

VORONOI DIAGRAM

PETR FELKEL

FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Mount]

Version from 9.11.2017

Talk overview

- One of the most important structure in Comp. geom.
- Encodes proximity information What is close to what?
- Standard VD this lecture
 - Set of points nDim
 - Euclidean space & metric
- Generalizations
 - Set of line segments or curves
 - Different metrics
 - Higher order VD's (furthest point)

Voronoi cell (for points in plane)

- Let $P = \{p_1, p_2, ..., p_n\}$ be a set of points (*sites*) in dDim space ... 2D space (plane) here
- Voronoi cell V(p_i) is open! = set of points q closer to p_i than to any other site: $V(p_i) = \{q, \|p_iq\| < \|p_iq\|, \forall j \neq i\}, \text{ where }$ |pq| is the Euclidean distance between p and q = intersection of open halfplanes $V(p_i) = \bigcap h(p_i, p_j)$ $h(p_i, p_i) = \text{open halfplane}$ [Berg] = set of pts strictly closer to p_i than to p Felkel: Computational geometry

- Voronoi diagram Vor(P) of points P
 - = what is left of the plane after removing all the open Voronoi cells
 - = collection of line segments

(possibly unbounded)

- Voronoi diagram Vor(P) of points P
 - = what is left of the plane after removing all the open Voronoi cells

VoroGlide demo

Felkel: Computational geometr

= collection of line segments
(possibly unbounded)

Site (given point)

1 point

Cell

- The whole plain for 1 point
- Halfplane or strip for collinear points
- Convex (possibly unbounded) polygon

Edges of VD

- || lines for collinear points
- Halflines (for non-collinear CH points)

Felkel: Computational geometry

• Line segments (for bounded cells)

Cell

- The whole plain for 1 point
- Halfplane or strip for collinear points
- Convex (possibly unbounded) polygon

Edges of VD

- || lines for collinear points
- Halflines (for non-collinear CH points)

Felkel: Computational geometry

• Line segments (for bounded cells)

= planar graph

- Subdivides plane into n cells (n = num. of input sites |P|)
- Edge = locus of equidistant pairs of points (cells)
 = part of the bisector of these points
- Vertex = center of the circle defined by ≥ 3 points
 => vertices have degree ≥ 3
- Number of vertices $n_v \le 2n 5 \implies O(n)$
- Number of edges $n_e \le 3n 6 => O(n)$ (only O(n) from $O(n^2)$ intersections of bisectors)⁻⁻⁻
- In higher dimensions complexity from O(n) up to $O(n^{|d/2|})$
- Unbounded cells belong to sites (points) on convex hull

Felkel: Computational geometry

Voronoi diagram O(n) complexity derivation

- • For *n* collinear sites: $n_v = 0 \leq 2n 5$ both hold $n_e = (n-1) \le 3n-6$
 - For *n* non-collinear sites:
 - Add extra VD vertex v in infinity $m_v = n_n + 1$

 - Apply Euler's formula: $m_v m_e + m_f = 2$ Obtain $(n_v + 1) n_e + n = 2$ $\begin{bmatrix} n_e = n_v + n 1 \\ n_v = n_e n + 1 \end{bmatrix}$
 - Every VD edge has 2 vertices Sum of vertex degrees = $2n_e$
 - Every VD vertex has degree ≥ 3 Sum of vertex degrees = $3m_v = 3(n_v + 1)$
 - Together $2n_e \geq 3(n_v + 1)$

 $2n_e \ge 3(n_v + 1)$ $2n_e \ge 3(n_v + 1)$ $2(n_v + n - 1) \ge 3(n_v + 1) \quad \text{ and } \quad 2n_e \ge 3(n_e - n + 1 + 1) \quad \text{ and } \quad n_e \ge 3(n_e - n + 1 + 1) \quad n_e = 3(n_e - n + 1 + 1) \quad n_e = 3(n_e - n + 1 + 1) \quad n_e = 3(n_e - n + 1 + 1) \quad n_e = 3(n_e - n + 1 + 1) \quad n_e = 3(n_e - n + 1 + 1) \quad n_e = 3(n_e - n + 1 + 1) \quad n_e = 3(n_e - n + 1 + 1) \quad n_e = 3(n_e - n + 1 + 1) \quad n_e = 3(n_e - n + 1 + 1) \quad n_e = 3(n_e - n + 1 + 1) \quad n_e = 3(n_e - n + 1 + 1) \quad n_e = 3(n_e - n + 1 + 1) \quad n_e = 3(n_e - n + 1 + 1) \quad n_e = 3(n_e - n + 1 + 1) \quad n_e = 3(n_e - n + 1 + 1) \quad n_e = 3(n_e - n + 1$ $+ + 2n_e \ge 3n_e - 3n + 6$ $2n_n + 2n - 2 \ge 3n_n + 3$ $n_e \le 3n - 6$ $n_v \leq 2n-5$ Felkel: Computational geometry

