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Talk overview

= Definition and examples

= Applications

= Algorithms in 2D
— D&C O(n log n)
— Sweep line O(n log n)
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Voronoi diagram (VD)

= One of the most important structure in Comp. geom.

= Encodes proximity information
What is close to what? . .

= Standard VD - this lecture
— Set of points - nDim
— Euclidean space & metric

= Generalizations A
— Set of line segments or curves e / y

— Different metrics
— Higher order VD'’s (furthest point)
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Voronoi cell (for points in plane)

= LetP ={p,, p,,..., P} be a set of points (sites) in
dDim Space ... 2D space (plane) here

= Voronoi cell V(p;) — is open!
= set of points g closer to p; than to any other site:

V(p)={aq, | #1}, where
PJ is the Euclidean dlstance between p and @

= Intersection of open halfplanes

V(p,)=Nh(p.p,)

h(p,, P ) = open halfplane—— s
= set of pts strictly closer to p, than tO P
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Voronol diagram (in plane)

= \Voronoi diagram Vor(P) of points P
= what is left of the plane after removing all the
open Voronoi cells
= collection of line segments
(possibly unboundeci)

Site (given point) /
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Voronoi diagram (in plane)

= \Voronoi diagram Vor(P) of points P
= what is left of the plane after removing all the
open Voronoi cells
= collection of line segments
(possibly unboundeci)
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Voronoi diagram (in plane)

= \Voronoi diagram Vor(P) of points P
= what is left of the plane after removing all the
open Voronoi cells
= collection of line segments
(possibly unboundeci)

. Edge

Vertex

Site (given point) /
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Voronoi diagram (in plane)

= \Voronoi diagram Vor(P) of points P
= what is left of the plane after removing all the
open Voronoi cells
= collection of line segments
(possibly unboundeci)

. Edge

Vertex

Region around

) the site is cell
o . VoroGlide demo ' |
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Voronoi diagram examples

1 point

Cell

 The whole plain for 1 point

« Halfplane or strip for collinear points

«  Convex (possibly unbounded) polygon
Edges of VD

* || lines for collinear points

« Halflines (for non-collinear CH points)
« Line segments (for bounded cells)
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Voronoi diagram examples

1 point 2 points

Cell

 The whole plain for 1 point

« Halfplane or strip for collinear points

«  Convex (possibly unbounded) polygon
Edges of VD

* || lines for collinear points

« Halflines (for non-collinear CH points)
« Line segments (for bounded cells)
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Voronoi diagram examples

1 point 2 points 3 points

Cell

 The whole plain for 1 point

« Halfplane or strip for collinear points

«  Convex (possibly unbounded) polygon
Edges of VD

* || lines for collinear points

« Halflines (for non-collinear CH points)
« Line segments (for bounded cells)
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Voronoi diagram examples

1 point 2 points 3 points

® o © o O ®
Cell
 The whole plain for 1 point )

« Halfplane or strip for collinear points

-«  Convex (possibly unbounded) polygon ®

Edges of VD

* || lines for collinear points ®
« Halflines (for non-collinear CH points)

« Line segments (for bounded cells)
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Voronoi diagram examples

1 point 2 points 3 points
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« Halfplane or strip for collinear points

-«  Convex (possibly unbounded) polygon ®

Edges of VD

* || lines for collinear points ®
« Halflines (for non-collinear CH points)

« Line segments (for bounded cells)
o o Felkel: Computational geometry
DCGI L _ el




Voronoi diagram examples

16 points

[Hakan Jonsson]

Vertex with O(n) incident edges

- ~From total |n.| =3n -6
e ofe e
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Voronoi diagram examples

16 points 17 points
o * o & ¢ &
o ° & [

o o @ L]
o o 9 &
o o = @
o o & #

o . o @ ° ®

[Hakan Jonsson]

Vertex with O(n) incident edges Cell with O(n) vertices

_ - ~Fromtotal [n,| <3n -6 From total |n,| < 2n-5
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Voronoi diagram examples
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Voronol diagram (in plane)

= planar graph
— Subdivides plane into n cells (n = num. of input sites |P|)

— Edge = locus of equidistant pairs of points (cells)
= part of the bisector of these points

— Vertex = center of the circle defined by = 3 points
=> vertices have degree = 3

— Number of vertices n,<2n-35 => 0O(n)

— Number of edges n.<3n-6 => 0(n)
(only O(n) from O(n?) intersections of bisectors)- -

