MODERN ALGORITHMS (not only in computational geometry)

PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Kolingerova], [Brönnimann], and [Muthukrishnan]

Version from 7.1.2016

Modern algorithms

1. Computational geometry today
2. Space efficient algorithms (In-place / in situ algorithms)
3. Data stream algorithms
4. Randomized algorithms

1. Computational geometry today

- Popular: beauty as discipline, wide applicability
- Started in 2D with linear objects (points, lines,...), now 3D and nD, hyperplanes, curved objects,...
- Shift from purely mathematical approach and asymptotical optimality ignoring singular cases
- to practical algorithms, simpler data structures and robustness => algorithms and data structures provable efficient in realistic situations (application dependent)

2. Space efficient algorithms

- output is in the same location as the input and
- need only a small amount of additionaly memory
- in-place - $\mathrm{O}(1)$ extra storage
- in situ $\quad-\mathrm{O}(\log n)$ extra storage

Space efficient algorithms - practical advantages

- Allow for processing larger data sets
- Algorithms with separate input and output need space for 2 n points to store - $\mathrm{O}(n)$ extra space
- Space efficient algs - n points $+\mathrm{O}(1)$ or $\mathrm{O}(\log n)$ space
- Greater locality of reference
- Practical for modern HW with memory hierarchies (e.g., main RAM - ram on chip - registers, caches, disk latency, network latency)
- Less prone to failure
- no allocation of large amounts of memory, which can fail at run time
- good for mission critical applications
 memory => faster program

In-place sorting

- In array - continuous block in memory
$-\mathrm{n}^{\text {th }}$ element in $O(1)$ time
- Select sort, insert sort ... in-place, $O(1)$ additional memory, $O\left(n^{2}\right)$ time
- Heapsort - in-place, $O(1)$ add. memory, $O(n \log n)$ time
- Quicksort - in-situ, $O(\log n)$ add. memory for recursion
- Mergesort - not in-place, not in-situ, $O(n)$ add. memory
- In list - linked lists in dynamical memory
- $\mathrm{n}^{\text {th }}$ element in $O(n)$ time
- Mergesort -in-situ, $O(\log n)$ add. memory, $O(n \log n)$ time

Graham in-place algorithm

Graham-InPlaceScan(S, n, d)
Input: $\quad S$ - index to array of length n with points in plane, $d= \pm 1$ direction Output: Convex Hull in clockwise order

```
1. InPlace-Sort( \(S, n, d\) ) // \(d=1\) sort ascending for upper hull
2. \(h \leftarrow 1\) // empty stack // \(d=-1\) sort descending for lower hull
3. for \(i \leftarrow 1 \ldots n-1\) do
4. while \(h \geq 2\) and not right turn \((S[h-2], S[h-1], S[i])\) do
5. \(\quad h \leftarrow h-1 \quad / /\) pop top element from the stack
6. swap \(S[i] \leftrightarrow S[h]\) // push the new point to the stack
7. \(h \leftarrow h+1\) // increment stack length
8. return \(h\)
```

The array: $\quad S$ is the index of the sub-array (offset)
$h \sim$ offset to this first element index S (first element above the stack)

Graham in-place algorithm

... obrázek na tabuli

Graham in-place algorithm

Graham-InPlaceHull(S, n)
Input: $\quad S$ - an array of length n with points in plane
Output: Convex Hull in clockwise order (CW)
sort direction

1. $h \leftarrow \operatorname{Graham-InPlaceScan}(S, n, 1) \longleftarrow$ // $1=$ ascending - CW upper hull
2. for $i \leftarrow 0 . . h-2$ do
3. $\operatorname{swap} S[i] \leftrightarrow S[i+1] \quad / /$ bubble a to thevight $\mathrm{O}(\mathrm{h})$
4. $h^{\prime} \leftarrow \operatorname{Graham-InPlaceScan}(S+h-2, n-h+2,-1)$ // lower hull
5. return $h+h^{\prime}-2$

Principle:
Stack at the beginning of the array S on indices $[0 \ldots h-1]$
Exchange by swap operation
We need the in-place sort

Graham in-place algorithm

0	$h-1$
	$n-1$
	A

compute upper hull	
MMMMMM	Points below CH
$a S[1], \ldots, S[h-2] b$	$S[h], \ldots, S[n-1]$

move a

$b\|a\|$	$S[h], \ldots, S[n-1]$	compute lower hull
Sort first		

$$
\underbrace{\mid S[0], \ldots, S\left[h+h^{\prime}-2\right]} \quad{ }_{\text {[BrönnimannC] }}^{\mid}
$$

Optimized Graham in-place algorithm

compute lower hull

3. Data stream algorithms

- Data stream = a massive sequence of data
- Too large to store (on disk, memory, cache,...)
- Examples
- Network traffic
- Database transactions
- Sensor networks
- Satellite data feeds
- Approaches
- Ignore it
- Develop algorithms for dealing with such data

Motivation example

- Paul presents numbers $x=\{1 . . n\}$ in random order, one number missing
- Carole must determine the missing number but has only $O(\log n)$ bits of memory

Any idea?