Voronoi diagram and convex hull

Delaunay triangulation

- point set triangulation (straight line dual to VD)
- maximize the minimal angle (tends to equiangularity)

Delaunay triangulation

- point set triangulation (straight line dual to VD)
- maximize the minimal angle (tends to equiangularity)

Edges, vertices and largest empty circles

Largest empty circle $C_P(q)$ with center in

- 1. In VD vertex q: has 3 or more sites on its boundary
- 2. On VD edge: contains exactly 2 sites on its boundary and no other site

Edges, vertices and largest empty circles

Largest empty circle $C_P(q)$ with center in

- 1. In VD vertex q: has 3 or more sites on its boundary
- 2. On VD edge: contains exactly 2 sites on its boundary and no other site

Edges, vertices and largest empty circles

Largest empty circle $C_P(q)$ with center in

- 1. In VD vertex q: has 3 or more sites on its boundary
- 2. On VD edge: contains exactly 2 sites on its boundary and no other site

Some applications

- Nearest neighbor queries in Vor(P) of points P
 - Point $q \in P$... search sites across the edges around the cell q
 - Point $q \notin P$... point location queries see Lecture 2 (the cell where point *q* falls)
- Facility location (shop or power plant)
 - Largest empty circle (better in Manhattan metric VD)
- Neighbors and Interpolation
 - Interpolate with the nearest neighbor, in 3D: surface reconstruction from points

Voronoi Art

Voronoi Art

Algorithms in 2D

- D&C
- Fortune's Sweep line

O(n log n) O(n log n)

1	Split points based on x- coord into L and R
• 2	. Recursion on L and R 1-3 points => return
	>3 points => recursion
3	. Merge VD _L and VD _R
\bigcirc	monotone chain
	trim intersected edges
	• Add new edges from • •
	the chain
· · · · · · · · · · · · · · · · · · ·	+ + + + + + + + + + + + + + + + + + + +
)(n log n)+ + + + + + + + ()
	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
+ + DCGI + + + + + + + + + + + + + + + + + + +	$\begin{array}{c} \text{automative} \\ + + + + + + + + + + + + + + + + + + $
· · · · · · · · · · · · · · · · · · ·	

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- Continue CW in the l_i left, CCW in the r_i right cell
- Image shows CW search on cell l_0 and CCW on cells r_i :

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- Continue CW in the l_i left, CCW in the r_i right cell
- Image shows CW search on cell l_0 and CCW on cells r_i :

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- Continue CW in the l_i left, CCW in the r_i right cell
- Image shows CW search on cell l_0 and CCW on cells r_i :

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- Continue CW in the l_i left, CCW in the r_i right cell
- Image shows CW search on cell l_0 and CCW on cells r_i :

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- Continue CW in the l_i left, CCW in the r_i right cell
- Image shows CW search on cell l_0 and CCW on cells r_i :

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- Continue CW in the l_i left, CCW in the r_i right cell
- Image shows CW search on cell l_0 and CCW on cells r_i :

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- Continue CW in the l_i left, CCW in the r_i right cell
- Image shows CW search on cell l_0 and CCW on cells r_i :

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- Continue CW in the l_i left, CCW in the r_i right cell
- Image shows CW search on cell l_0 and CCW on cells r_i :

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- Continue CW in the l_i left, CCW in the r_i right cell
- Image shows CW search on cell l_0 and CCW on cells r_i :

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- Continue CW in the l_i left, CCW in the r_i right cell
- Image shows CW search on cell l_0 and CCW on cells r_i :

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- Continue CW in the l_i left, CCW in the r_i right cell
- Image shows CW search on cell l_0 and CCW on cells r_i :

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- Continue CW in the l_i left, CCW in the r_i right cell
- Image shows CW search on cell l_0 and CCW on cells r_i :

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- Continue CW in the l_i left, CCW in the r_i right cell
- Image shows CW search on cell l_0 and CCW on cells r_i :

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- Continue CW in the l_i left, CCW in the r_i right cell
- Image shows CW search on cell l_0 and CCW on cells r_i :

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- Continue CW in the l_i left, CCW in the r_i right cell
- Image shows CW search on cell l_0 and CCW on cells r_i :

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- Continue CW in the l_i left, CCW in the r_i right cell
- Image shows CW search on cell l_0 and CCW on cells r_i :

Divide and Conquer method complexity

- Initial sort $O(n \log n)$
- $O(\log n)$ recursion levels
 - O(n) each merge (chain search, trim, add edges to VD)
- Altogether $O(n \log n)$

