
VORONOI DIAGRAM

PETR FELKEL
FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Mount]

Version from 9.11.2017

Talk overview

 Definition and examples

 Applications

 Algorithms in 2D
– D&C O(n log n)
– Sweep line O(n log n)

www.cguu.com

Felkel: Computational geometry

(2 / 43)

Voronoi diagram (VD)

 One of the most important structure in Comp. geom.
 Encodes proximity information

What is close to what?
 Standard VD – this lecture

– Set of points - nDim
– Euclidean space & metric

 Generalizations
– Set of line segments or curves
– Different metrics
– Higher order VD’s (furthest point)

Gershon Elber: IRIT

Felkel: Computational geometry

(3 / 43)

Voronoi cell (for points in plane)

 Let P = {p1, p2,…, pn} be a set of points (sites) in
dDim space … 2D space (plane) here

 Voronoi cell V(pi) – is open!
= set of points q closer to pi than to any other site:

, where
is the Euclidean distance between p and q

},,{)(ijqpqpqpV jii 
pq

   
ij

jii pphpV


 ,
 ji pph , = open halfplane

= set of pts strictly closer to pi than to pj

= intersection of open halfplanes

[Berg]

Felkel: Computational geometry

(4 / 43)

Voronoi diagram (in plane)

 Voronoi diagram Vor(P) of points P
= what is left of the plane after removing all the

open Voronoi cells
= collection of line segments

(possibly unbounded)

Site (given point)
VoroGlide demo

Felkel: Computational geometry

(5 / 43)

Voronoi diagram (in plane)

 Voronoi diagram Vor(P) of points P
= what is left of the plane after removing all the

open Voronoi cells
= collection of line segments

(possibly unbounded)

Site (given point)
VoroGlide demo

Felkel: Computational geometry

(5 / 43)

Voronoi diagram (in plane)

 Voronoi diagram Vor(P) of points P
= what is left of the plane after removing all the

open Voronoi cells
= collection of line segments

(possibly unbounded)

Edge

Site (given point)
VoroGlide demo

Felkel: Computational geometry

(5 / 43)

Voronoi diagram (in plane)

 Voronoi diagram Vor(P) of points P
= what is left of the plane after removing all the

open Voronoi cells
= collection of line segments

(possibly unbounded)

Edge

Site (given point)

Vertex

VoroGlide demo

Felkel: Computational geometry

(5 / 43)

Voronoi diagram (in plane)

 Voronoi diagram Vor(P) of points P
= what is left of the plane after removing all the

open Voronoi cells
= collection of line segments

(possibly unbounded)

Edge

Site (given point)

Vertex

Region around
the site is cell

VoroGlide demo

Felkel: Computational geometry

(5 / 43)

Voronoi diagram examples

1 point

Cell
• The whole plain for 1 point
• Halfplane or strip for collinear points
• Convex (possibly unbounded) polygon
Edges of VD
• || lines for collinear points
• Halflines (for non-collinear CH points)
• Line segments (for bounded cells)

Felkel: Computational geometry

(6 / 43)

Voronoi diagram examples

1 point 2 points

Cell
• The whole plain for 1 point
• Halfplane or strip for collinear points
• Convex (possibly unbounded) polygon
Edges of VD
• || lines for collinear points
• Halflines (for non-collinear CH points)
• Line segments (for bounded cells)

Felkel: Computational geometry

(6 / 43)

Voronoi diagram examples

1 point 2 points 3 points

Cell
• The whole plain for 1 point
• Halfplane or strip for collinear points
• Convex (possibly unbounded) polygon
Edges of VD
• || lines for collinear points
• Halflines (for non-collinear CH points)
• Line segments (for bounded cells)

Felkel: Computational geometry

(6 / 43)

Voronoi diagram examples

1 point 2 points 3 points

Cell
• The whole plain for 1 point
• Halfplane or strip for collinear points
• Convex (possibly unbounded) polygon
Edges of VD
• || lines for collinear points
• Halflines (for non-collinear CH points)
• Line segments (for bounded cells)

Felkel: Computational geometry

(6 / 43)

Voronoi diagram examples

1 point 2 points 3 points

Cell
• The whole plain for 1 point
• Halfplane or strip for collinear points
• Convex (possibly unbounded) polygon
Edges of VD
• || lines for collinear points
• Halflines (for non-collinear CH points)
• Line segments (for bounded cells)

Felkel: Computational geometry

(6 / 43)

Voronoi diagram examples

1 point 2 points 3 points

Cell
• The whole plain for 1 point
• Halfplane or strip for collinear points
• Convex (possibly unbounded) polygon
Edges of VD
• || lines for collinear points
• Halflines (for non-collinear CH points)
• Line segments (for bounded cells)