— In higher dimensions complexity from O(n) up to O(nl92l)
— Unbounded cells belong to sites (points) on convex hull
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Voronol diagram O(n) complexity derivation

||+ For n collinear sites: n, =0 <2n-5
no=Mm-1) <3n-=6
>/ For n non-collinear sites:
— Add extra VD vertex v in infinity m, = n,, + 1
— Apply Euler’'s formula: my, — Mg + my = 2
, Ne=n, +n—1
— Obtain n,+1)—n.,+ n zz{nv=ne—n+1

— Every VD edge has 2 vertices = Sum of vertex degrees = 2n,
— Every VD vertex has degree = 3 Sum of vertex degrees = 3m,, = 3(n,, + 1)
— Together 2n, >3(n, +1)

2n, =3(n, + 1) 2n, = 3(n, + 1)
2(n, +n—1) = 3(n, + 1) 2n, 23(n,—m+1+1)
2n, +2n—2 > 3n, + 3 2ne =2 3n, —3n+6
n,<2n-—>5 Ne <3n—26
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Voronol diagram and convex hull

= Convex hull\

Connects points from
unbounded cells
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Delaunay triangulation

= point set triangulation (straight line dual to VD)

= maximize the minimal angle (tends to
equiangularity)
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Delaunay triangulation

= point set triangulation (straight line dual to VD)

= maximize the minimal angle (tends to
equiangularity)
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Edges, vertices and largest empty circles

Largest empty circle Cy(q) with center in
1. In VD vertex g: has 3 or more sites on its boundary

> On VD edge: contains exactly 2 sites on its

boundary and no other site
o _ o
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Edges, vertices and largest empty circles

Largest empty circle Cy(q) with center in
1. In VD vertex g: has 3 or more sites on its boundary
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Edges, vertices and largest empty circles

Largest empty circle Cy(q) with center in
1. In VD vertex g: has 3 or more sites on its boundary

> On VD edge: contains exactly 2 sites on its
boundary and no other site
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Some applications

= Nearest neighbor queries in Vor(P) of points P

— Point g € P ... search sites across the edges around
the cell g

— Point q ¢ P ... point location queries — see Lecture 2
(the cell where point g falls)

= Facility location (shop or power plant)
— Largest empty circle (better in Manhattan metric VD)

= Neighbors and Interpolation

— Interpolate with the nearest neighbor,
in 3D: surface reconstruction from points

m Art
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Voronol Art

Boundary Functions
Scott Snibbe, 1998

=

Felkei: Computational.gedlr-net-t:y -

05149

+ + +



Voronol Art

Courtesy [Gold]
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Algorithms in 2D

= D&C O(n log n)
= Fortune's Sweep line O(n log n)
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Voronoi diagram (VD)

Divide and Conquer method

1. Split points based on x-
coord into L and R

o O 2. RecursiononLand R
1-3 points => return
>3 points => recursion

® O
3. Merge VD, and VDg
O  monotone chain
") « trim intersected edges
* Add new edges from
the chain

.ol 2o O(n log n) %
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Voronoi diagram (VD)

Divide and Conquer method
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Voronoi diagram (VD)

Divide and Conquer method
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Voronoi diagram (VD)

Divide and Conquer method

1. Split points based on x-
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Voronoi diagram (VD)

Divide and Conquer method

1. Split points based on x-
coord into L and R

2. RecursiononlLand R
1-3 points => return
>3 points => recursion

3. Merge VD, and VDg
@ * monotone chain
 trim intersected edges

 Add new edges from
the chain
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Voronoi diagram (VD)

Divide and Conquer method

1. Split points based on x-
coord into L and R

o O 2. RecursiononLand R
1-3 points => return
>3 points => recursion

® O
3. Merge VD, and VDg
O  monotone chain
") « trim intersected edges
 Add new edges from
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Monotone chain search in O(n) _

= Avoid repeated rescanning of cell edges

= Startin the last tested edge of the cell (each edge tested ~once)
= Continue CW in the |, left, CCW in the r, right cell

= Image shows CW search on cell [, and CCW on cellsr;:

CW CCw

@uile;
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Monotone chain search in O(n) _

= Avoid repeated rescanning of cell edges

= Startin the last tested edge of the cell (each edge tested ~once)
= Continue CW in the |, left, CCW in the r, right cell

= Image shows CW search on cell [, and CCW on cellsr;:

B CW  CCW
3 \/
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Monotone chain search in O(n) _

= Avoid repeated rescanning of cell edges

= Startin the last tested edge of the cell (each edge tested ~once)
= Continue CW in the |, left, CCW in the r, right cell

