introducing a fresh variable for it.

VXy(X)
(X'

where X' is a fresh variable not occurring in the tableau. v(X")
means that all free occurrences of X in (X)) are replaced by X'.

()

5/28

Existential rule (6-rule)

If we have a formula starting with an existential quantifier on a
branch that contributes to unsatisfiability, then we have to show
that whatever choice we make the result also contributes to
unsatisfiability. Hence we can introduce a Skolem function, which
depends only on the free variables in the formula, instead.

AX§(X)
§(f(X1,..., Xn))

€)

where X1,..., X, are all free variables occurring in 3X0(X) and f
is a fresh function symbol not occurring in the tableau.
O(f(X1,...,X,)) means that all free occurrences of X in §(X)
are replaced by f(X1,...,Xn).

6/28

Other cases

There is no need to produce normal forms, however, if we start
with a formula in a NNF, then the previous rules are enough.

Or we can implicitly use the following standard equalities

(VYY) =—p A (A)

(o= Y) =AY (A)

=P =9V (V)

“(pAY)=—pV) (V)

~(IXp) = VX (p) (V)

(VX)) = 3IX(-p) €))
P =

as in NNF and add a new rule for every such case.

7/28

Closure rule (C-rule)

The rules we have seen just expand formulae, the closure rule is
destructive in the sense that it modifies the whole tableau.

If there are two literals p and —q on a branch in the tableau such
that o = mgu(p, q), then we can apply o on the whole tableau.
Hence we close the branch with p and —q, because we have two
complementary literals po and —qo on it.

8/28

Example I.

We want to prove VXp(X) AVXq(X) = VX (p(X) A q(X)).

VXp(X) AVXq(X) AIX(—p(X) V ~q(X)))

VXp(X)

VXq(X)

FX (—p(X) V g
—p(a) Vg

—p(a)

p(X1))

o1 ={X1 —a} o9 = { X2 — a}

Note that o = {X; — a, X3 — a}, which is the composition of o1
and o9, is applied to the whole tableau.

9/28

Example II.
We want to prove 3Xp(X) A 3X¢(X) — IX (p(X) A ¢(X)).

FXp(X) A X q(X) ANVX (—p(X) V —¢(X))
FXp(X)
IXq(X)
VX (—p(X) V ~q(X))
—p(X’) V =q(X')
—p(X')
p(a) =
o1 ={X'"—a}

(N

However, we cannot close the second branch by o3 = { X’ +— b},
because X’ is already a after oy is applied to the whole tableau! It
also shows that we cannot select a in the second branch as a fresh
constant on the branch, but it has to be a fresh constant in the

whole tableau.

10/28

Example IlI.

We want to prove VX (—p(X)) — (—p(a) A —p(b)).

X)) Vo)
X(p(X)))
<> p(b)
V)
p(a) p(b)
e D S

01:{X1»—>a} UQZ{XQHb}

Note that we have to use VX (—p(X)) twice.

11/28

Proof search

Instead of describing a systematic proof procedure for a single
free-variable tableaux, we enumerate all possible tableaux and a
closed tableau, if it exists, is then among them.

We can use a breadth-first search or a depth-first search with
backtracking and iterative deepening. The later variant is quite
common in Prolog implementations.

There are many simple implementations of tableaux in Prolog, e.g.,
IeanTAP or leanCoP.

Equality and other extensions

It is possible to extend tableaux similarly to resolution. A common
extension is an equality handling, see D'Agostino et al. 1999.

12/28

https://formal.iti.kit.edu/beckert/leantap/
http://www.leancop.de/

IeanTAP

prove((A,B) ,UnExp,Lits,FreeV,VarLim) :- !,
prove(A, [B|UnExp] ,Lits,FreeV,VarLim) .
prove((A;B) ,UnExp,Lits,FreeV,VarLim) :- !,
prove(A,UnExp,Lits,FreeV,VarLim),
prove(B,UnExp,Lits,FreeV,VarLim).
prove(all(X,Fml) ,UnExp,Lits,FreeV,VarLim) :- !,
\+ length(FreeV,VarLim),
copy_term((X,Fml,FreeV), (X1,Fmll,FreeV)),
append (UnExp, [al1(X,Fml)],UnExpl),
prove(Fml1l,UnExpl,Lits, [X1|FreeV],VarLim).
prove(Lit,_,[L|Lits],_,_) :-
(Lit = -Neg; -Lit = Neg) ->
(unify(Neg,L); prove(Lit,[],Lits,_,_)).
prove(Lit, [Next |UnExp],Lits,FreeV,VarLim) :-
prove (Next,UnExp, [Lit|Lits] ,FreeV,VarLim).

