
Logical reasoning and programming
Introduction and propositional logic

Karel Chvalovský

CIIRC CTU

What is a formal logic?

It studies inferences. Given a statement 𝜙 and a collection of
statements Γ, the main problem is whether

𝜙 follows logically from Γ.

The word “formal” here means that only the logical forms of
statements matter.

Example
Let statements in Γ describe rules of chess and 𝜙 be “Black can
always draw.”

Declarative programming
Specify a problem and ask queries.

1 / 27

Syntax and semantics in logic

Syntax
We describe our language and hence we define well-formed
statements, called formulae. We want a mechanical calculus that
describes how to derive (prove) formulae.

Semantics
We describe the meaning of formulae. The main notions are
validity and semantic consequence.

We always want our syntax and semantics to be adequate:
correctness only valid formulae are derivable (provable),

completeness all valid formulae are derivable (provable).

2 / 27

Fragments from the history of logic

I Aristotle (384–322 BC) — syllogisms
I Gottfried Wilhelm Leibniz (1646–1716) — the first attempt to

reduce a logical inference to a mechanical process
I George Boole (1815–1864) — Boolean logic
I Modern logic was established mainly to deal with issues in the

foundations of mathematics in the late 19th century and early
20th century.

Paradoxes
Many paradoxes occurred in set theory, e.g., Russell’s paradox. Let
𝑅 = {𝑥 : 𝑥 /∈ 𝑥 }, then 𝑅 ∈ 𝑅 iff 𝑅 /∈ 𝑅. The moral of this is that
without solid formal foundations surprising problems can emerge.

3 / 27

Automated theorem proving (ATP)

We have machines so use them to prove things for us. How to do
that?

British Museum algorithm
Exhaustively check all possibilities one by one.

If monkeys are placed in front
of typewriters and they type
in a guaranteed random fash-
ion, they will reproduce all the
books of the library of the
British Museum, provided they
could type long enough.

(Wirth et al. 2009).

We usually have much better options. However, formal methods
have their theoretical limits.

4 / 27

Limits of formal methods

Two famous fundamental theoretical problems are:

Incompleteness
Gödel’s first incompleteness theorem says that it is impossible to
describe basic arithmetic of the natural numbers by a set of axioms
that is algorithmically recognizable.

Undecidability
Church and Turing famously proved that there is no decision
procedure (algorithm) for validity in first-order logic (FOL). For
example the halting problem is expressible in FOL.

It is good to be aware of these results, however, it is also good not
to overrate them. We usually face more basic problems.

5 / 27

What are some areas where formal methods occur?

I mathematics
I the Robbins problem
I the Boolean Pythagorean triples problem

I verification
I hardware

I chip verification at Intel
I software

I many companies — Amazon, Facebook, Microsoft,. . .
I seL4 — verified operating system microkernel
I CompCert — verified C compiler
I EURO-MILS — verified virtualization platform
I CakeML — verified compiler for Standard ML

I mathematics
I the Kepler conjecture

6 / 27

http://research.microsoft.com/en-us/groups/rise/
http://sel4.systems/
http://compcert.inria.fr/
http://www.euromils.eu/
https://cakeml.org/

How to select a formal system?

We choose a formal system that is expressive enough to
(reasonably) describe the problem and we usually prefer the
weakest such system for computational reasons.

Examples of used formal systems include
I propositional logic — for problems in NP,
I quantified Boolean formulae (QBF) — for problems in

PSPACE,
I modal (temporal) logics — in verification,
I satisfiability modulo theories (SMT) — for decidable

problems,
I first-order logic (FOL),
I higher-order logics (HOL).

7 / 27

Propositional logic
Simple, yet quite powerful, formal system. We have elementary
propositions called atomic formulae, or atoms, which can be
assigned truth values1, and combine them using Boolean
connectives (functions) into more complex propositions.

Example
If I am clever, then I will pass.

I “I am clever” and “I will pass” are propositions, say 𝑝 and 𝑞,
respectively.

I “if . . . then . . . ” is a connective, called implication and
denoted →.

Hence the logical form of the sentence in propositional logic is
𝑝 → 𝑞.

11 is true and 0 is false.
8 / 27

Formulae
Placeholders for atomic formulae (propositions) are called
propositional variables Var , say 𝑝, 𝑞, 𝑟, We also have a unary
connective negation (¬) and binary connectives conjunction (∧),
disjunction (∨), and implication (→).2

Definition
The set of (propositional) formulae Fml is the smallest set
satisfying:
I every propositional variable is a formula,
I if 𝜙 is a formula, then (¬𝜙) is a formula,
I if 𝜙 and 𝜓 are formulae, then (𝜙 ∧ 𝜓), (𝜙 ∨ 𝜓), and (𝜙 → 𝜓)

are formulae.