Fortune's sweep line algorithm – idea in 3D

Fortune's sweep line algorithm

- Differs from "typical" sweep line algorithm
- Unprocessed sites ahead from sweep line may generate Voronoi vertex behind the sweep line

DONE

TODO

Fortune's sweep line algorithm idea

- Subdivide the halfplane above the sweep line *l* into 2 regions
 - Points closer to some site above than to sweep line *l* (solved part)
 - 2. Points closer to sweep line *l* than any point above (unsolved part can be changed by sites below *l*)
- Border between these 2 regions is a beach line

Sweep line and beach line

- Straight sweep line *l*
 - Separates processed and unprocessed sites (points)
- Beach line (Looks like waves rolling up on a beach)
 - Separates solved and unsolved regions above sweep line (separates sites above *l* that can be changed from sites that cannot be changed by sites below *l*)
 - x-monotonic curve made of parabolic arcs
 - Follows the sweep line
 - Prevents us from missing unanticipated events until the sweep line encounters the corresponding site

Beach line

- Every site p_i above *l* defines a complete parabola
- Beach line is the function, that passes through the lowest points of all the parabolas (lower envelope)

Beach line

- Every site p_i above *l* defines a complete parabola
- Beach line is the function, that passes through the lowest points of all the parabolas (lower envelope)

Beach line

- Every site p_i above *l* defines a complete parabola
- Beach line is the function, that passes through the lowest points of all the parabolas (lower envelope)

Break point (bod zlomu)

- = Intersection of two arcs on the beach line
- Equidistant to 2 sites and sweep line l
- Lies on Voronoi edge of the final diagram

Felkel: Computational geometry (31/43)

What event types exist?

Events

There are two types of events:

- Site events (SE)
 - When the sweep line passes over a new site p_i ,
 - new arc is added to the beach line
 - *new edge fragment* added to the VD.
 - All SEs known from the beginning (sites sorted by y)
- Voronoi vertex event ([Berg] calls a circle event)
 - When the parabolic arc shrinks to zero and disappears, new Voronoi vertex is created.

Felkel: Computational geometry

 Created dynamically by the algorithm for triples or more neighbors on the beach line (triples observed by both types of events)

(triples changed by both types of events)

Site event

Generated when the sweep line passes over a site p_i

New parabolic arc created,

it starts as a vertical ray from p_i to the beach line

- As the sweep line sweeps on, the arc grows wider
- The entry $\langle ..., p_j, ... \rangle$ on the sweep line status is replaced by the triple $\langle ..., p_j, p_i, p_j, ... \rangle$

- Dangling future VD edge created on the bisector (p_i , p_j)

Felkel: Computational geometry
Voronoi vertex event (circle event)

Generated when *l* passes the lowest point of circle

- Sites p_i , p_j , p_k appear consecutively on the beach line
- Circumcircle lies partially below the sweep line (Voronoi vertex has not yet been generated)
- This circumcircle contains no point below the sweep line (no future point will block the creation of the vertex)
- Vertex & bisector (p_i , p_k) created, (p_i , p_j) & (p_i , p_k) finished

Felkel: Computational geometry

- One parabolic arc removed from the beach line

DCGI

Data structures

- 1. (Partial) Voronoi diagram
- 2. Beach line data structure T
- 3. Event queue Q

Data structures

- 1. (Partial) Voronoi diagram
- 2. Beach line data structure T
- 3. Event queue Q

1. (Partial) Voronoi diagram data structure

Any PSLG data structure, e.g. DCEL (planar stright line graph)

- Stores the VD during the construction
- Contain unbounded edges
 - dangling edges during the construction (managed by the beach line DS) and
 - edges of unbounded cells at the end

=> create a bounding box

2. Beach line tree data structure T

- Used to locate the arc directly above a new site
- E.g. Binary tree T
 - Leaves ordered arcs along the beach line (x-monotone)
 - T stores only the sites p_i in leaves, T does not store the parabolas
 - Inner tree nodes breakpoints as ordered pairs $\langle p_i, p_k \rangle$
 - p_{j} , p_{k} are neighboring sites
 - Breakpoint position computed on the fly from p_i , p_k and y-coord of the sweep line
 - Pointers to other two DS
 - In leaves pointer to event queue, point to node
 when arc disappears via Voronoi vertex event if it exists

p

 In inner nodes - pointer to (dangling) half-edge in DCEL of VD, that is being traced out by the break point

Felkel: Computational geometry

Max 2n -1 arcs on the beach line

3. Event queue Q

- Priority queue, ordered by y-coordinate
- For site event
 - stores the site itself
 - known from the beginning
- For Voronoi vertex event (circle event)
 - stores the lowest point of the circle
 - stores also pointer to the leaf in tree T (represents the parabolic arc that will disappear)
 - created by both events, when triples of points become neighbors (possible max three triples for a site)

Felkel: Computational geometry

 $-\overline{p_i, p_j, p_k, p_l}, p_m \text{ insert of } p_k \text{ can create up to 3 triples}$ and delete up to 2 triples (p_i, p_j, p_l) and (p_j, p_l, p_m)

Fortune's algorithm

FortuneVoronoi(P)

Input: A set of point sites $P = \{p_1, p_2, ..., p_n\}$ in the plane *Output:* Voronoi diagram Vor(*P*) inside a bounding box in a DCEL struct.

