

MODERN ALGORITHMS (not only in computational geometry)

PETR FELKEL

FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Kolingerova], [Brönnimann], and [Muthukrishnan]

Version from 7.1.2016

Modern algorithms

- 1. Computational geometry today
- 2. Space efficient algorithms (In-place / in situ algorithms)
- 3. Data stream algorithms
- 4. Randomized algorithms

1. Computational geometry today

- Popular: beauty as discipline, wide applicability
- Started in 2D with linear objects (points, lines,...), now 3D and nD, hyperplanes, curved objects,...
- Shift from purely mathematical approach and asymptotical optimality ignoring singular cases
- to practical algorithms, simpler data structures and robustness => algorithms and data structures provable efficient in realistic situations (application dependent)

2. Space efficient algorithms

- output is in the same location as the input and
- need only a small amount of additionaly memory
 - *in-place* O(1) extra storage
 - *in situ* O(log n) extra storage

Space efficient algorithms - practical advantages

- Allow for processing larger data sets
 - Algorithms with separate input and output need space for 2n points to store O(n) extra space
 - Space efficient algs n points + O(1) or O(log n) space
- Greater locality of reference
 - Practical for modern HW with memory hierarchies (e.g., main RAM – ram on chip – registers, caches, disk latency, network latency)
- Less prone to failure
 - no allocation of large amounts of memory, which can fail at run time

- good for mission critical applications
- I => faster program

- In array continuous block in memory
 - n^{th} element in O(1) time
 - Select sort, insert sort ... in-place,
 - O(1) additional memory, $O(n^2)$ time
 - Heapsort in-place, O(1) add. memory, $O(n \log n)$ time
 - Quicksort in-situ, $O(\log n)$ add. memory for recursion
 - Mergesort not in-place, not in-situ, O(n) add. memory
- In list linked lists in dynamical memory
 - n^{th} element in O(n) time
 - Mergesort –in-situ, $O(\log n)$ add. memory, $O(n \log n)$ time

Graham-InPlaceScan(S, n, d) *Input:* S – index to array of length n with points in plane, $d = \pm 1$ direction *Output:* Convex Hull in clockwise order

InPlace-Sort(S, n, d) // d = 1 sort ascending for upper hull 1. $h \leftarrow 1$ // empty stack // d = -1 sort descending for lower hull 2. for $i \leftarrow 1 \dots n - 1$ do 3 while $h \ge 2$ and not right turn(S[h - 2], S[h - 1], S[i]) do 4. 5. $h \leftarrow h - 1$ // pop top element from the stack swap $S[i] \leftrightarrow S[h]$ // push the new point to the stack 6. $h \leftarrow h + 1$ // increment stack length 7. 8 return h The array: S is the index of the sub-array (offset) $h \sim \text{offset to this first element index } S$ (first element above the stack) Felkel: Computational geometry

... obrázek na tabuli

Optimized Graham in-place algorithm

- Data stream = a massive sequence of data
 - Too large to store (on disk, memory, cache,...)
- Examples
 - Network traffic
 - Database transactions
 - Sensor networks
 - Satellite data feeds
- Approaches
 - Ignore it
 - _ Develop algorithms for dealing with such data

- Paul presents numbers x = {1..n} in random order, one number missing
- Carole must determine the missing number but has only O(log n) bits of memory

Any idea?

• Compute the sum of the numbers and subtracts the incoming numbers one by one. $missing number = \frac{n(n+1)}{2} - \sum_{i < n} x[i]$ • The missing number "remains" • The missing number "remains" • Felkel: Computational geometry

Motivation example

• And two missing numbers *i*, *j* ?