Felkel: Computational geometry

(6 / 43)

Voronoi diagram examples

16 points

[Håkan Jonsson]

Vertex with O(n) incident edges
From total |ne| ≤ 3n – 6

Felkel: Computational geometry

(7 / 43)

16 <= 42 17 <= 29

Voronoi diagram examples

16 points 17 points

Cell with O(n) vertices
From total |nv|  2n-5

[Håkan Jonsson]

Vertex with O(n) incident edges
From total |ne| ≤ 3n – 6

Felkel: Computational geometry

(7 / 43)

16 <= 42 17 <= 29

Voronoi diagram examples

Felkel: Computational geometry

(8 / 43)

Voronoi diagram (in plane)

= planar graph
– Subdivides plane into n cells (n = num. of input sites |P|)
– Edge = locus of equidistant pairs of points (cells)

= part of the bisector of these points
– Vertex = center of the circle defined by ≥ 3 points

=> vertices have degree ≥ 3
– Number of vertices nv ≤ 2n – 5 => O(n)
– Number of edges ne ≤ 3n – 6 => O(n)

(only O(n) from O(n2) intersections of bisectors)
– In higher dimensions complexity from O(n) up to O(n|d/2|)
– Unbounded cells belong to sites (points) on convex hull

Felkel: Computational geometry

(9 / 43)

Voronoi diagram O(n) complexity derivation
 For n collinear sites: ݊௩ = 0														 ≤ 2݊ − 5݊௘ = ݊ − 1 		≤ 3݊ − 6
 For n non-collinear sites:

– Add extra VD vertex v in infinity ݉௩ = ݊௡ + 1
– Apply Euler’s formula: ݉௩ −݉௘ + ݉௙ = 2
– Obtain ݊௩ + 1 −	݊௘ + 	݊		 = 2
– Every VD edge has 2 vertices Sum of vertex degrees = 2݊௘
– Every VD vertex has degree ¥ 3 Sum of vertex degrees = 3݉௩ = 3(݊௩ + 1)
– Together 2݊௘ ≥ 3 ݊௩ + 1

Felkel: Computational geometry

(10 / 43)

2݊௘ ≥ 3 ݊௩ + 1 																2݊௘ ≥ 3 ݊௘ − ݊ + 1 + 12݊௘ ≥ 3݊௘ − 3݊ + 6݊௘ ≤ 3݊ − 6

݊௘ = ݊௩ + ݊ − 1݊௩ = ݊௘ − ݊ + 1

both hold

2݊௘ ≥ 3 ݊௩ + 12(݊௩ + ݊ − 1) ≥ 3 ݊௩ + 12݊௩ + 2݊ − 2 ≥ 3݊௩ + 3݊௩ ≤ 2݊ − 5

Voronoi diagram and convex hull

 Convex hull

Connects points from
unbounded cells

Felkel: Computational geometry

(11 / 43)

Delaunay triangulation

 point set triangulation (straight line dual to VD)
 maximize the minimal angle (tends to

equiangularity)

Felkel: Computational geometry

(12 / 43)

Delaunay triangulation

 point set triangulation (straight line dual to VD)
 maximize the minimal angle (tends to

equiangularity)

Felkel: Computational geometry

(12 / 43)

Largest empty circle CP(q) with center in
1. In VD vertex q: has 3 or more sites on its boundary
2. On VD edge: contains exactly 2 sites on its

boundary and no other site

Edges, vertices and largest empty circles

[Berg]

[Berg]

Felkel: Computational geometry

(13 / 43)

Largest empty circle CP(q) with center in
1. In VD vertex q: has 3 or more sites on its boundary
2. On VD edge: contains exactly 2 sites on its

boundary and no other site

Edges, vertices and largest empty circles

[Berg]

[Berg]

Felkel: Computational geometry

(13 / 43)

Largest empty circle CP(q) with center in
1. In VD vertex q: has 3 or more sites on its boundary
2. On VD edge: contains exactly 2 sites on its

boundary and no other site

Edges, vertices and largest empty circles

[Berg]

[Berg]

Felkel: Computational geometry

(13 / 43)

Some applications

 Nearest neighbor queries in Vor(P) of points P
– Point q œ P … search sites across the edges around

the cell q
– Point q – P … point location queries – see Lecture 2

(the cell where point q falls)

 Facility location (shop or power plant)
– Largest empty circle (better in Manhattan metric VD)

 Neighbors and Interpolation
– Interpolate with the nearest neighbor,

in 3D: surface reconstruction from points

 Art
 …

Felkel: Computational geometry

(14 / 43)

