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Talk overview

 Definition and examples

 Applications

 Algorithms in 2D
– D&C             O(n log n)
– Sweep line   O(n log n)

www.cguu.com
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Voronoi diagram (VD)

 One of the most important structure in Comp. geom.
 Encodes proximity information

What is close to what?
 Standard VD – this lecture

– Set of points - nDim
– Euclidean space & metric

 Generalizations 
– Set of line segments or curves
– Different metrics
– Higher order VD’s (furthest point)

Gershon Elber: IRIT
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Voronoi cell (for points in plane)

 Let P = {p1, p2,…, pn} be a set of points (sites) in 
dDim space                                … 2D space (plane) here

 Voronoi cell V(pi) – is open!
= set of points q closer to pi than to any other site:

, where
is the Euclidean distance between p and q

},,{)( ijqpqpqpV jii 
pq

   
ij

jii pphpV


 ,
 ji pph , = open halfplane

= set of pts strictly closer to pi than to pj

= intersection of open halfplanes

[Berg]
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Voronoi diagram (in plane)

 Voronoi diagram Vor(P) of points P
= what is left of the plane after removing all the

open Voronoi cells 
= collection of line segments

(possibly unbounded)

Site (given point)
VoroGlide demo
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Voronoi diagram (in plane)
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Voronoi diagram examples

1 point

Cell
• The whole plain for 1 point
• Halfplane or strip for collinear points
• Convex (possibly unbounded) polygon 
Edges of  VD
• || lines for collinear points
• Halflines (for non-collinear CH points)
• Line segments (for bounded cells)
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Voronoi diagram examples

16 points

[Håkan Jonsson]

Vertex with O(n) incident edges
From total |ne| ≤ 3n – 6
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Voronoi diagram examples

16 points 17 points

Cell with O(n) vertices
From total |nv|  2n-5 

[Håkan Jonsson]

Vertex with O(n) incident edges
From total |ne| ≤ 3n – 6
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Voronoi diagram examples
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Voronoi diagram (in plane)

= planar graph 
– Subdivides plane into n cells (n = num. of input sites |P|)
– Edge = locus of equidistant pairs of points (cells)

= part of the bisector of these points
– Vertex = center of the circle defined by ≥ 3 points

=> vertices  have degree ≥ 3
– Number of vertices nv ≤ 2n – 5 => O(n)
– Number of edges ne ≤ 3n – 6 => O(n)

(only O(n) from O(n2) intersections of bisectors)
– In higher dimensions complexity from O(n) up to O(n|d/2|)
– Unbounded cells belong to sites (points) on convex hull
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Voronoi diagram O(n) complexity derivation
 For n collinear sites: ݊௩ = 0														 ≤ 2݊ − 5݊௘ = ݊ − 1 		≤ 3݊ − 6
 For n non-collinear sites:

– Add extra VD vertex v in infinity ݉௩ = ݊௡ + 1
– Apply Euler’s  formula:       ݉௩ −݉௘ + ݉௙ = 2
– Obtain ݊௩ + 1 −	݊௘ + 	݊		 = 2
– Every VD edge has 2 vertices      Sum of vertex degrees = 2݊௘
– Every VD vertex has degree ¥ 3  Sum of vertex degrees = 3݉௩ = 3(݊௩ + 1)
– Together   2݊௘ ≥ 3 ݊௩ + 1
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2݊௘ ≥ 3 ݊௩ + 1 																2݊௘ ≥ 3 ݊௘ − ݊ + 1 + 12݊௘ ≥ 3݊௘ − 3݊ + 6݊௘ ≤ 3݊ − 6

݊௘ = ݊௩ + ݊ − 1݊௩ = ݊௘ − ݊ + 1

both hold

2݊௘ ≥ 3 ݊௩ + 12(݊௩ + ݊ − 1) ≥ 3 ݊௩ + 12݊௩ + 2݊ − 2 ≥ 3݊௩ + 3݊௩ ≤ 2݊ − 5



Voronoi diagram and convex hull

 Convex hull 

Connects points from 
unbounded cells
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Delaunay triangulation

 point set triangulation   (straight line dual to VD)
 maximize the minimal angle  (tends to 

equiangularity)
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Largest empty circle CP(q) with center in
1. In VD vertex q: has 3 or more sites on its boundary
2. On VD edge:   contains exactly 2 sites on its 

boundary and no other site

Edges, vertices and largest empty circles

[Berg]

[Berg]
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Some applications

 Nearest neighbor queries in Vor(P) of points P
– Point q œ P  … search sites across the edges around

the cell q
– Point q – P  … point location queries – see Lecture 2

(the cell where point q falls)