Store sum of numbers s and sum of squares s'

- Single pass over the data: a_1, a_2, \dots, a_n
 - Typically n is known
- Bounded storage (typically n^{α} or $\log^{c} n$ or only c)
 - Units of storage: bits, words, or elements (such as points, nodes/edges, ...)
 - Impossible to store the complete data
- Fast processing time per element
 - Randomness is OK (in fact, almost necessary)

- Often sub-linear time for the whole data
- Often approximation of the result

Data stream models classification

- Input stream a_1, a_2, \dots, a_n
 - arrives sequentially, item by item
 - describes an underlying signal A,
 a 1D function A: [1..N] -> R
- Models differ on how a_i's describe the signal A (in increasing order of generality):
 - a) Time series model $-a_i$ equals A[i], in increasing i
 - b) Cash register model- a_i are increments to A[j], $I_i > 0$
 - c) Turnstile model $-a_i$ are updates to $A[j], U_i \in R$

a) Time series model (časová řada)

- Stream elements a_i are equal to A[i] (samples of the signal)
- a_i 's appear in increasing order of i ($i \sim time$)

Applications

- Observation of the traffic on IP address each 5 minutes
- NASDAQ volume of trades per minute

• a_i are increments to A[j]'s

Stream elements $a_i = (j, I_i), I_i \ge 0$ to mean

 $A_i[j] = A_{i-1}[j] + I_i$ (*i*~time, j~bucket)

- where
 - $A_i[j]$ is the state of the signal after seeing *i*-th item
 - multiple a_i can increment given A[j] over time
- A most popular data stream model
 - IP addresses accessing web server (histogram)
 - Source IP addresses sending packets over a link

access many times, send many packets,..

c) Turnstile model (turniket)

- a_i are updates to A[j]'s
- Stream elements $a_i = (j, U_i), U_i \in R$ to mean

 $A_{i}[j] = A_{i-1}[j] + U_{i}$ (*i*~time, j~bucket, turnstile)

- where
 - A_i is the state of the signal after seeing *i*-th item
 - U_i may be positive or negative
 - multiple a_i can update given A[j] over time
- A most general data stream model
 - Passengers in NY subway arriving and departing

- Useful for completely dynamic tasks
 - Hard to get reasonable solution in this model

c) Turnstile model variants (for completness)

- strict turnstile model $-A_i[j] \ge 0$ for all *i*
 - People can only exit via the turnstile they entered in
 - Databases delete only a record you inserted
 - Storage you can take items only if they are there
- non-strict turnstile model $A_i[j] < 0$ for some *i*
 - Difference between two cash register streams
 - $(A_i[j] < 0 \dots$ negative amount of items for some *i*)

[Manku]

Examples: Iceberg queries

Identify all elements whose current frequency exceeds support threshold s = 0.1%.

Ex: Iceberg queries – a) ordinary solution

The ordinary solution in two passes

- 1. Pass identify frequencies (count hashes)
 - a set of counters is maintained. Each incoming item is hashed onto a counter, which is incremented.
 - These counters are then compressed into a bitmap, with a 1 denoting a large counter value.
- 2. Pass count exact values for large counters only
 - exact frequencies counters for only those elements which hash to a value whose corresponding bitmap value is 1

Felkel: Computational geometry

Ex: Iceberg queries – datastream definition

- Input: threshold $s \in (0,1)$, error $\varepsilon \in (0,1)$, length N
- Output: list of items and frequencies $\epsilon \ll s$
- Guarantees:
 - No item omitted (reported all items with frequency > sN)
 - No item added (no item with frequency < $(s \epsilon)N$)
 - Estimated frequencies are not less than ϵN of the true frequencies

• Ex: s = 0.1%, $\epsilon = 0.01\% \rightarrow \epsilon$ about $\frac{1}{10}$ to $\frac{1}{20}$ of s

- All elements with freq. > 0.1% will output

None of element with freq. < 0.09% will output

Some elements between 0.09% and 0.1% will output

- Probabilistic algorithm, given threshold s, error ϵ and probability of failure δ
 - Data structure *S* of entries (e, f), // *S* =subset of counters *e* element, *f* estimated frequency, r sampling rate, sampling probability $\frac{1}{r}$

$$\bullet S \leftarrow \emptyset, r \leftarrow 1$$

- If $e \in S$ then (e, f++) //count, if the counter exists else insert (e, f) into S with probability $\frac{1}{r}$
- S sweeps along the stream as a magnet, attracting all elements which already have an entry in S