We usually write only parentheses that are necessary for
unambiguous reading.

A formula 𝜓 is a subformula of 𝜙 if 𝜓 is a substring of 𝜙.
2We also use 𝜙 ↔ 𝜓 as a shortcut for (𝜙 → 𝜓) ∧ (𝜓 → 𝜙).

9 / 27

Semantics

Formally describes the meaning of formulae.

A valuation 𝑣 is an assignment of truth values to propositional
variables, that is a function 𝑣 : Var → {0, 1}. It can be uniquely
extended to all formulae, because connectives are functions of
truth values, and we freely use valuations this way.

Hence 𝑣(¬𝜙) = 1 − 𝑣(𝜙) and 𝑣(𝜙 ∘ 𝜓) = 𝑣(𝜙) ∙ 𝑣(𝜓), for
∘ ∈ {∧,∨,→}, where ∙ is the Boolean function defining ∘.

If 𝑣(𝜙) = 1, then we also write 𝑣 |= 𝜙 and say “formula 𝜙 is
satisfied by valuation 𝑣” or “valuation 𝑣 satisfies formula 𝜙”.

10 / 27

Truth tables

Example 𝑣(𝑝) 𝑣(𝑞) 𝑣(𝑝 → 𝑞)
0 0 1
0 1 1
1 0 0
1 1 1

Let 𝜙 be a formula and 𝑣, 𝑣′ be two valuations such that they are
equal on all propositional variables occurring in 𝜙, then clearly
𝑣(𝜙) = 𝑣′(𝜙). Hence only the valuation of variables occurring in a
formula matters.

11 / 27

Semantic consequence I.

A formula 𝜙 follows from (or is a consequence of) a formula 𝜓, we
write 𝜓 |= 𝜙, if 𝜙 is satisfied by every valuation 𝑣 that satisfies 𝜓.

Relation |= is clearly reflexive and transitive, but not symmetric.

Two formulae 𝜙 and 𝜓 are equivalent, we write 𝜙 ≡ 𝜓 or 𝜙 |=| 𝜓,
if 𝜙 |= 𝜓 and 𝜓 |= 𝜙.

A very important property of propositional logic is that we can
freely replace a subformula by an equivalent formula. Formally, let
𝜓 be a subformula of 𝜙 and 𝜓 ≡ 𝜒. If we replace 𝜓 in 𝜙 by 𝜒,
then the resulting formula is equivalent to 𝜙.

12 / 27

Some useful properties of {¬, ∧, ∨}

The following equivalences hold
I 𝜙 ≡ ¬¬𝜙, (double negation)
I 𝜙 ≡ 𝜙 ∘ 𝜙, for ∘ ∈ {∧,∨}, (idempotency)
I 𝜙 ∘ 𝜓 ≡ 𝜓 ∘ 𝜙, for ∘ ∈ {∧,∨}, (commutativity)
I 𝜙 ∘ (𝜓 ∘ 𝜒) ≡ (𝜙 ∘ 𝜓) ∘ 𝜒 for ∘ ∈ {∧,∨}, (associativity)
I ¬(𝜙 ∧ 𝜓) ≡ ¬𝜙 ∨ ¬𝜓, (DeMorgan’s law)
I ¬(𝜙 ∨ 𝜓) ≡ ¬𝜙 ∧ ¬𝜓, (DeMorgan’s law)
I 𝜙 ∧ (𝜓 ∨ 𝜒) ≡ (𝜙 ∧ 𝜓) ∨ (𝜙 ∧ 𝜒), (distributivity)
I 𝜙 ∨ (𝜓 ∧ 𝜒) ≡ (𝜙 ∨ 𝜓) ∧ (𝜙 ∨ 𝜒) (distributivity)

for all formulae 𝜙, 𝜓, and 𝜒.

Thanks to associativity we can write 𝜙1 ∘ · · · ∘ 𝜙𝑛 without
parentheses, for ∘ ∈ {∧,∨}.

13 / 27

Some useful properties of →

The following equivalences hold
I 𝜙 → 𝜓 ≡ ¬𝜙 ∨ 𝜓,
I 𝜙 → 𝜓 ≡ ¬(𝜙 ∧ ¬𝜓),
I 𝜙 → 𝜓 ≡ ¬𝜓 → ¬𝜙,
I 𝜙 → (𝜓 → 𝜒) ≡ 𝜓 → (𝜙 → 𝜒),
I 𝜙 → (𝜓 → 𝜒) ≡ (𝜙 ∧ 𝜓) → 𝜒,
I (𝜙1∧· · ·∧𝜙𝑛) → (𝜓1∨· · ·∨𝜓𝑚) ≡ ¬𝜙1∨· · ·∨¬𝜙𝑛∨𝜓1∨· · ·∨𝜓𝑚

for all formulae 𝜙, 𝜓, 𝜒, 𝜙𝑖, and 𝜓𝑖.