- Compute the sum of the numbers and subtracts the incoming numbers one by one.

$$
\text { missing number }=\frac{n(n+1)}{2}-\sum_{i<n} x[i]
$$

- The missing number "remains"

DCGI

Motivation example

- And two missing numbers i, j ?
- Store sum of numbers s and sum of squares s^{\prime}

$$
\begin{gathered}
i+j=\frac{n(n+1)}{2}-s \\
i^{2}+j^{2}=\frac{n(n+1)(2 n+1)}{6}-s^{\prime}
\end{gathered}
$$

(this principle is applicable for k -missing numbers)

Basic data stream model

- Single pass over the data: $a_{1}, a_{2}, \ldots, a_{n}$
- Typically n is known
- Bounded storage (typically n^{α} or $\log ^{c} n$ or only c)
- Units of storage: bits, words, or elements (such as points, nodes/edges, ...)
- Impossible to store the complete data
- Fast processing time per element
- Randomness is OK (in fact, almost necessary)
- Often sub-linear time for the whole data
- Often approximation of the result

Data stream models classification

- Input stream $a_{1}, a_{2}, \ldots, a_{n}$
- arrives sequentially, item by item
- describes an underlying signal A, a 1D function A : $[1 . . N]->R$
- Models differ on how a_{i} 's describe the signal A (in increasing order of generality):
a) Time series model - a_{i} equals $A[i]$, in increasing i
b) Cash register model- a_{i} are increments to $A[j], I_{i}>0$
c) Turnstile model $\quad-a_{i}$ are updates to $A[j], U_{i} \in R$

a) Time series model (časová řada)

- Stream elements a_{i} are equal to $A[i]$ (samples of the signal)
- a_{i} 's appear in increasing order of i (i~time)
- Applications
- Observation of the traffic on IP address each 5 minutes
- NASDAQ volume of trades per minute

b) Cash register model (pokladna)

- a_{i} are increments to $A[j]^{\prime} s$
- Stream elements $a_{i}=\left(j, I_{i}\right), I_{i} \geq 0$ to mean
+ only

$$
A_{i}[j]=A_{i-1}[j]+I_{i}
$$

where

- $A_{i}[j]$ is the state of the signal after seeing i-th item
- multiple a_{i} can increment given $A[j]$ over time
- A most popular data stream model
- IP addresses accessing web server (histogram)
- Source IP addresses sending packets over a link
- access many times, send many packets

c) Turnstile model (turniket)

- a_{i} are updates to $A[j]^{\prime} s$
- Stream elements $a_{i}=\left(j, U_{i}\right), \quad U_{i} \in R$ to mean
where

$$
A_{i}[j]=A_{i-1}[j]+U_{i}
$$

- A_{i} is the state of the signal after seeing i-th item
- U_{i} may be positive or negative
- multiple a_{i} can update given $A[j]$ over time
- A most general data stream model
- Passengers in NY subway arriving and departing
- Useful for completely dynamic tasks
. Hard to get reasonable solution in this model
DCGI

c) Turnstile model variants (for completness)

- strict turnstile model $-A_{i}[j] \geq 0$ for all i
- People can only exit via the turnstile they entered in
- Databases - delete only a record you inserted
- Storage - you can take items only if they are there
- non-strict turnstile model $-A_{i}[j]<0$ for some i
- Difference between two cash register streams
- $\left(A_{i}[j]<0 \ldots\right.$ negative amount of items for some $\left.i\right)$

Examples: Iceberg queries

- Identify all elements whose current frequency exceeds support threshold $s=0.1 \%$.

Stream

Ex: Iceberg queries - a) ordinary solution

The ordinary solution in two passes

1. Pass - identify frequencies (count hashes)

- a set of counters is maintained. Each incoming item is hashed onto a counter, which is incremented.
- These counters are then compressed into a bitmap, with a 1 denoting a large counter value.