- 1. Init event queue Q with all site events
- 2. while(Q not empty) do
- 3. I consider the event with largest *y*-coordinate in Q (next in the queue)
- 4. **if**(event is a *site event* at site p_i)
- 5. **then** HandleSiteEvent(p_i)
- 6. **else** HandleVoroVertexEvent(p_i), where p_i is the lowest point of the circle causing the event
- 7. remove the event from Q
- 8. Create a bbox and attach half-infinite edges in *T* to it in DCEL.
- 9. Traverse the halfedges in DCEL and add cell records and pointers to and from them

Handle site event

- 1. Search in *T* for arc α vertically above p_i . Let p_j be the correspond. site 2. Apply insert-and-split operation, inserting a new entry of p_i to the beach
- 2. Apply insert-and-split operation, inserting a new entry of p_i to the beach line *T* (new arc), thus replacing $\langle ..., p_j, ... \rangle$ with $\langle ..., p_j, p_i, p_j, ... \rangle$
- 3. Create a new (dangling) edge in the Voronoi diagram, which lies on the bisector between p_i and p_j
- 4. Neighbors on the beach line changed -> check the neighboring triples of arcs and *insert or delete Voronoi vertex events* (insert only if the circle intersects the sweep line and it is not present yet). Note: Newly created triple p_j, p_i, p_j cannot generate a circle event because it only involves two distinct sites.

+ + + + + +

Handle Voronoi vertex (circle) event

Let p_i , p_j , p_k be the sites that generated this event (from left to right).

- 1. Delete the entry p_j from the beach line (thus eliminating its arc α), i.e.: Replace a triple $\langle ..., p_i, p_j, p_k, ... \rangle$ with $\langle ..., p_i, p_k, ... \rangle$ in *T*.
- 2. Create a new vertex in the Voronoi diagram (at circumcenter of $\langle p_i, p_j, p_k \rangle$) and join the two Voronoi edges for the bisectors $\langle p_i, p_j \rangle$ and $\langle p_i, p_k \rangle$ to this vertex (dangling edges created in step 3 above).
- 3. Create a new (dangling) edge for the bisector between $\langle p_i, p_k \rangle^+$
- 4. Delete any Voronoi vertex events (max. three) from Q that arose from triples involving the arc α of p_j and generate (two) new events corresponding to consecutive triples involving p_i , and p_k .

Q: Beach line contains: abcdef After deleting of d, which triples vanish and which triples are added to the beach line?

Handling degeneracies

Algorithm handles degeneracies correctly

- 2 or more events with the same y
 - if x coords are different, process them in any order
 - if x coords are the same (cocircular sites) process them in any order, it creates duplicated vertices with zero-length edges, remove them in post processing step
- degeneracies while handling an event
 - Site below a beach line breakpoint
 - Creates circle event on the same position
 - remove zero-length edges in post processing step $_{\ensuremath{\mathfrak{R}}}$

Felkel: Computational geometry

[Berg]

References

[Berg]	Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: <i>Algorithms and Applications</i> , Springer- Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540- 77973-5, Chapter 7, <u>http://www.cs.uu.nl/geobook/</u>
[Mount]	David Mount, - CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lectures 12 and 29. http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml
[Preparata] Preperata, F.P., Shamos, M.I.: Computational Geometry. An Introduction. Berlin, Springer-Verlag,1985. Chapter 5	
[VoroGlide] VoroGlide applet: http://www.pi6.fernuni-hagen.de/GeomLab/VoroGlide/
[Fortune]	Fortune's algorithm applet: http://www.personal.kent.edu/~rmuhamma/Compgeometry/ MyCG/Voronoi/Fortune/fortune.htm
[Muhama]	http://www.personal.kent.edu/~rmuhamma/Compgeometry/ + + + + + + + + + + + + + + + + + + +
$\frac{\text{http://www}}{\neq \neq \neq}$	<pre>v.personal.kent.edu/~rmuhamma/Compgeometry/MyCG/Vorongi/Div CongVor/divCongVor.htm Felkel: Computational geometry (46 / 43)</pre>