13/28

Tableaux systems

Note that there are many variants of tableaux; sometimes called
semantic tableaux.

They are popular, for example, in non-classical logics, because
» no need for special normal forms like CNF,

» can be complicated, or
» even impossible to obtain

» given a semantic meaning of a connective we can usually
produce a rule (or rules) in a straightforward way.

Generally, they are relatively easy to produce, in most cases, and
still suitable for automated theorem proving.

Moreover, they are similar to other proof systems like natural
deduction and sequent calculi.

14 /28

Section 2

Finite model finding

How do we show that a formula is not provable?

We have seen several methods that can be used to prove a formula
¢ from a set of formulae T and hence I" = . However, can we
use them to show that I' f= ¢? Sometimes we can, but it is quite
rare, e.g., if we obtain a saturated set.

Note that I' |~ ¢ is not equivalent to I' = —p! For example,

7 p(a) and %= —p(a).

A general method is to provide a counterexample. A model of I"
where ¢ is false, for simplicity assume that ¢ is a closed formula.

15/28

How do we find a counterexample?

We have to check all possible models.

Finite models
For a finite language and a given size of domain, it is possible to
check all possible models exhaustively (up to trivial isomorphisms).

Infinite models
Clearly, there are many sets of formulae with only infinite models,
for example,

VX (X < X),
VXVYVZ(X <Y ANY < Z = X < Z),
VXTIV (X <Y).

However, the problem how to generate useful infinite models is
widely open. Moreover, for many problems finite counterexamples
are sufficient.

16/28

MACE-style approach

We attempt to generate a finite counterexample iteratively. We try
to produce a model of size 1, 2, 3, ...

The main idea is to produce a grounding of the problem assuming
a given cardinality of our model and encode such a grounding as a
SAT problem. Using a clever encoding we can significantly reduce
the search space; no need to go through all possible models of the
given size.

We present some basic techniques used in a model finder called
Paradox, see Claessen and Sérensson 2003.

17/28

Our example

There is a counterexample for the problem that from

e- X =X,
X' X=e
X-(Y-Z)=(X'Y)-Z

follows
X (X -X)=X.

Or equivalently.

18/28

Our example

There is a model for

e- X =X, (1)
X 1. x=e, (2)
X-(Y-Z2)=(X-Y)-Z, (3)
~(a-(a-a)=a). (4)
We have M = (D, i), where D = {1,2,3}, i(e) =1, i(a) = 2, and
i(h) i()|1 2 3
1 |1 1 [1 2 3
2 |3 2 |2 31
3 |2 3 13 1 2

19/28

Propositional encoding

We are looking for a model M = (D,) of a given cardinality, say
n, that satisfies a set of clauses I". Assume without loss of
generality that D = {1,...,n}. Hence it only remains to generate
a function 1.

We want to describe ¢ using propositional variables (atoms). For
every k-ary

» predicate symbol p in I', there is a prop. variable for every

p(dl, e ,dk)

where dy,...,d; € D.

» function symbol f in I, there is a prop. variable for every

fdy,....dp)=d

where dy,...,dg,d € D.
This is all we need to describe a model.

20/28

Our example

Note that our example is a bit confusing—we have only one
predicate symbol (=), which is very special, because it has the

fixed meaning. Still we have atoms for all

We also have propositional variables for all

e=1, e=2, e=3
a=1, a=2, a=3
17t=2 171=3 2!t=1,
1-1=2, 1-1=3, 1-2=1,

21/28

Flattening

However, it is impossible to express complex terms like X - (Y - Z)
directly in our language. We can only express so called shallow
literals:

> p(Xl,... ,Xk), or —|p(X1,... ,Xk),
> f(Xy,..., X)) =Y, 0or f(X1,...,X)) £Y,
> X =Y.

Note that s # ¢t is a shortcut for —s = ¢.

We do not want X # Y, because we can transform a clause
P X)Y) VX #Y

into
(X, X).

