

CONVEX HULLS

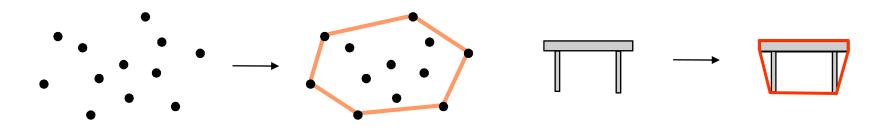
PETR FELKEL

FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Mount]

Version from 16.11.2017

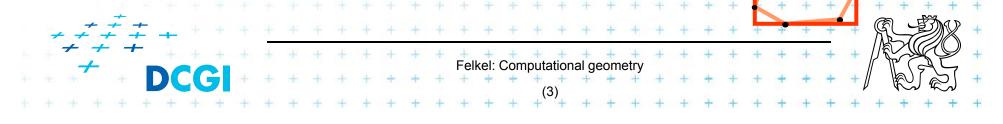
Talk overview


- Motivation and Definitions
- Graham's scan incremental algorithm
- Divide & Conquer
- Quick hull
- Jarvis's March selection by gift wrapping

Felkel: Computational geometry

www.cauu.com

Chan's algorithm – optimal algorithm

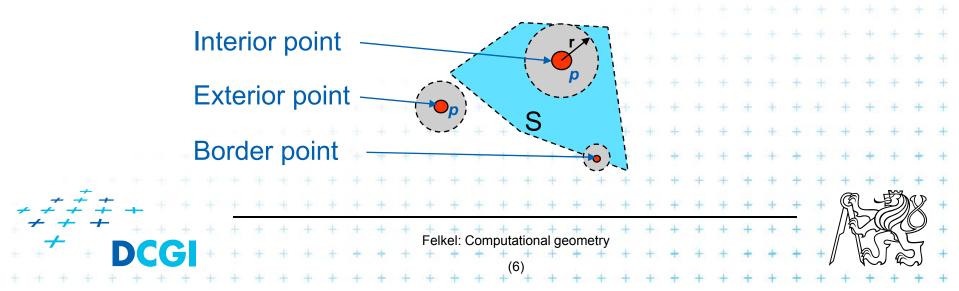

Convex hull (CH) – why to deal with it?

- Shape approximation of a point set or complex shapes (other common approximations include: minimal area enclosing rectangle, circle, and ellipse,...) – e.g., for collision detection
- Initial stage of many algorithms to filter out irrelevant points, e.g.:
 - diameter of a point set

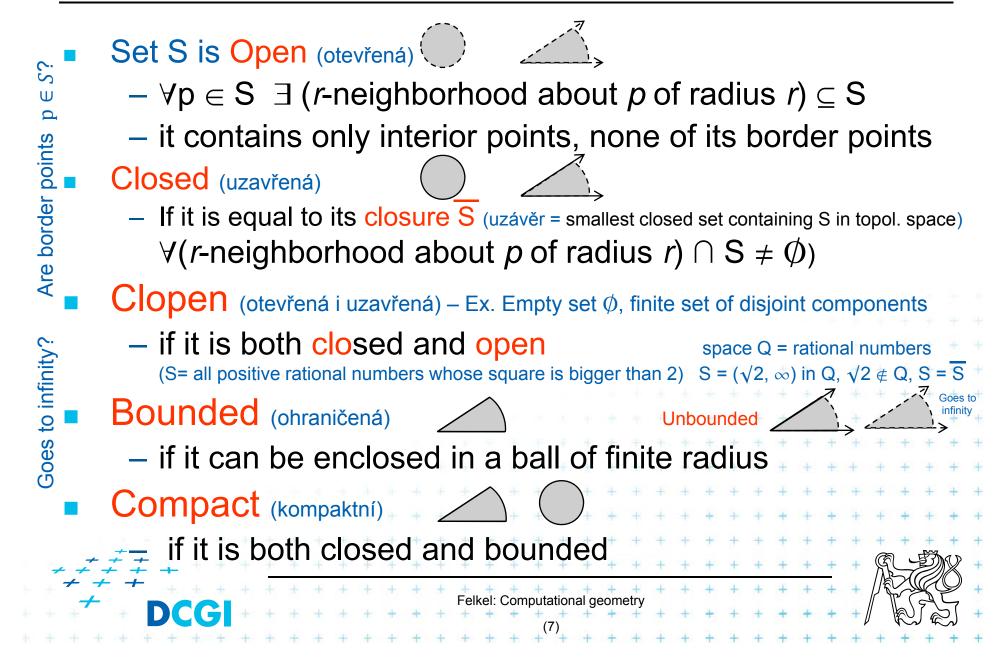
 minimum enclosing convex shapes (such as rectangle, circle, and ellipse) depend only on points on CH