Voronoi Art

Boundary Functions
Scott Snibbe, 1998

Felkel: Computational geometry

(15 / 43)

Voronoi Art

Courtesy [Gold]

Felkel: Computational geometry

(16 / 43)

Algorithms in 2D

 D&C O(n log n)
 Fortune’s Sweep line O(n log n)

Felkel: Computational geometry

(17 / 43)

Voronoi diagram (VD)

Divide and Conquer method
1. Split points based on x-

coord into L and R
2. Recursion on L and R

1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(18 / 43)

Voronoi diagram (VD)

Divide and Conquer method
1. Split points based on x-

coord into L and R
2. Recursion on L and R

1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

VDL VDP

Felkel: Computational geometry

(19 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(20 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(20 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(20 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(20 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(20 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(20 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(20 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(20 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(20 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(21 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(22 / 43)

Voronoi diagram (VD)

Divide and Conquer method
1. Split points based on x-

coord into L and R
2. Recursion on L and R

1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(23 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 Continue CW in the li left, CCW in the ri right cell
 Image shows CW search on cell ݈଴ and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]





Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 Continue CW in the li left, CCW in the ri right cell
 Image shows CW search on cell ݈଴ and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]





Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 Continue CW in the li left, CCW in the ri right cell
 Image shows CW search on cell ݈଴ and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]





Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 Continue CW in the li left, CCW in the ri right cell
 Image shows CW search on cell ݈଴ and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]





Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 Continue CW in the li left, CCW in the ri right cell
 Image shows CW search on cell ݈଴ and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]





Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 Continue CW in the li left, CCW in the ri right cell
 Image shows CW search on cell ݈଴ and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]





Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 Continue CW in the li left, CCW in the ri right cell
 Image shows CW search on cell ݈଴ and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]





Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 Continue CW in the li left, CCW in the ri right cell
 Image shows CW search on cell ݈଴ and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]

CCW



Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 Continue CW in the li left, CCW in the ri right cell
 Image shows CW search on cell ݈଴ and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]

CCW



Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 Continue CW in the li left, CCW in the ri right cell
 Image shows CW search on cell ݈଴ and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]CW

CCW



Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 Continue CW in the li left, CCW in the ri right cell
 Image shows CW search on cell ݈଴ and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]CW

CCW



Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 Continue CW in the li left, CCW in the ri right cell
 Image shows CW search on cell ݈଴ and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]CW

CCW



Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 Continue CW in the li left, CCW in the ri right cell
 Image shows CW search on cell ݈଴ and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]CW

CCW



Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 Continue CW in the li left, CCW in the ri right cell
 Image shows CW search on cell ݈଴ and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]CWCW

CCW



Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 Continue CW in the li left, CCW in the ri right cell
 Image shows CW search on cell ݈଴ and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]CWCW

CCW



Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 Continue CW in the li left, CCW in the ri right cell
 Image shows CW search on cell ݈଴ and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]CWCW

CCW

CCW

Felkel: Computational geometry

(24 / 43)

Divide and Conquer method complexity

 Initial sort
 recursion levels

– O(n) each merge (chain search, trim, add edges to VD)

 Altogether

Felkel: Computational geometry

(25 / 43)

Fortune’s sweep line algorithm – idea in 3D

Cones in sites
Scanning plane
Both slanted 45º

Projection of the
intersection to xy:
 Cone x plane =>

parabolic arcs
 Cone x cone =>

edges of VD

Felkel: Computational geometry

(26 / 43)

[O’Rourke]

Fortune’s sweep line algorithm

 Differs from “typical” sweep line algorithm
 Unprocessed sites ahead from sweep line may

generate Voronoi vertex behind the sweep line

[Mount]

DONE

TODO

Fortune’s applet

Felkel: Computational geometry

(27 / 43)

Fortune’s sweep line algorithm idea

 Subdivide the halfplane above the sweep line l
into 2 regions
1. Points closer to some site above than to sweep line l

(solved part)
2. Points closer to sweep line l than any point above

(unsolved part – can be changed by sites below l)

 Border between these 2 regions is a beach line

l

l

[Mount]

UNSOLVED

TODO

DONE

Felkel: Computational geometry

(28 / 43)

Sweep line and beach line

 Straight sweep line l
– Separates processed and unprocessed sites (points)

 Beach line (Looks like waves rolling up on a beach)
– Separates solved and unsolved regions above sweep line

(separates sites above l that can be changed from sites
that cannot be changed by sites below l)

– x-monotonic curve made of parabolic arcs
– Follows the sweep line
– Prevents us from missing unanticipated events until the

sweep line encounters the corresponding site

Felkel: Computational geometry

(29 / 43)

Beach line

 Every site pi above l defines a complete parabola
 Beach line is the function, that passes through the

lowest points of all the parabolas (lower envelope)

x[Berg]

Felkel: Computational geometry

(30 / 43)

Beach line

 Every site pi above l defines a complete parabola
 Beach line is the function, that passes through the

lowest points of all the parabolas (lower envelope)

x[Berg]

Q: How many arcs may the
beach line have at maximum?