14 / 27

Some further useful properties

The following relations hold
I 𝜙 |= 𝜙 ∨ 𝜓,
I 𝜙 ∧ 𝜓 |= 𝜙,
I 𝜙 |= 𝜓 → 𝜙,
I ¬𝜙 |= 𝜙 → 𝜓

for all formulae 𝜙, 𝜓, and 𝜒.

15 / 27

Semantic consequence II.
A formula 𝜙 follows from a set of formulae Γ, we write Γ |= 𝜙, if 𝜙
is satisfied by every valuation 𝑣 that satisfies all formulae in Γ.

Γ |= 𝜙 iff ∀𝑣(if 𝑣 |= Γ then 𝑣 |= 𝜙),
where 𝑣 |= Γ means that 𝑣 |= 𝜓 for all 𝜓 ∈ Γ. We also say that 𝜙
is a consequence of Γ.

The relation is clearly monotone, if Γ |= 𝜙, then Γ ∪ Δ |= 𝜙.

We have Γ ∪ 𝜙 |= 𝜓 iff Γ |= 𝜙 → 𝜓. Hence 𝜙 |= 𝜓 iff |= 𝜙 → 𝜓.
Hence 𝜙 ≡ 𝜓 iff |= 𝜙 ↔ 𝜓.

Example
𝑝, 𝑝 → 𝑞, 𝑞 → 𝑟 |= 𝑟

𝑝 → 𝑞, 𝑞 → 𝑟 |= 𝑝 → 𝑟

𝑝 → 𝑞 |= (𝑞 → 𝑟) → (𝑝 → 𝑟)
|= (𝑝 → 𝑞) → ((𝑞 → 𝑟) → (𝑝 → 𝑟))

16 / 27

Satisfiable formulae and tautologies
We say that a formula 𝜙 is
I satisfiable if there is a valuation 𝑣 s.t. 𝑣(𝜙) = 1, that is 𝑣 |= 𝜙,
I tautology if for every valuation 𝑣 holds 𝑣(𝜙) = 1, that is |= 𝜙,
I contradiction if for every valuation 𝑣 holds 𝑣(𝜙) = 0, we also

call it unsatisfiable.

Two formulae 𝜙 and 𝜓 are equisatisfiable if either both formulae
are satisfiable, or both are unsatisfiable.
We call the set of all satisfiable and tautological formulae SAT and
TAUT, respectively.
For any formula 𝜙 we have

𝜙 ∈ TAUT iff ¬𝜙 is a contradiction iff ¬𝜙 /∈ SAT

and hence

¬𝜙 /∈ TAUT iff 𝜙 is not a contradiction iff 𝜙 ∈ SAT.

17 / 27

Special formulae ⊤ and ⊥

We either define special formulae ⊤ and ⊥ directly as propositional
constants (nullary connectives), 𝑣(⊤) = 1 and 𝑣(⊥) = 0 for every
valuation 𝑣, or equivalently we can define them as shortcuts
⊤ = 𝑝 ∨ ¬𝑝 and ⊥ = 𝑝 ∧ ¬𝑝.

The following relations hold
I |= ⊤,
I ⊥ |= 𝜙,
I if 𝜙 ∈ TAUT, then 𝜙 ≡ ⊤,
I if 𝜙 /∈ SAT, then 𝜙 ≡ ⊥

for every formula 𝜙.

18 / 27

Some further useful properties

It is possible to have both 𝜙 ∈ SAT and ¬𝜙 ∈ SAT.

If 𝜙 ∈ TAUT, then 𝜙 ∈ SAT. Hence TAUT ⊂ SAT.

A set of formulae Γ is satisfiable, we write Γ ∈ SAT, if there is a
valuation 𝑣 such that 𝑣 |= 𝜙 for every formula 𝜙 ∈ Γ.

If Γ ∪ Δ ∈ SAT, then Γ ∈ SAT and Δ ∈ SAT.

It is known that deciding 𝜙 ∈ SAT is an NP-complete problem and
hence 𝜙 ∈ TAUT is a coNP-complete problem. Therefore any
problem in NP can be formulated as a satisfiability question,
without greatly (see polynomial reductions) increasing the problem
size.