Convexity

A set S is convex

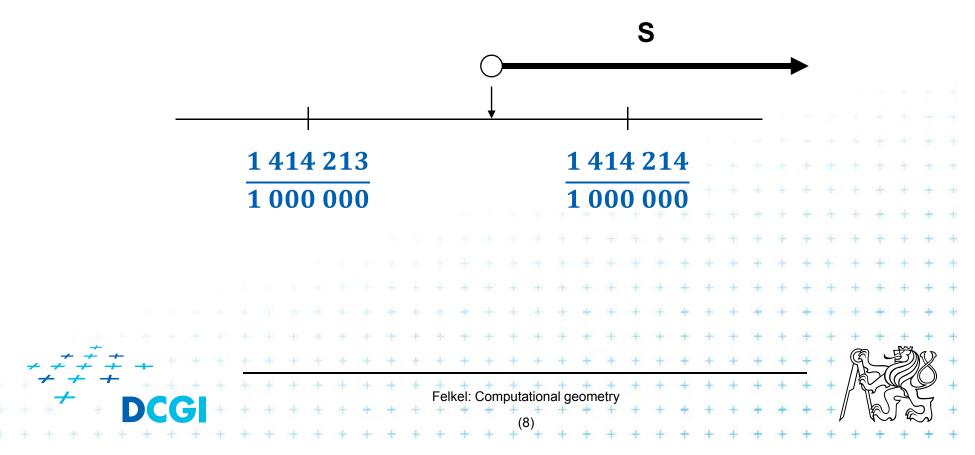


- if for any points $p,q \in S$ the lines segment $\overline{pq} \subseteq S$, or
- if any convex combination of p and q is in S
- Convex combination of points *p*, *q* is any point that can be expressed as $(1 - \alpha) p + \alpha q$, where $0 \le \alpha \le 1$ $p_{\alpha=0}^{p}$
- Convex hull CH(S) of set S is (similar definitions)
 - the smallest set that contains S (convex)
 - or: intersection of all convex sets that contain S
 - Or in 2D for points: the smallest convex polygon containing all given points

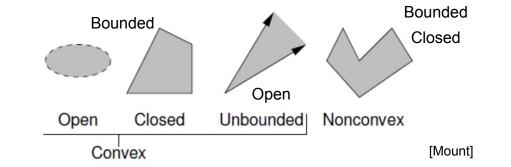

Felkel: Computational geometry

Definitions from topology in metric spaces

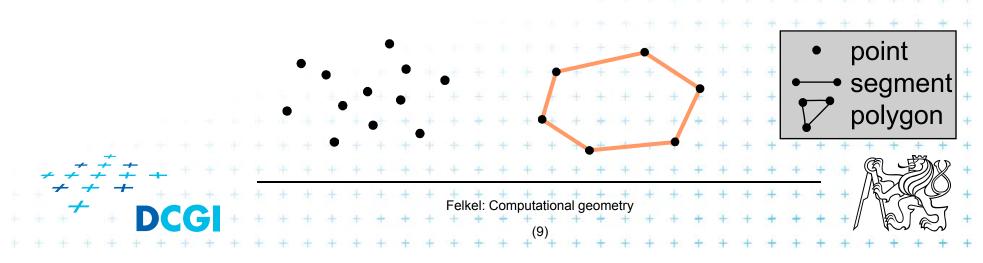
- Metric space each two of points have defined a distance ,
- *r-neighborhood* of a point *p* and radius *r > 0* = set of points whose distance to *p* is strictly less than *r* (open ball of diameter *r* centered about *p*)
- Given set S, point p is
 - − Interior point of S − if $\exists r, r > 0$, (r-neighborhood about p) ⊂ S
 - Exterior point if it lies in interior of the complement of S
 - Border point is neither interior neither exterior