2. Pass - count exact values for large counters only

- exact frequencies counters for only those elements which hash to a value whose corresponding bitmap value is 1
- Hard to modify for datastream - unknown
$+\neq f$ fequencies after only $1^{\text {st }}$ pass
DCGI

Ex: Iceberg queries - datastream definition

- Input: threshold $s \in(0,1)$, error $\varepsilon \in(0,1)$, length N
- Output: list of items and frequencies
- Guarantees:
- No item omitted (reported all items with frequency > $s N$)
- No item added (no item with frequency < $(s-\epsilon) N$)
- Estimated frequencies are not less than ϵN of the true frequencies
- Ex: $s=0.1 \%, \epsilon=0.01 \% \rightarrow \epsilon$ about $\frac{1}{10}$ to $\frac{1}{20}$ of s
- All elements with freq. $>0.1 \%$ will output
- None of element with freq. $<0.09 \%$ will output

Ex: Iceberg queries - b) sticky sampling

- Probabilistic algorithm, given threshold s, error ϵ and probability of failure δ
- Data structure S of entries $(e, f), \quad \| S=$ subset of counters e element, f estimated frequency, r sampling rate, sampling probability $\frac{1}{r}$
- $S \leftarrow \emptyset, r \leftarrow 1$
- If $e \in S$ then $(e, f++) / / c o u n t$, if the counter exists else insert (e, f) into S with probability $\frac{1}{r}$
- S sweeps along the stream as a magnet, attracting all elements which already have an entry in S

Ex: Iceberg queries - b) sticky sampling

- r changes over the stream, $t=\frac{1}{\epsilon} \log \left(\frac{1}{s \delta}\right),|S|<2 t$
- $2 t$ elements $r=1$
- next $2 t$ elements $r=2$
- next $4 t$ elements $r=4$...
- whenever r changes, we update S
- For each entry (e, f) in $S \quad / /$ random decrement of counters
- toss a coin until successful (head)
- if not successful (tail), decrement f
- if f becomes 0 , remove entry (e, f) from S
- Output: list of items with threshold s
i.e. all entries in S where $f \geq(s-\epsilon) N$

DCGI

Ex: Iceberg queries - b) sticky sampling

- Space complexity is independent on N
- For
- support threshold $s=0.1 \%$,
- error $\epsilon=0.01 \%$,
- and probability of failure $\delta=1 \%$
- Sticky sampling computes results
- with $(1-\delta)=99 \%$ probability
- using at most $2 \mathrm{t}=80000$ entries
- $t=\frac{1}{\epsilon} \log \left(\frac{1}{s \delta}\right)=40000,|S|<2 t$

Ex: Iceberg queries - b) sticky sampling

Ex: Iceberg queries - c) lossy counting

- Deterministic algorithm (user specidies error ε and threshod s)
- Stream conceptually divided into buckets
- With bucket size $w=\lceil 1 / \varepsilon\rceil$ items each
- Numbered from 1, current bucket id is $b_{\text {current }}$
- Data structure D of entries (e, f, Δ),
- e element,
- f estimated frequency,
- Δ maximum possible error of $f, \Delta=b_{\text {current }}-1$ (max number of occurrences in the previous buckets)
- At most $\frac{1}{\epsilon} \log (\varepsilon N)$ entries

DCGI

Ex: Iceberg queries - c) lossy counting

- Divide the stream into buckets
- Keep exact counters for items in the buckets
- Prune entries at bucket boundaries (remove entries for which $f+\Delta \leq b_{\text {current }}$)

Ex: Iceberg queries - c) lossy counting alg.

- $D \leftarrow \varnothing$
- New element e
- If $e \in D$ then increment its f
- If $e \notin D$ then
- Create a new entry $\left(e, 1\right.$, bcurre $\left._{n t}-1\right)$
- If on the bucket border, i.e., $N \bmod w=0$
then delete entries with $f+\Delta \leq b_{\text {current }}$
- i.e., with zero or one occurrence in each of the previous buckets
- New $\Delta=b_{\text {current }}-1$ is maximum number of times e could have occurred in the first $b_{\text {current }}-1$ buckets
- Output: list of items with threshold s
i.e. all entries in S where $f \geq(s-\epsilon) N$

DCGI

Comparison of sticky and lossy sampling

- Sticky sampling performs worse
- Tendency to remember every unique element
- The worst case is for sequence without duplicates
- Lossy counting
- Is good in pruning low frequency elements quickly
- Worst case for pathological sequence which never occurs in reality

Number of mutually different entries

- Input: stream $a_{1}, a_{2}, \ldots, a_{n}$, with repeated entries
- Output: Estimate of number of different entries
- Appl: \# of different transactions in one day
- Precise deterministic algorithm:
- Array $b[1 . . U], U=$ max number of different entries
- Init by $b[i]=0$ for all i, counter $c=0$
- For each a_{i}
- if $b\left[a_{i}\right]=0$ then $\operatorname{inc}(c), b[i]=1$
- Return c as number of different entries in $b[]$
- $O(1)$ update and query times, $O(U)$ memory

Number of mutually different entries

- Approximate algorithm
- Array $b[1 . . \log U], U=$ max number of different entries
- Init by $b[i]=0$ for all i, counter $c=0$
- Hash function $h:\{1 . . U\} \rightarrow\{0 . . \log U\}$
- For each a_{i}