= Image shows CW search on cell [, and CCW on cellsr;:
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Monotone chain search in O(n) _
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Monotone chain search in O(n) _

= Avoid repeated rescanning of cell edges
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Monotone chain search in O(n) _

= Avoid repeated rescanning of cell edges
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Divide and Conquer method complexity

= Initial sort O(nlogn)

= O(logn) recursion levels
— O(n) each merge (chain search, trim, add edges to VD)

= Altogether O(nlogn)
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Fortune’s sweep line algorithm —idea in 3D

Cones in sites
I — Scanning plane

t = I x T
\\ \ Both slanted 45°

Projection of the
iIntersection to xy:

= Cone x plane =>
parabolic arcs

m Cone x cone =>
[O'Rourke] edges Of VD

= : -
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Fortune’s sweep line algorithm

DONE

= Differs from “typical” sweep line algorithm 00

= Unprocessed sites ahead from sweep line may
generate Voronoi vertex behind the sweep line

unanticipated ount

P events %
> -~ -+
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DONE

Fortune’s sweep line algorithm idea _wsowes”

TODO

= Subdivide the halfplane above the sweep line |
iInto 2 regions

1. Points closer to some site above than to sweep line |
(solved part)

2. Points closer to sweep line | than any point above
(unsolved part — can be changed by sites below 1)

= Border between these 2 regions is a beach line

points equidistant
v frompand |
\ .np [ ] .
TS " beach fne %
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Sweep line and beach line

= Straight sweep line |
— Separates processed and unprocessed sites (points)

= Beach line (Looks like waves rolling up on a beach)

— Separates solved and unsolved regions above sweep line
(separates sites above | that can be changed from sites
that cannot be changed by sites below |)

— X-monotonic curve made of parabolic arcs
— Follows the sweep line

— Prevents us from missing unanticipated events until the
sweep line encounters the corresponding site

= : -
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Beach line

= Every site p, above | defines a complete parabola

= Beach line is the function, that passes through the
lowest points of all the parabolas (lower envelope)
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Beach line

= Every site p, above | defines a complete parabola

= Beach line is the function, that passes through the
lowest points of all the parabolas (lower envelope)
V
Q: How many arcs may the
beach line have at maximum?
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Beach line

= Every site p, above | defines a complete parabola

= Beach line is the function, that passes through the
lowest points of all the parabolas (lower envelope)
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Break point (bod zlomu)

= Intersection of two arcs on the beach line
= Equidistant to 2 sites and sweep line |
= Lies on Voronoi edge of the final diagram
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Events

What event types exist?
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Events

There are two types of events:

= Site events (SE)

— When the sweep line passes over a new site p,,

* new arc is added to the beach line
* new edge fragment added to the VD.

— All SEs known from the beginning (sites sorted by y)

= \Voronoi vertex event ([Berg] calls a circle event)

— When the parabolic arc shrinks to zero and disappears,
new Voronol vertex is created.

— Created dynamically by the algorithm
for triples or more neighbors on the beach line
(triples changed by both types of events)

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(33/43)




Site event

beach line

. sweep line

Generated when the sweep line passes over a site p,

— New parabolic arc created,
it starts as a vertical ray from p; to the beach line

— As the sweep line sweeps on, the arc grows wider

— The entry (..., p;,...) on the sweep line status is replaced
by the triple (..., p;, P, Pj,---)

— Dangling future VD edge created on the bisector (p;, p;)
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Voronol vertex event (circle event)

Generated when | passes the lowest point of circle
— Sites p;, p;, P appear consecutively on the beach line

— Circumcircle lies partially below the sweep line
(Voronoi vertex has not yet been generated)

— This circumcircle contains no point below the sweep line
(no future point will block the creation of the vertex)

— Vertex & bisector (p;, py ) created, (p;, p;) & (p;, Py) finished
— One parabolic arc removed from the beach line
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Data structures

1. (Partial) Voronoi diagram
2. Beach line data structure T
5. Event queue Q
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Data structures

1. (Partial) Voronoi diagram
2. Beach line data structure T
5. Event queue Q

1. VD edges arise during: site event circle event?
2. VD vertices arise during: site event circle event?
3. Site events known from the beginning: yes no?
4. Circle events known from the beginning: yes no?
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1. (Partial) Voronoi diagram data structure

Any PSLG data StrUCture, e.g. DCEL (planar stright line graph)
= Stores the VD during the construction

= Contain unbounded edges

— dangling edges during the construction (managed by
the beach line DS) and

— edges of unbounded cells
at the end
=> create a bounding box
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2. Beach line tree data structure T