Definitions from topology in metric spaces

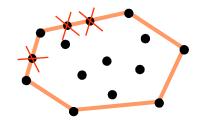
Clopen (otevřená i uzavřená)


- Ex. Empty set ϕ , finite set of disjoint components if it is both closed and open space Q = rational numbers (S= all positive rational numbers whose square is bigger than 2) S = ($\sqrt{2}$, ∞) in Q, $\sqrt{2} \notin Q$, S = S

 $\sqrt{2} = 1.414213562$


Definitions from topology in metric spaces

Convex set S may be bounded or unbounded


Convex hull CH(S) of a finite set S of points in the plane

= Bounded, closed, (= compact) convex polygon

Convex hull representation

- CCW enumeration of vertices
- Contains only the extreme points ("endpoints" of collinear points)

 Simplification for the whole semester: Assume the input points are in general position,
 no two points have the same *x*-coordinates and
 no three points are collinear

We avoid problem with non-extreme points on x
 (solution may be simple – e.g. lexicographic ordering)

Felkel: Computational geometry

Online x offline algorithms

- Incremental algorithm
 - Proceeds one element at a time (step-by-step)
- Online algorithm (must be incremental)
 - is started on a partial (or empty) input and
 - continues its processing as additional input data becomes available (comes online, thus the name).
 - Ex.: insertion sort
- Offline algorithm (may be incremental)
 - requires the entire input data from the beginning

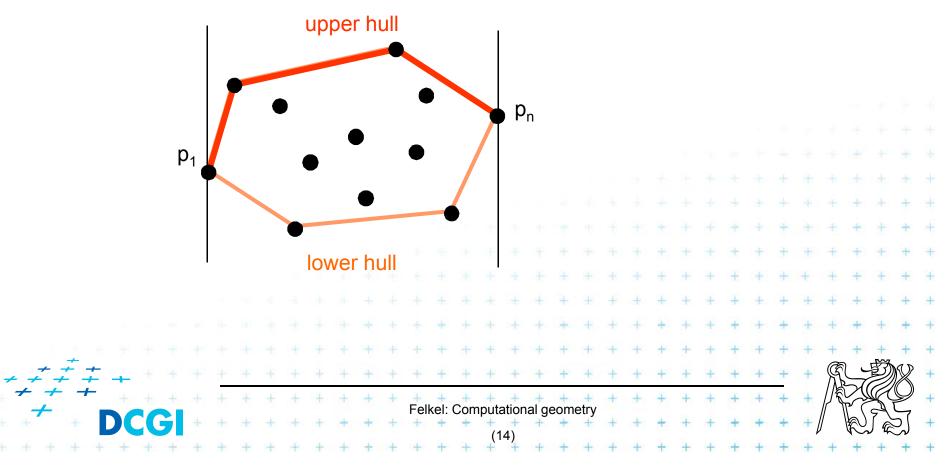
Felkel: Computational geometry

- than it can start
- Ex.: selection sort (any algorithm using sort)