Set $b\left[h\left(a_{i}\right)\right]=1$

- Extract probable number of different entries from $b[]$

Sublinear time example

- Given mutually different numbers $a_{1}, a_{2}, \ldots, a_{n}$
- Determine number in upper half of values
- Alg: select k numbers equally randomly
- Compute their maximum
- Return it as solution
- Probability of wrong answer = probability of all selected numbers are from the lower half $=\left(\frac{1}{2}\right)^{k}$
- For error δ take $\log \frac{1}{\delta}$ samples
- Not useful for MIN, MAX selection

DCGI

4. Randomized algorithms

Motivation

- Array of elements, half of char "a", half of char "b"
- Find "a"
- Deterministic alg: $n / 2$ steps of sequential search (when all "b" are first)
- Randomized:
- Try random indices
- Probability of finding "a" soon is high regardless of the order of characters in the array
(Las Vegas algorithm - keep trying up to $n / 2$ steps)

Randomized algorithms

- May be simpler even if the same worst time
- Deterministic algorithm
- is not known (prime numbers)
- does not exist
- Randomization can improve the average running time (with the same worst case time), while the worst time depends on our luck - not on the data distribution

Randomized algorithms

a) Incremental algorithms

- Linear programming (random plane insertion)
- Convex hulls
- Intersections, space subdivisions
b) Divide and conquer
- Random sampling
- Nearest neighbors, trapezoidal subdivisions

Random sampling

- Hierarchical data structures
- Sublinear algorithms
- Randomized quicksort
- Approximate solutions on random samples

Another classification

- Monte Carlo
- We always get an answer, often not correct
- Fast solution with risk of an error
- It is not possible to determine, if the answer is correct
\rightarrow run multiple times and compare the results
- Output can be understand as a random variable
- Example: prime number test
- Task: Find a $\in\left\langle 2, \frac{n}{2}\right\rangle$ such as n is divisible by a
- Algorithm: Sample 10 numbers from the given interval, answer
- Las Vegas

Las Vegas algorithms

Las Vegas

- We always get a correct answer
- The run time is random (typically \leq deterministic time)
- Sometimes fails -> perform restart
- Example: Randomized quicksort
- No median necessary
- Simpler algorithm
- Independent on data distribution
- Return a correct result
- The result will be ready in $\theta(n \log n)$ time with a high probability
- Bad luck - we select the smallest element -> Selection sort

Randomized quicksort

RQS(S) = Randomized Quicksort
Input: sequence of data elements $a_{1}, a_{2}, \ldots, a_{n} \in S$
Output: sorted set S

1. Step 1: choose $i \in\langle 1, n\rangle$ in random
2. Step 2: Let A is a multiset $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$

- if $n=1$ then output(S)
- else - create three subsets of $S_{<,} S_{=,} S_{>}$

$$
\begin{aligned}
& S_{<}=\left\{b \text { z } A: b<a_{i}\right\} \\
& S_{=}=\left\{b z A: b=a_{i}\right\} \\
& S_{>}=\left\{b z A: b>a_{i}\right\}
\end{aligned}
$$

3. Step 3: $R Q S\left(S_{<}\right)$and $R Q S\left(S_{>}\right)$
4. Return: $\operatorname{RQS}\left(S_{<}\right), S_{=}, R Q S\left(S_{>}\right)$

Conclusion on randomized algs.

- Randomized algs. are often experimental
- We would not get perfect results, but nicely good
- We use randomized algorithm if we do not know how to proceed

References

[Kolingerová]	Nové směry v algoritmizaci a výpočetní geometrii (1 a 2), přednáška z předmětu Aplikovaná výpočetní geometrie, M 2008
[Brönnimann]	Hervé Brönnimann. Towards Space-Efficient Geometric Algorithms, Polytechnic university, Brooklyn, NY,USA, ICCSA04, Italy, 2004
]Hervé Brönnimann, et al. 2002. In-Place Planar Convex Hull Algorithms. In Proceedings of the 5th Latin American Symposium on Theoretical Informatics (LATIN '02), Sergio Rajsbaum (Ed.). Springer-Verlag, London, UK, UK, 494-507. http://ld.acm.org/citiation.cfm? ?id=690520
[Indyk]	Piotr Indyk. 6.895: Sketching, Streaming and Sub-linear Space Algorithms, MIT course
[Muthukrishnan] Data streams: Algorithms and applications, ("adorisms" in Google)	
[Mulmuley]	Ketan Mulmuley. Computational Geometry. An Introduction Through Randomized Algorithms. Prentice Hall, NJ, 1994
[G.S. Manku, R. Motwani. Approximate Frequency Counts over Data Streams, Proceedings of the 28th VLDB Conference, Hon