19 / 27

Normal forms
A literal is a propositional variable 𝑝 or a negation of propositional
variable ¬𝑝. In this context we write 𝑝 instead of ¬𝑝. A clause is
any disjunction of finitely many literals. An important special case
is the empty clause, we write 2.

A formula 𝜙 is in conjunctive normal form (CNF) if 𝜙 is a
conjunction of clauses.

Remark
Analogously disjunctive normal form (DNF) is defined as a
disjunction of conjunctions of literals.

Theorem
For every formula 𝜙 exist formulae 𝜙′ in CNF and 𝜙′′ in DNF such
that 𝜙, 𝜙′, and 𝜙′′ are all equivalent.

Example
Formula (𝑝 → 𝑞) ∧ (𝑞 → 𝑝) is equivalent to (𝑝 ∨ 𝑞) ∧ (𝑞 ∨ 𝑝) and
(𝑝 ∧ 𝑞) ∨ (𝑝 ∧ 𝑞).

20 / 27

DNF

Easy to obtain using truth tables:

𝑝 𝑞 (𝑝 → 𝑞) ∧ (𝑞 → 𝑝)
0 0 1 ¬𝑝 ∧ ¬𝑞
0 1 0
1 0 0
1 1 1 𝑝 ∧ 𝑞

A formula in DNF obtained this way is in so called full disjunctive
normal form. It is a unique representation up to ordering.

It is easy to test whether a formula in DNF is satisfiable, but
transforming a formula into DNF can lead to an exponential
increase in the size of formula, see later. Hence we, perhaps
surprisingly, prefer CNF for testing satisfiability. The reasons will
be clear later on.

21 / 27

CNF

We obtain a CNF from a formula using following steps:
1. First, use the following rewriting rules as long as possible:

𝜙 → 𝜓 ¬𝜙 ∨ 𝜓

¬¬𝜙 𝜙

¬(𝜙 ∨ 𝜓) ¬𝜙 ∧ ¬𝜓 DeMorgan’s law
¬(𝜙 ∧ 𝜓) ¬𝜙 ∨ ¬𝜓 DeMorgan’s law

2. Second, distribute disjunctions until a CNF is obtained:

𝜙 ∨ (𝜓 ∧ 𝜒) (𝜙 ∨ 𝜓) ∧ (𝜙 ∨ 𝜒)
(𝜓 ∧ 𝜒) ∨ 𝜙 (𝜓 ∨ 𝜙) ∧ (𝜒 ∨ 𝜙)

22 / 27

Some properties of normal forms
Formulae can be transformed to normal forms in many ways and
this can significantly influence their size and also the behavior of
algorithms used for testing satisfiability.

Remark
Normal forms are not unique, e.g., (𝑝 → 𝑞) ∧ (𝑞 → 𝑟) ∧ (𝑟 → 𝑝) is
equivalent to both (𝑝 ∨ 𝑞) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨ 𝑝) and
(𝑝 ∨ 𝑟) ∧ (𝑞 ∨ 𝑝) ∧ (𝑟 ∨ 𝑞).

Example
Transforming

𝜙 = (𝑝1 ∧ 𝑞1) ∨ · · · ∨ (𝑝𝑛 ∧ 𝑞𝑛)

into a CNF leads to

𝜙′ =
⋀︁
Δ

⋁︁
Δ, where Δ = { 𝑟𝑖 : either 𝑟𝑖 = 𝑝𝑖, or 𝑟𝑖 = 𝑞𝑖, for 1 ≤ 𝑖 ≤ 𝑛 }.

Hence the length of 𝜙′ is 𝒪(2𝑛), but the length of 𝜙 is 𝒪(𝑛).
23 / 27

Tseytin transformation
We can avoid this possible exponential blowup3 by introducing new
variables that encode values of all subformulae in the original
formula. The obtained formula is not equivalent (it has new
variables) to the original one, but they are equisatisfiable.

Example
For 𝜙 = (𝑝1 ∧ 𝑞1) ∨ · · · ∨ (𝑝𝑛 ∧ 𝑞𝑛) we set

𝑟𝑖 ↔ (𝑝𝑖 ∧ 𝑞𝑖),

for 1 ≤ 𝑖 ≤ 𝑛, that is equivalent to

(𝑝𝑖 ∨ 𝑞𝑖 ∨ 𝑟𝑖) ∧ (𝑝𝑖 ∨ 𝑟𝑖) ∧ (𝑞𝑖 ∨ 𝑟𝑖).