Felkel: Computational geometry

(30 / 43)

Beach line

 Every site pi above l defines a complete parabola
 Beach line is the function, that passes through the

lowest points of all the parabolas (lower envelope)

x[Berg]

Felkel: Computational geometry

(30 / 43)

Break point (bod zlomu)

= Intersection of two arcs on the beach line
 Equidistant to 2 sites and sweep line l
 Lies on Voronoi edge of the final diagram

x[Berg]

Felkel: Computational geometry

(31 / 43)

Events

What event types exist?

Felkel: Computational geometry

(32 / 43)

Events

There are two types of events:
 Site events (SE)

– When the sweep line passes over a new site pi,
• new arc is added to the beach line
• new edge fragment added to the VD.

– All SEs known from the beginning (sites sorted by y)

 Voronoi vertex event ([Berg] calls a circle event)
– When the parabolic arc shrinks to zero and disappears,

new Voronoi vertex is created.
– Created dynamically by the algorithm

for triples or more neighbors on the beach line
(triples changed by both types of events)

Felkel: Computational geometry

(33 / 43)

Generated when the sweep line passes over a site pi
– New parabolic arc created,

it starts as a vertical ray from pi to the beach line
– As the sweep line sweeps on, the arc grows wider
– The entry ‚…, pj ,…Ú on the sweep line status is replaced

by the triple ‚…, pj , pi , pj ,…Ú

– Dangling future VD edge created on the bisector (pi, pj)

Site event

[Mount]

sweep line

beach line

Felkel: Computational geometry

(34 / 43)

Voronoi vertex event (circle event)

Generated when l passes the lowest point of circle
– Sites pi , pj , pk appear consecutively on the beach line
– Circumcircle lies partially below the sweep line

(Voronoi vertex has not yet been generated)
– This circumcircle contains no point below the sweep line

(no future point will block the creation of the vertex)
– Vertex & bisector (pi, pk) created, (pi, pj) & (pj, pk) finished
– One parabolic arc removed from the beach line

[Mount]
sweep line

beach line

Felkel: Computational geometry

(35 / 43)

Data structures

1. (Partial) Voronoi diagram
2. Beach line data structure T
3. Event queue Q

Felkel: Computational geometry

(36 / 43)

Data structures

1. (Partial) Voronoi diagram
2. Beach line data structure T
3. Event queue Q

1. VD edges arise during: site event circle event?
2. VD vertices arise during: site event circle event?
3. Site events known from the beginning: yes no?
4. Circle events known from the beginning: yes no?

Felkel: Computational geometry

(36 / 43)

1. (Partial) Voronoi diagram data structure

Any PSLG data structure, e.g. DCEL (planar stright line graph)

 Stores the VD during the construction
 Contain unbounded edges

– dangling edges during the construction (managed by
the beach line DS) and

– edges of unbounded cells
at the end
=> create a bounding box

[Berg]

Felkel: Computational geometry

(37 / 43)

[Mount]

2. Beach line tree data structure T

 Used to locate the arc directly above a new site
 E.g. Binary tree T

– Leaves - ordered arcs along the beach line (x-monotone)
• T stores only the sites pi in leaves, T does not store the parabolas

– Inner tree nodes - breakpoints as ordered pairs <pj, pk>
• pj, pk are neighboring sites
• Breakpoint position computed on the fly

from pj, pk and y-coord of the sweep line

– Pointers to other two DS
• In leaves – pointer to event queue, point to node

when arc disappears via Voronoi vertex event – if it exists
• In inner nodes - pointer to (dangling) half-edge in DCEL of VD,

that is being traced out by the break point

Felkel: Computational geometry

(38 / 43)

pi – possibly multiple times

Max 2n -1 arcs on the beach line

Felkel: Computational geometry

(39 / 43)