- r changes over the stream, $t = \frac{1}{\epsilon} \log\left(\frac{1}{s\delta}\right)$, |S| < 2t
 - 2t elements r = 1
 - next 2t elements r = 2
 - next 4t elements $r = 4 \dots$
- whenever r changes, we update S
 - For each entry (e, f) in *S* // random decrement of counters
 - toss a coin until successful (head)
 - if not successful (tail), decrement f
 - if f becomes 0, remove entry (e, f) from S
- Output: list of items with threshold s
 i.e. all entries in S where f ≥ (s − ε)N
 + ≠ ≠ ≠ +
 Felkel: Computational geometry

Space complexity is independent on N

For

- support threshold s = 0.1%,
- error $\epsilon = 0.01\%$,
- and probability of failure $\delta = 1\%$

Ex: Iceberg queries – c) lossy counting

- Deterministic algorithm (user specidies error *e* and threshod *s*)
- Stream conceptually divided into buckets
 - With bucket size $w = \lceil 1/\epsilon \rceil$ items each
 - Numbered from 1, current bucket id is $b_{current}$
- Data structure *D* of entries (e, f, Δ) ,
 - *e* element,
 f estimated frequency,
 Δ maximum possible error of *f*, Δ = b_{current} 1 (max number of occurrences in the previous buckets)
 At most ¹/_ϵ log(εN) entries

Ex: Iceberg queries – c) lossy counting

Ex: Iceberg queries – c) lossy counting alg.

- $\bullet \quad D \leftarrow \emptyset$
- New element e
 - If $e \in D$ then increment its f
 - If $e \notin D$ then
 - Create a new entry $(e, 1, bcurre_{nt} 1)$
 - If on the bucket border, i.e., $N \mod w = 0$ then delete entries with $f + \Delta \le b_{current}$
 - i.e., with zero or one occurrence in each of the previous buckets
 - New $\Delta = b_{current} 1$ is maximum number of times *e* could have occurred in the first $b_{current} 1$ buckets

Felkel: Computational geometry

• Output: list of items with threshold s i.e. all entries in S where $f \ge (s - \epsilon)N$

Comparison of sticky and lossy sampling

- Sticky sampling performs worse
 - Tendency to remember every unique element
 - The worst case is for sequence without duplicates
- Lossy counting
 - Is good in pruning low frequency elements quickly
 - Worst case for pathological sequence which never occurs in reality

Number of mutually different entries

- Input: stream a_1, a_2, \dots, a_n , with repeated entries
- Output: Estimate of number of different entries
- Appl: # of different transactions in one day
- Precise deterministic algorithm:
 - Array b[1..U], $U = \max$ number of different entries
 - Init by b[i] = 0 for all *i*, counter c = 0
 - For each a_i
 - if $b[a_i] = 0$ then inc(c), b[i] = 1
 - Return c as number of different entries in b[]
 - O(1) update and query times, O(U) memory

Number of mutually different entries

- Approximate algorithm
 - Array $b[1..\log U]$, $U = \max$ number of different entries
 - Init by b[i] = 0 for all *i*, counter c = 0
 - Hash function $h: \{1..U\} \rightarrow \{0..\log U\}$
 - For each a_i

Set $b[h(a_i)] = 1$

Extract probable number of different entries from b[]

Sublinear time example

- Given mutually different numbers a_1, a_2, \dots, a_n
- Determine number in upper half of values
- Alg: select k numbers equally randomly
 - Compute their maximum
 - Return it as solution
- Probability of wrong answer = probability of all selected numbers are from the lower half = (¹/₂)^k
 For error δ take log ¹/_δ samples
 Not useful for MIN, MAX selection

4. Randomized algorithms

Motivation

- Array of elements, half of char "a", half of char "b"
- Find "a"
- Deterministic alg: n/2 steps of sequential search (when all "b" are first)
- Randomized:
 - Try random indices
 - Probability of finding "a" soon is high regardless of the order of characters in the array (Las Vegas algorithm keep trying up to n/2 steps)

Randomized algorithms

- May be simpler even if the same worst time
- Deterministic algorithm
 - is not known (prime numbers)
 - does not exist
- Randomization can improve the average running time (with the same worst case time), while the worst time depends on our luck – not on the data distribution

Randomized algorithms

- a) Incremental algorithms
 - Linear programming (random plane insertion)
 - Convex hulls
 - Intersections, space subdivisions

Random sampling

- Hierarchical data structures
- Sublinear algorithms
- Randomized quicksort
- Approximate solutions on random samples