Taking a conjunction of all these formulae and 𝑟1 ∨ · · · ∨ 𝑟𝑛 gives
us a formula 𝜙′ in a CNF such that 𝜙 and 𝜙′ are equisatisfiable.
Moreover, |𝜙′| = 𝒪(|𝜙|).

3If connectives occurring in the formula have linear clausal encoding.
24 / 27

Tseytin transformation — algorithm

Let 𝜙 be a non-atomic formula and 𝜓1, . . . , 𝜓𝑚 be all unique
non-atomic subformulae of 𝜙 such that no 𝜓𝑖 is a subformula of 𝜓𝑗

if 1 ≤ 𝑗 < 𝑖 ≤ 𝑚. Hence 𝜓𝑚 = 𝜙. Let {𝑟1, . . . , 𝑟𝑚} be fresh
variables not occurring in 𝜙.

Start with Δ = ∅. Iteratively process 𝜓𝑖, for 1 ≤ 𝑖 ≤ 𝑚, as follows

if 𝜓𝑖 = 𝑝 add (𝑝 ∨ 𝑟𝑖) ∧ (𝑝 ∨ 𝑟𝑖) to Δ,
if 𝜓𝑖 = 𝑝 ∧ 𝑞 add (𝑝 ∨ 𝑞 ∨ 𝑟𝑖) ∧ (𝑝 ∨ 𝑟𝑖) ∧ (𝑞 ∨ 𝑟𝑖) to Δ,
if 𝜓𝑖 = 𝑝 ∨ 𝑞 add (𝑝 ∨ 𝑞 ∨ 𝑟𝑖) ∧ (𝑝 ∨ 𝑟𝑖) ∧ (𝑞 ∨ 𝑟𝑖) to Δ,
if 𝜓𝑖 = 𝑝 → 𝑞 add (𝑝 ∨ 𝑞 ∨ 𝑟𝑖) ∧ (𝑝 ∨ 𝑟𝑖) ∧ (𝑞 ∨ 𝑟𝑖) to Δ

and replace all occurrences of 𝜓𝑖 in 𝜓𝑖+1, . . . 𝜓𝑚 by 𝑟𝑖.

The formulae 𝑟𝑚 ∧
⋀︀

Δ and 𝜙 are equisatisfiable.

25 / 27

SAT problem

Given a formula 𝜙 in CNF decide whether 𝜙 ∈ SAT.

We can use truth tables, but that is in many cases too
complicated. It means to test all possible valuations and for
example 𝑝 ∧ 𝑝 ∧ (𝑞1 ∨ · · · ∨ 𝑞𝑛) is clearly unsatisfiable regardless of
values of 𝑞1, . . . , 𝑞𝑛.

In the next lecture we will present better ways how to test
satisfiability. We can think about transformations of formulae that
preserve satisfiability. A trivial example is to handle clauses as sets
of literals and formulae in CNF as sets of clauses.

26 / 27

The Boolean Pythagorean triples problem
It was a long-standing open problem in Ramsey theory that was
solved using a SAT solver in 2016. The proof requires 200TB
(compressed 68GB) and was computed on a cluster with 800 cores
in 2 days.

Positive integers 𝑎, 𝑏, 𝑐 form a Pythagorean triple if 𝑎2 + 𝑏2 = 𝑐2.
We know, e.g., 32 + 42 = 52.

Can the set {1, 2, 3 . . . } of the positive integers be divided into two
parts in such a way that no part contains a Pythagorean triple?

The set {1, . . . , 7824} can be divided into two such parts, but that
is not possible for {1, . . . , 7825}.

Note that there are 27825 possible divisions in the later case and all
these divisions must be ruled out. Hence some “clever” reasoning
had to be used. For details see (Heule, Kullmann, and Marek
2016).

27 / 27

Bibliography I

Heule, Marijn J. H., Oliver Kullmann, and Victor W. Marek
(2016). “Solving and Verifying the Boolean Pythagorean Triples
Problem via Cube-and-Conquer”. In: Theory and Applications of
Satisfiability Testing – SAT 2016: 19th International Conference,
Bordeaux, France, July 5-8, 2016, Proceedings. Ed. by
Nadia Creignou and Daniel Le Berre. Cham: Springer
International Publishing, pp. 228–245. isbn: 978-3-319-40970-2.
doi: 10.1007/978-3-319-40970-2_15.

Wirth, Claus-Peter et al. (2009). “Jacques Herbrand: Life, Logic,
and Automated Deduction”. In: Handbook of the History of
Logic. Elsevier, pp. 195–254. doi:
10.1016/s1874-5857(09)70009-3.

https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1016/s1874-5857(09)70009-3

	References