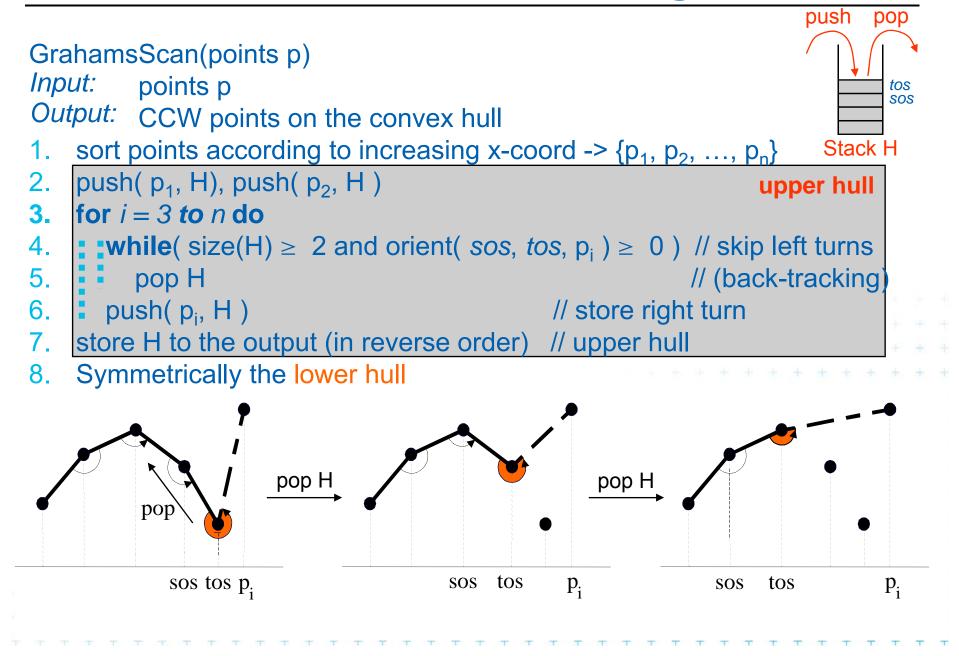
Graham's scan

- Incremental O(n log n) algorithm
- Objects (points) are added one at a time
- Order of insertion is important
 - 1. Random insertion
 - -> we need to test: is-point-inside-the-hull(p)
 - 2. Ordered insertion

Find the point p with the smallest y coordinate first

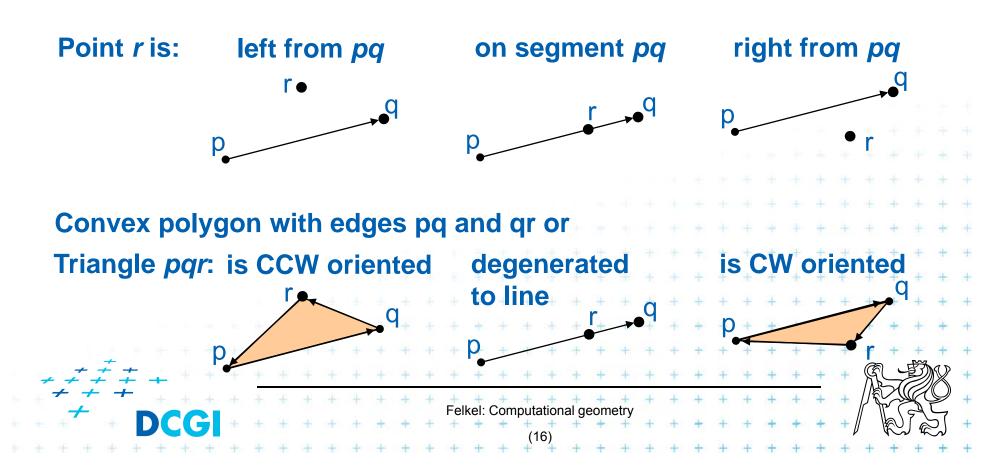

- a) Sort points p_i according to *increasing angles* around the point p (angle of pp_i and x axis)
- b) Andrew's modification: sort points p_i according to x and add them left to right (construct upper & lower hull)

Felkel: Computational geometry


Sorting *x*-coordinates is simpler to implement than sorting of angles

Graham's scan – b) modification by Andrew

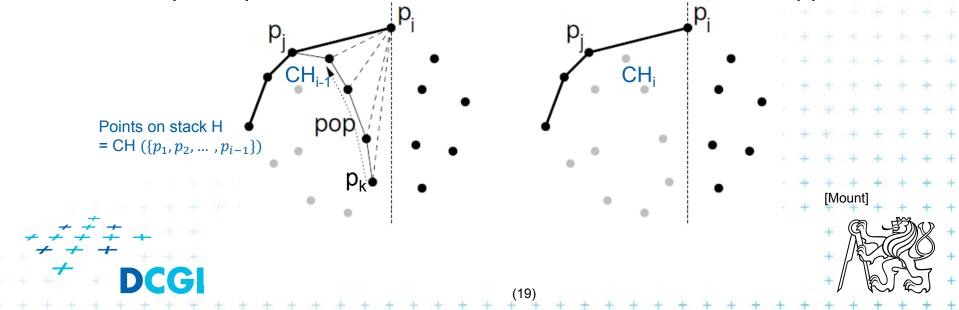
- $O(n \log n)$ for unsorted points, O(n) for sorted pts.
- Upper hull, then lower hull. Merge.
- Minimum and maximum on x belong to CH