= Used to locate the arc directly above a new site

N Eg Bmary tree T p; — possibly multiple times

— Leaves - ordered arcs along the beach line (x-monotone)
* T stores only the sites p, in leaves, T does not store the parabolas

— Inner tree nodes - breakpoints as ordered pairs <p;, p,>
* p;, P, are neighboring sites
 Breakpoint position computed on the fly
from p;, p,and y-coord of the sweep line
— Pointers to other two DS

* In leaves — pointer to event queue, point to node
when arc disappears via Voronoi vertex event — if it exists

* In inner nodes - pointer to (dangling) half-edge in DCEL of VD,
that is being traced out by the break point
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Max 2n -1 arcs on the beach line

New site splits just one arc

P2
P1| D2
pl . | ] | ]
P3
D +1 %) +1
P1P2P1 +2 P1P2P1 +2
1P3D1P2P1 2 P1D2P3P2P1 +2
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3. Event queue Q

= Priority queue, ordered by y-coordinate

s For site event
— stores the site itself
— known from the beginning

= For Voronoi vertex event (circle event)
— stores the lowest point of the circle

— stores also pointer to the leaf in tree T
(represents the parabolic arc that will disappear)

— created by both events, when triples of points become
neighbors (possible max three triples for a site)

— Pi» Py P P1» Py INsert of p, can create up to 3 triples
. _and delete up to 2 triples (p;, p;, p;) and (p;, Py, P )
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Fortune’s algorithm

FortuneVoronoi(P)
Input: A set of point sites P = {p,, p,,..., p,,} in the plane
Output:  Voronoi diagram Vor(P) inside a bounding box in a DCEL struct.

Init event queue Q with all site events
while( Q not empty) do
consider the event with largest y-coordinate in Q (next in the queue)
If( event is a site event at site p, )
then HandleSiteEvent(p;)
else HandleVoroVertexEvent(p;), where p; is the lowest point
of the circle causing the event
remove the event from Q
Create a bbox and attach half-infinite edges in T to it in DCEL.
9. Traverse the halfedges in DCEL and
add cell records and pointers to and from them
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Handle site event

HandleSiteEvent(p,) Pk
Input:  eventsitep,  Ps N~
Output: ypdated DCEL ~—"
;'1“"3'[5] """""""
T S — L., i, Pi, pi, Pk, ..

1. Searchin T for arc « vertically above p;. Let p; be the correspond. site

2. Apply insert-and-split operation, inserting a new entry of p; to the beach
line T (new arc), thus replacing (..., p;,...» with (..., p;, p;, Pj---)

3. Create a new (dangling) edge in the Voronoi diagram, which lies on the
bisector between p; and p,

4. Neighbors on the beach line changed -> check the neighboring triples
of arcs and insert or delete Voronoi vertex events (insert only if the
circle intersects the sweep line and it is not present yet).

Note: Newly created triple p;, p;, p; cannot generate a circle event
because it only involves two distinct sites.
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Handle Voronoli vertex (circle) event

— P

HandleVoroVertexEvent(p)) pi‘,""/
Input:  event site p, N
Output: ypdated DCEL 1

Let p;, p;, pcbe the sites that generated this event (from left to right).
1. Delete the entry p; from the beach line (thus eliminating its arc a),
l.e.: Replace a triple (..., p;, P; Py,---» With (..., pi, Ps---) INT.

2. Create a new vertex in the Voronoi diagram (at circumcenter of
(Pi» P;» Py) and join the two Voronoi edges for the bisectors (p;, p;)
and (p;, p to this vertex (dangling edges — created in step 3 above).

3. Create a new (dangling) edge for the bisector between (p;, p,)

4. Delete any Voronoi vertex events (max. three) from Q that arose from
triples involving the arc « of p; and generate (two) new events
corresponding to consecutive triples involving p;, and p,.

. %
-+ + -+




Beach line modification

Q: Beach line contains: abcdef

After deleting of d, which triples vanish and which
triples are added to the beach line?
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Handling degeneracies

Algorithm handles degeneracies correctly

= 2 or more events with the same y
— iIf x coords are different, process them in any order

— iIf x coords are the same (cocircular sites)
process them in any order,
It creates duplicated vertices with
zero-length edges,
remove them in post processing step e engh cdge J

ey
= degeneracies while handling an event

— Site below a beach line breakpoint ’ |

— Creates circle event on the same position —~_ | -~
. i [Berg]
_ - remove zero-length edges in post processing step %
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