 Facility location (shop or power plant)
– Largest empty circle (better in Manhattan metric VD)

 Neighbors and Interpolation
– Interpolate with the nearest neighbor, 

in 3D: surface reconstruction from points

 Art
 …

Felkel: Computational geometry
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Voronoi Art

Boundary Functions
Scott Snibbe, 1998
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Voronoi Art

Courtesy [Gold]
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Algorithms in 2D

 D&C             O(n log n)
 Fortune’s Sweep line   O(n log n)
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Voronoi diagram (VD)

Divide and Conquer method
1. Split points based on  x-

coord into L and R
2. Recursion on L and R

1-3 points => return 
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from 

the chain
O(n log n)
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Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 Continue CW in the li left, CCW in the ri right cell
 Image shows CW search on cell ݈଴ and CCW on cells ri :

l0

left cell right 
cell

CW CCW

[Mount]




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Divide and Conquer method complexity

 Initial sort 
 recursion levels

– O(n) each merge (chain search, trim, add edges to VD)

 Altogether 
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Fortune’s sweep line algorithm – idea in 3D

Cones in sites
Scanning plane 
Both slanted 45º

Projection of the
intersection to xy: 
 Cone x plane => 

parabolic arcs
 Cone x cone => 

edges of VD

Felkel: Computational geometry

(26 / 43)

[O’Rourke]



Fortune’s sweep line algorithm

 Differs from “typical” sweep line algorithm
 Unprocessed sites ahead from sweep line may 

generate Voronoi vertex behind the sweep line

[Mount]

DONE

TODO

Fortune’s applet
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Fortune’s sweep line algorithm idea

 Subdivide the halfplane above the sweep line l
into 2 regions
1. Points closer to some site above than to sweep line l 

(solved part) 
2. Points closer to sweep line l than any point above

(unsolved part – can be changed by sites below l)

 Border between these 2 regions is a beach line

l

l

[Mount]

UNSOLVED

TODO

DONE
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Sweep line and beach line

 Straight sweep line l
– Separates processed and unprocessed sites (points)

 Beach line (Looks like waves rolling up on a beach)
– Separates solved and unsolved regions above sweep line

(separates sites above l that can be changed from sites 
that cannot be changed by sites below l)

– x-monotonic curve made of parabolic arcs
– Follows the sweep line
– Prevents us from missing unanticipated events until the 

sweep line encounters the corresponding site
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Beach line

 Every site pi above l defines a complete parabola
 Beach line is the function, that passes through the 

lowest points of all the parabolas (lower envelope)

x[Berg]
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x[Berg]

Q: How many arcs may the
beach line have at maximum? 
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Break point (bod zlomu)

= Intersection of two arcs on the beach line
 Equidistant to 2 sites and sweep line l
 Lies on Voronoi edge of the final diagram

x[Berg]
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Events

What event types exist?
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Events

There are two types of events:
 Site events (SE)

– When the sweep line passes over a new site pi, 
• new arc is added to the beach line 
• new edge fragment added to the VD.

– All SEs known from the beginning (sites sorted by y)

 Voronoi vertex event ([Berg] calls a circle event)
– When the parabolic arc shrinks to zero and disappears, 

new Voronoi vertex is created.
– Created dynamically by the algorithm

for triples or more neighbors on the beach line
(triples changed by both types of events)
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Generated when the sweep line passes over a site pi
– New parabolic arc created, 

it starts as a vertical ray from pi to the beach line
– As the sweep line sweeps on, the arc grows wider 
– The entry ‚…, pj ,…Ú on the sweep line status is replaced 

by the triple ‚…, pj , pi , pj ,…Ú

– Dangling future VD edge created on the bisector (pi, pj )

Site event

[Mount]

sweep line

beach line
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Voronoi vertex event (circle event)

Generated when l passes the lowest point of circle
– Sites pi , pj , pk appear consecutively on the beach line
– Circumcircle lies partially below the sweep line

(Voronoi vertex has not yet been generated) 
– This circumcircle contains no point below the sweep line

(no future point will block the creation of the vertex)
– Vertex & bisector (pi, pk ) created, (pi, pj ) & (pj, pk) finished
– One parabolic arc removed from the beach line

[Mount]
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Data structures

1. (Partial) Voronoi diagram 
2. Beach line data structure T
3. Event queue Q
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Data structures

1. (Partial) Voronoi diagram 
2. Beach line data structure T
3. Event queue Q

1. VD edges arise during: site event   circle event?
2. VD vertices arise during: site event   circle event?
3. Site events known from the beginning: yes no?
4. Circle events known from the beginning: yes no?
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1. (Partial) Voronoi diagram data structure