Graham's scan – incremental algorithm

Position of point in relation to segment

orient(p, q, r) $\begin{cases} > 0 \\ = 0 \\ < 0 \end{cases}$

r is left from *pq*, CCW orient if (*p*, *q*, *r*) are collinear *r* is right from *pq*, CW orient

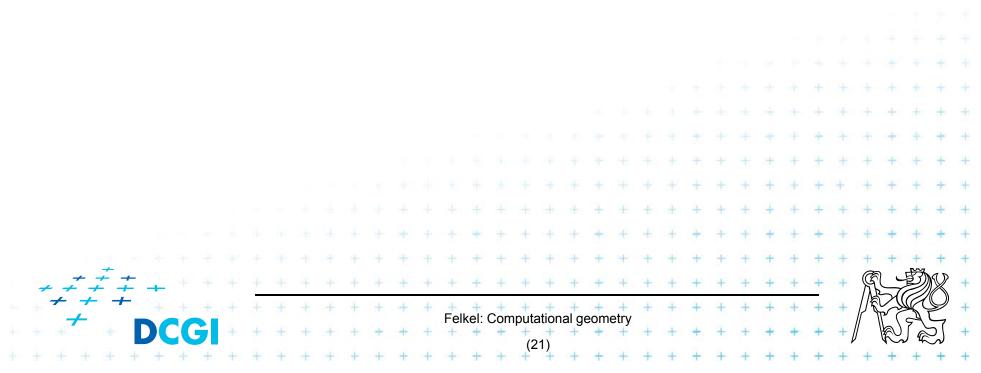


Is Graham's scan correct?

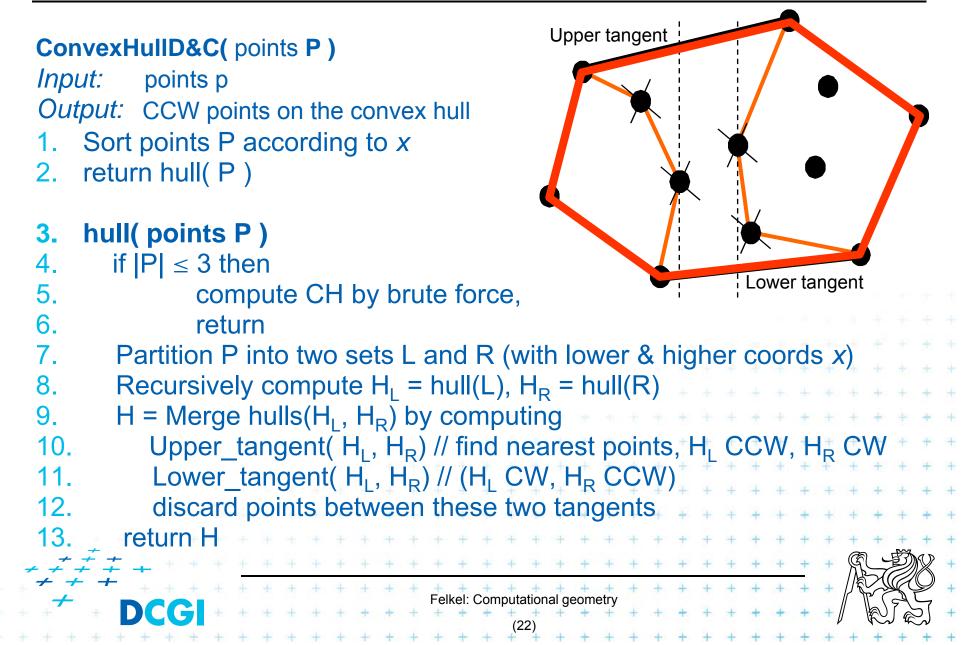
Stack H at any stage contains upper hull of the points