ଵ݌
ଶ݌

ଷ݌
ଵ݌ ଶ݌ ଷ݌

ଵ݌ ଵ݌ଶ݌ଵ݌1+ ଵ+2݌ଶ݌ଵ݌ଷ݌ଵ݌2+

ଵ݌ ଵ݌ଶ݌ଵ݌1+ ଵ݌ଶ݌ଷ݌ଶ݌ଵ݌2+ +2

New site splits just one arc

3. Event queue Q

 Priority queue, ordered by y-coordinate
 For site event

– stores the site itself
– known from the beginning

 For Voronoi vertex event (circle event)
– stores the lowest point of the circle
– stores also pointer to the leaf in tree T

(represents the parabolic arc that will disappear)
– created by both events, when triples of points become

neighbors (possible max three triples for a site)
– pi, pj, pk, pl, pm insert of pk can create up to 3 triples

and delete up to 2 triples (pi, pj, pl) and (pj, pl, pm)
Felkel: Computational geometry

(40 / 43)

Input:
Output:

Fortune’s algorithm
FortuneVoronoi(P)

A set of point sites P = {p1, p2,…, pn} in the plane
Voronoi diagram Vor(P) inside a bounding box in a DCEL struct.

1. Init event queue Q with all site events
2. while(Q not empty) do
3. consider the event with largest y-coordinate in Q (next in the queue)
4. if(event is a site event at site pi)
5. then HandleSiteEvent(pi)
6. else HandleVoroVertexEvent(pi), where pi is the lowest point

of the circle causing the event
7. remove the event from Q
8. Create a bbox and attach half-infinite edges in T to it in DCEL.
9. Traverse the halfedges in DCEL and

add cell records and pointers to and from them

Input:
Output:

Handle site event
HandleSiteEvent(pi)

event site pi
updated DCEL

1. Search in T for arc a vertically above pi. Let pj be the correspond. site
2. Apply insert-and-split operation, inserting a new entry of pi to the beach

line T (new arc), thus replacing ‚…, pj ,…Ú with ‚…, pj , pi , pj ,…Ú

3. Create a new (dangling) edge in the Voronoi diagram, which lies on the
bisector between pi and pj

4. Neighbors on the beach line changed -> check the neighboring triples
of arcs and insert or delete Voronoi vertex events (insert only if the
circle intersects the sweep line and it is not present yet).
Note: Newly created triple pj , pi , pj cannot generate a circle event
because it only involves two distinct sites.

[Mount]

Input:
Output:

Handle Voronoi vertex (circle) event
HandleVoroVertexEvent(pj)

event site pj
updated DCEL

Let pi , pj , pk be the sites that generated this event (from left to right).
1. Delete the entry pj from the beach line (thus eliminating its arc a),

i.e.: Replace a triple ‚…, pi , pj , pk ,…Ú with ‚…, pi , pk,…Ú in T.
2. Create a new vertex in the Voronoi diagram (at circumcenter of

‚pi , pj , pkÚ) and join the two Voronoi edges for the bisectors ‚pi , pjÚ
and ‚pj , pkÚ to this vertex (dangling edges – created in step 3 above).

3. Create a new (dangling) edge for the bisector between ‚pj , pkÚ

4. Delete any Voronoi vertex events (max. three) from Q that arose from
triples involving the arc a of pj and generate (two) new events
corresponding to consecutive triples involving pi, and pk.

[Mount]

Beach line modification

Q: Beach line contains: abcdef
After deleting of d, which triples vanish and which
triples are added to the beach line?

Handling degeneracies

Algorithm handles degeneracies correctly
 2 or more events with the same y

– if x coords are different, process them in any order
– if x coords are the same (cocircular sites)

process them in any order,
it creates duplicated vertices with

zero-length edges,
remove them in post processing step

 degeneracies while handling an event
– Site below a beach line breakpoint
– Creates circle event on the same position,

remove zero-length edges in post processing step

[Berg]

[Berg]

Felkel: Computational geometry

(45 / 43)

References
[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:

Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapter 7, http://www.cs.uu.nl/geobook/

[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture
Notes for Spring 2007, University of Maryland, Lectures 12 and 29.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

[Preparata] Preperata, F.P., Shamos, M.I.: Computational Geometry. An
Introduction. Berlin, Springer-Verlag,1985. Chapter 5

[VoroGlide] VoroGlide applet:
http://www.pi6.fernuni-hagen.de/GeomLab/VoroGlide/

[Fortune] Fortune’s algorithm applet:
http://www.personal.kent.edu/~rmuhamma/Compgeometry/
MyCG/Voronoi/Fortune/fortune.htm

[Muhama] http://www.personal.kent.edu/~rmuhamma/Compgeometry/
compgeom.html

http://www.personal.kent.edu/~rmuhamma/Compgeometry/MyCG/Voronoi/Div
ConqVor/divConqVor.htm

Felkel: Computational geometry

(46 / 43)