Another classification

Monte Carlo

- We always get an answer, often not correct
- Fast solution with risk of an error
- It is not possible to determine, if the answer is correct
 - $\rightarrow\,$ run multiple times and compare the results
- Output can be understand as a random variable
- Example: prime number test
 - Task: Find $a \in \left\langle 2, \frac{n}{2} \right\rangle$ such as *n* is divisible by a

Algorithm: Sample 10 numbers from the given interval, answer

Las Vegas

Las Vegas algorithms

Las Vegas

- We always get a correct answer
- The run time is random (typically \leq deterministic time)
- Sometimes fails –> perform restart
- Example: Randomized quicksort

			•	No	m	ec	lia	n I	ne	ce	SS	ary	/																						
 Simpler algorithm Independent on data distribution 																																			
	· · · · · · · · · · · · · · · · · · ·																					÷													
Return a correct result																÷	+	+	+																
• The result will be ready in $\theta(n \log n)$ time with a high probability															+	+	+	+																	
 Bad luck – we select the smallest element -> Selection sort 															+	Ŧ	+	+	+	-															
				Ja	u i	uu		- V	vC	30		υ	u r			an	00			÷		+	+				÷.	501	+	+	+	+	+	+	
																	+	÷	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	
													÷		÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
									+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
÷	‡					t	+	ť	+	+	+	+	t	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	R		Ð)	X	
- -	+	+	÷	÷	+	÷	+	ŧ	+	+	+	+	+	Fol		Com		ation		+	etry.	+	+	+	÷	+	+	+	+	+	12		S	\bigcirc	
)	+	+	#	+	+	+	+	+	+	+	+	+	1pute + //		+	+	+	+	+	+	+	+	+	+	+	+	// \	R	Jà	Ŋ	
4	+-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4	(4	10)	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	

Randomized quicksort

RQS(S) = Randomized Quicksort Input: sequence of data elements $a_1, a_2, ..., a_n \in S$ Output: sorted set S

Step 1: choose $i \in \langle 1, n \rangle$ in random 1. 2. Step 2: Let A is a multiset $\{a_1, a_2, \dots, a_n\}$ if n = 1 then output(S) • else – create three subsets of $S_{<}$, $S_{=}$, $S_{>}$ $S_{<} = \{b \ z \ A : b < a_i\}$ $S_{=} = \{b \ z \ A : b = a_i\}$ $S_{>} = \{b \ z \ A : b > a_i\}$ 3. Step 3: $RQS(S_{<})$ and $RQS(S_{>})$ 4. Return: $RQS(S_{<}), S_{=}, RQS(S_{>})$ + + + + + + + + + + + + Felkel: Computational geometry

Conclusion on randomized algs.

- Randomized algs. are often experimental
- We would not get perfect results, but nicely good
- We use randomized algorithm if we do not know how to proceed

References

[Kolingerová] Nové směry v algoritmizaci a výpočetní geometrii (1 a 2), přednáška z předmětu Aplikovaná výpočetní geometrie, MFF UK, 2008

- [Brönnimann] Hervé Brönnimann. Towards Space-Efficient Geometric Algorithms, Polytechnic university, Brooklyn, NY,USA, ICCSA04, Italy, 2004
- [BrönnimannC]Hervé Brönnimann, et al. 2002. In-Place Planar Convex Hull Algorithms. In *Proceedings of the 5th Latin American Symposium on Theoretical Informatics* (LATIN '02), Sergio Rajsbaum (Ed.). Springer-Verlag, London, UK, UK, 494-507. http://dl.acm.org/citation.cfm?id=690520

[Indyk] Piotr Indyk. 6.895: Sketching, Streaming and Sub-linear Space Algorithms, MIT course

[Muthukrishnan] Data streams: Algorithms and applications, ("adorisms" in Google)

[Mulmuley] Ketan Mulmuley. Computational Geometry. An Introduction Through Randomized Algorithms. Prentice Hall, NJ,1994

[Manku]

G.S. Manku, R. Motwani. Approximate Frequency Counts over Data Streams, Proceedings of the 28th VLDB Conference, Hong Kong, China, 2002. http://www.vldb.org/conf/2002/S10P03.pdf