- $\{p_1, \dots, p_i, p_i\}$, processed so far
- For induction basis $H = \{p_1, p_2\} \dots$ true
- p_i = last added point to CH, p_j = its predecessor on CH
- Each point p_k that lies between p_j and p_i lies below $p_j p_i$ and should not be part of UH after addition of $p_i \Rightarrow$ is removed before push p_i . [orient(p_j, p_k, p_i) > 0, p_k is right from $p_j p_i \Rightarrow p_k$ is removed from UH]

Complexity of Graham's scan


- Sorting according $x O(n \log n)$
- Each point pushed once -O(n)
- Some $(d_i \le n)$ points deleted while processing p_i

-O(n)

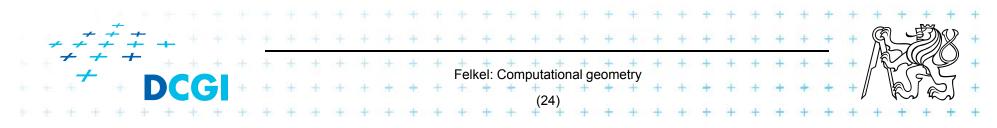

- The same for lower hull -O(n)
- Total O(n log n) for unsorted points O(n) for sorted points
 Felkel: Computational geometry (20)

Divide & Conquer

- $\Theta(n \log(n))$ algorithm
- Extension of mergesort
- Principle
 - Sort points according to x-coordinate,
 - recursively partition the points and solve CH.

Convex hull by D&C

Search for upper tangent (lower is symmetrical) Upper tangent **Upper_tangent**(H_1 , H_R) H_R Input: two non-overlapping CH's H Output: upper tangent ab b 1. $a = rightmost H_1$ 2. b = leftmost H_{R} ^TLower tangent while (ab is not the upper tangent for H_1 , H_R) do 3. while(ab is not the upper tangent for H_1) a = a.succ// move CCW 4. while (ab is not the upper tangent for H_{R}) b = b.pred // move CW 5. 6 Return ab (ab is not the upper tangent for H_1) => orient(a, b, a.succ) ≥ 0 Where: which means *a.succ* is left from line *ab* $m = |H_1| + |H_R| \le |L| + |R| =>$ Upper Tangent: O(m) = O(n)Felkel: Computational geometry

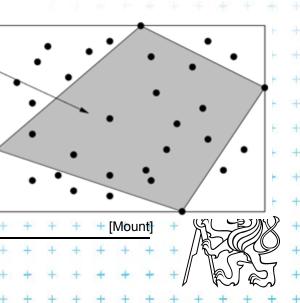

Convex hull by D&C complexity

- Initial sort O(n log(n))
- Function hull()
 - Upper and lower tangent
 - Merge hulls
 - Discard points between tangents O(n)
- Overall complexity
 - Recursion $T(n) = \begin{cases} 1 & \dots \text{ if } n \leq 3 \\ 2T(n/2) + O(n) & \dots \text{ otherwise} \end{cases}$

– Overall complexity of CH by D&C: => O(n log(n))

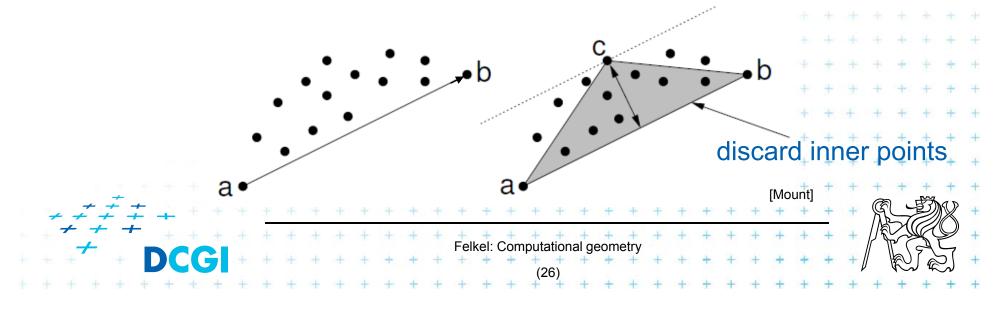
O(*n*) O(1)