Any PSLG data structure, e.g. DCEL (planar stright line graph)

 Stores the VD during the construction
 Contain unbounded edges 

– dangling edges during the construction (managed by 
the beach line DS) and 

– edges of unbounded cells 
at the end
=> create a bounding box

[Berg]

Felkel: Computational geometry

(37 / 43)



[Mount]

2. Beach line tree data structure T

 Used to locate the arc directly above a new site
 E.g. Binary tree T

– Leaves - ordered arcs along the beach line (x-monotone)
• T stores only the sites pi in leaves, T does not store the parabolas

– Inner tree nodes - breakpoints as ordered pairs <pj, pk>
• pj, pk are neighboring sites
• Breakpoint position computed on the fly 

from pj, pk and y-coord of the sweep line

– Pointers to other two DS
• In leaves – pointer to event queue, point to node 

when arc disappears via Voronoi vertex event – if it exists
• In inner nodes  - pointer to (dangling) half-edge in DCEL of VD, 

that is being traced out by the break point
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Max 2n -1 arcs on the beach line
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New site splits just one arc



3. Event queue Q

 Priority queue, ordered by y-coordinate
 For site event 

– stores the site itself
– known from the beginning

 For Voronoi vertex event (circle event)
– stores the lowest point of the circle
– stores also pointer to the leaf in tree T

(represents the parabolic arc that will disappear)
– created by both events, when triples of points become 

neighbors (possible max three triples for a site)
– pi, pj, pk, pl, pm insert of pk can create up to 3 triples

and delete up to 2 triples (pi, pj, pl) and (pj, pl, pm )
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Input:
Output:

Fortune’s algorithm
FortuneVoronoi(P)

A set of point sites P = {p1, p2,…, pn} in the plane
Voronoi diagram Vor(P) inside a bounding box in a DCEL struct.

1. Init event queue Q with all site events
2. while( Q not empty) do
3. consider the event with largest y-coordinate in Q (next in the queue)
4. if( event is a site event at site pi )
5. then HandleSiteEvent(pi) 
6. else  HandleVoroVertexEvent(pi), where pi is the lowest point

of the circle causing the event
7. remove the event from Q
8. Create a bbox and attach half-infinite edges in T to it in DCEL.
9. Traverse the halfedges in DCEL and 

add cell records and pointers to and from them



Input:
Output:

Handle site event
HandleSiteEvent(pi)

event site pi
updated DCEL

1. Search in T for arc a vertically above pi. Let pj be the correspond. site
2. Apply insert-and-split operation, inserting a new entry of pi to the beach 

line T (new arc), thus replacing ‚…, pj ,…Ú with ‚…, pj , pi , pj ,…Ú

3. Create a new (dangling) edge in the Voronoi diagram, which lies on the 
bisector between pi and pj

4. Neighbors on the beach line changed -> check the neighboring triples 
of arcs and insert or delete Voronoi vertex events (insert only if the 
circle intersects the sweep line and it is not present yet). 
Note: Newly created triple pj , pi , pj cannot generate a circle event 
because it only involves two distinct sites.

[Mount]



Input:
Output:

Handle Voronoi vertex (circle) event
HandleVoroVertexEvent(pj)

event site pj
updated DCEL

Let pi , pj , pk be the sites that generated this event (from left to right).
1. Delete the entry pj from the beach line (thus eliminating its arc a), 

i.e.: Replace a triple ‚…, pi , pj , pk ,…Ú with ‚…, pi , pk,…Ú in T.
2. Create a new vertex in the Voronoi diagram (at circumcenter of 

‚pi , pj , pkÚ) and join the two Voronoi edges for the bisectors ‚pi , pjÚ
and ‚pj , pkÚ to this vertex (dangling edges – created in step 3 above).

3. Create a new (dangling) edge for the bisector between ‚pj , pkÚ

4. Delete any Voronoi vertex events (max. three) from Q that arose from 
triples involving the arc a of pj and generate (two) new events 
corresponding to consecutive triples involving pi, and pk. 

[Mount]



Beach line modification

Q: Beach line contains: abcdef
After deleting of d, which triples vanish and which 
triples are added to the beach line?



Handling degeneracies

Algorithm handles degeneracies correctly
 2 or more events with the same y

– if x coords are different, process them in any order
– if x coords are the same (cocircular sites)

process them in any order, 
it creates duplicated vertices with 

zero-length edges, 
remove them in post processing step

 degeneracies while handling an event
– Site below a beach line breakpoint
– Creates circle event on the same position, 

remove zero-length edges in post processing step

[Berg]

[Berg]
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