Note that a clause {X # Y} is unsatisfiable.

22/28

Flattening complex terms

If we have a clause
o(t),

it is equivalent to
VX (X =t — p(X)),

which is
X #tVp(X)

where X is fresh in ¢(t). p(X) is produced from ¢(t) by replacing
all (free) occurrences of ¢ by X.
We can repeat this process as long as necessary.

Example
X (Y 2)=(X-Y) Z~(X-Y) Z#AWVX-(Y-Z)=
W X-YAVVV-ZLWVY-ZZUVX-U=W.

23/28

Instantiating

For every flattened clause we create three sets of propositional
clauses

1.

instances — we generate all possible groundings, where we
can immediately simplify all groundings containing di = ds or
dy # da, for di,ds € D, based on whether it is true (discard
the clause), or not (discard the literal)

. function definitions — for each k-ary function f and d,d € D

such that d # d’, we add

{f(dr,....d) #d, f(dr,...,dy) #d'}

for every dy,...,d; € D.
totality definitions — for each k-ary function f, we add

{f(dl,...,dk):1,f<d1,...,dk):2,...,f(d1,...,dk):n}

for every dy,...,d; € D.

24 /28

Reducing the number of distinct variables

The number of instances is exponential in the number of distinct
variables in a flattened clause.

Term definitions

It is possible to decrease the number of newly introduced variables
during flattening by using definitions based on constants. From

a - (a-a) we can obtain a - b, where b is a fresh constant, and
define b = a - a. It is also possible to introduce definitions for
non-ground terms and use definitions across clauses.

Clause splitting

If a clause can be split into parts, where each part contains less
distinct variables than the whole clause, then we can decrease the
number of distinct variables by introducing a new predicate.

Example

From {p(X,Y),q(Y,Z)}, we can produce
{p(X,Y),r(V)},{—r(Y),q(Y, Z)}, where r is a fresh predicate.

25/28

Isomorphic models

We have M = (D, i), where D = {1,2,3}, i(e) =1, i(z) = 2, and

i(~h) i()|1 2 3
1 |1 1 [1 2 3
2 |3 2 |2 31
3 |2 3 13 1 2

Note that any permutation on elements of D produces an
isomorphic model. It makes no sense to look for all of them.

26/28

Static symmetry reduction
It is possible to avoid many isomorphic models using the following
symmetry reduction technique. If we start to build a model by
interpreting a constant c;, then we can safely assign i(c;) = 1,
because no element of D has an assigned meaning. Hence we have

{c1 =1} instead of {c1 =1,¢1 =2,...,¢c1 =n}

Then we can assume that i(c2) € {1,2} and i(c3) € {1,2,3},
because it has to be interpreted by an element with a meaning, or
the first fresh element (if available). However, if i(c2) = 1, then
i(c3) € {1,2}. Or more generally

{Ci?ék‘,cl:k—l,CQ:k‘—l,...Ci_lzk—l}

This can be used also for functions, however, we have to take into
account the meaning assigned to elements of D by constants.

Example
Hence i(e) =1 and i(a) = 2 in our example, although i(a) =3

works as well.
27/28

Other techniques

It is possible to use other techniques like

» pre-processing in SAT—uvariable and clause elimination, which
is incompatible with an incremental search
» finding bounds for |D|

» ook for cardinality axioms
» EPR—no function symbols and hence |D| is bounded by the
number of constants occurring in the problem
P use sorts
» some problems are expressed in a many-sorted language,
» other problems can be reformulated in a many-sorted
language, if we have parts that can be defined independently

28/28

Bibliography |

[Claessen, Koen and Niklas Sérensson (2003). “New Techniques
that Improve MACE-style Finite Model Finding”. In: Proceedings
of the CADE-19 Workshop: Model Computation - Principles,
Algorithms, Applications. Ed. by Peter Baumgartner and
Chris Fermdiller.

[1 D'Agostino, Marcello et al., eds. (1999). Handbook of Tableau
Methods. Springer Netherlands. DOI:
10.1007/978-94-017-1754-0.

[Robinson, John Alan and Andrei Voronkov, eds. (2001). Handbook
of Automated Reasoning. Vol. 1. Elsevier Science.

https://doi.org/10.1007/978-94-017-1754-0

	Tableaux
	Finite model finding
	References