O(*n*)

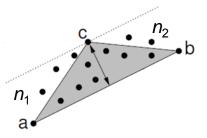


Quick hull

- A variant of Quick Sort
- $O(n \log n)$ expected time, max $O(n^2)$
- Principle
 - in praxis, most of the points lie in the interior of CH
 - E.g., for uniformly distributed points in unit square, we expect only O(log n) points on CH


Felkel: Computational geomet

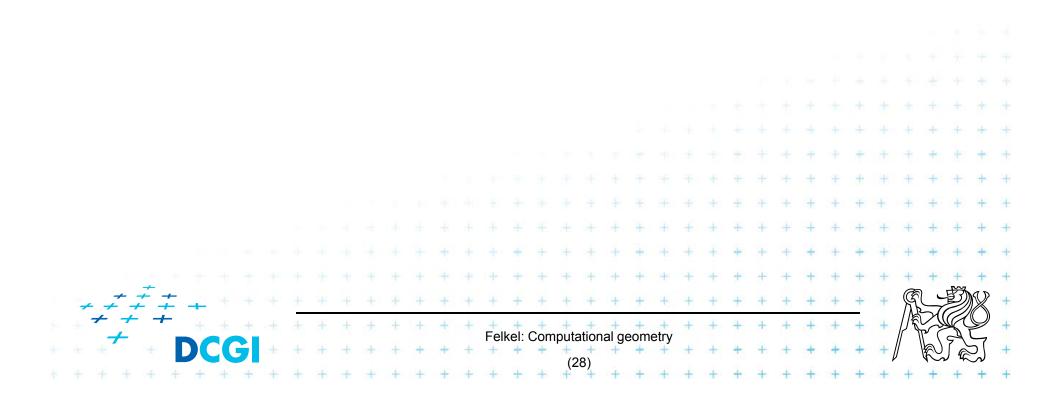
- Find extreme points (parts of CH) quadrilateral, discard inner points
 - Add 4 edges to temp hull T
 - Process points outside 4 edges



Process each of four groups of points outside

- For points outside ab (left from ab for clockwise CH)
 - Find point c on the hull max. perpend. distance to ab
 - Discard points inside triangle *abc* (right from the edges)
 - Split points into two subsets
 - outside *ac* (left from *ac*) and outside *cb* (left from *cb*)
 - Process points outside ac and cb recursively
 - Replace edge *ab* in *T* by edges *ac* and *cb*

Quick hull complexity



- n points remain outside the hull
- T(n) = running time for such n points outside
 - -O(n) selection of splitting point *c*
 - O(n) point classification to inside & (n_1+n_2) outside
 - $n_1+n_2 \le n$ - The running time is given by recurrence $T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n_1) + T(n_2) & \text{where } n_1+n_2 \le n \end{cases}$ - If evenly distributed that $\max(n_1, n_2) \le \alpha n, 0 < \alpha < 1$ then solves as QuickSort to O(cn log n) where c=f(α) else O(n²) for unbalanced splits

Felkel: Computational geometry

Jarvis's March – selection by gift wrapping

- Variant of O(n²) selection sort
- Output sensitive algorithm
- O(nh) ... h = number of points on convex hull

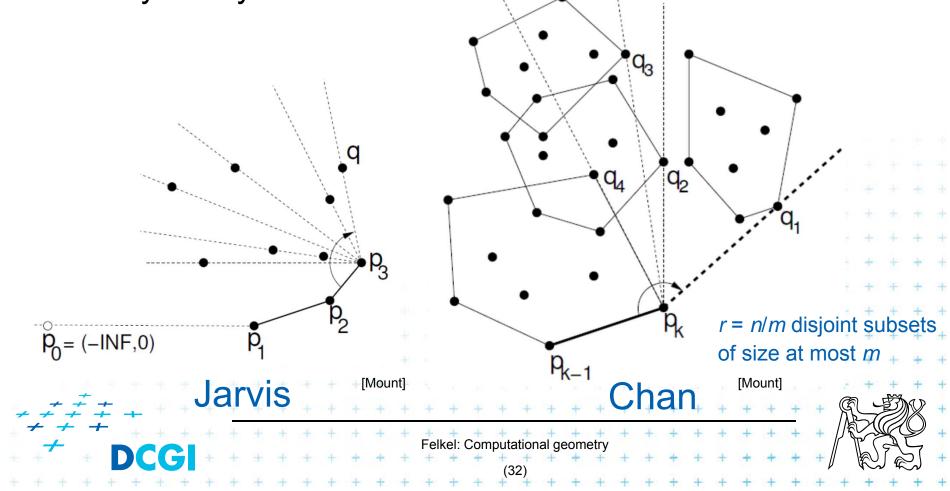
Output sensitive algorithm

- Worst case complexity analysis analyzes the worst case data
 - Presumes, that all (const fraction of) points lie on the CH
 - The points are ordered along CH

=> We need sorting => $\Omega(n \log n)$ of CH algorithm

	Such assumption is rare		
	 usually only much less of points are on CH 		
	Output sensitive algorithms	+	+ +
	 Depend on: input size n and the size of the output h 	++	++
	 Are more efficient for small output sizes 	+	+
	- Reasonable time for CH is $O(n \log h)$, $h = Number of points on the$	e Cł	+ +
~ + +	$\begin{array}{c} \overrightarrow{} \\ \overrightarrow{} \\ \overrightarrow{} \\ \overrightarrow{} \\ \overrightarrow{} \\ \overrightarrow{} \\ \overrightarrow{} \end{array}$	28	++
+	Felkel: Computational geometry (30)	گیا ا	++

Chan's algorithm


- Cleverly combines Graham's scan and Jarvis's march algorithms
- Goal is O(n log h) running time
 - We cannot afford sorting of all points $\Omega(n \log n)$
 - => Idea: work on parts, limit the part sizes to polynomial h^c the complexity does not change => log h^c = log h
 - h is unknown we get the estimation later
 - Use estimation *m*, better not too high => $h \le m \le h^2$
- 1. Partition points *P* into *r*-groups of size *m*, r = n/m
 - Each group take $O(m \log m)$ time sort + Graham

Felkel: Computational geometry

- r-groups take $O(rm \log m) = O(n \log m)$ - Jarvis

Merging of *m* parts in Chan's algorithm

- 2. Merge *r*-group CHs as "fat points"
 - Tangents to convex *m*-gon can be found in O(log *m*)
 by binary search

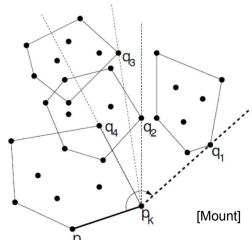
Chan's algorithm complexity

- h points on the final convex hull
 - => at most *h* steps in the Jarvis march algorithm
 - each step computes *r*-tangents, O(log *m*) each
 - merging together $O(hr \log m)$

```
r-groups of size m, r = n/m
```

O(*n* log *m*)

Complete algorithm O(n log h)


- Graham's scan on partitions $O(r . m \log m) = O(n \log m)$
- Jarvis Merging: $O(hr \log m) = O(h n/m \log m), \dots 4a)$ $h \le m \le h^2 = O(n \log m)$

Felkel: Computational geometry

- Altogether
- How to guess m? Wait!
 - 1) use m as an estimation of h = 2) if it fails, increase m

Chan's algorithm for known m

PartialHull(*P*, *m*) *Input:* points P *Output:* group of size *m*

O(log m)

- 1. Partition *P* into r = [n/m] disjoint subsets {p₁, p₂, ..., p_r} of size at most *m*
- 2. for *i*=1 to *r* do
 - a) Convex hull by GrahamsScan(P_i), store vertices in ordered array
- 3. let p_1 = the bottom most point of P and $p_0 = (-\infty, p_1.y)$
- 4. for k = 1 to m do // compute merged hull points

a) for i = 1 to r do // angle to all r subsets => points q_i /

- Compute the point $q_i \in P$ that maximizes the angle $\angle p_{k-1}$, p_k , q_i b) let p_{k+1} be the point $q \in \{q_1, q_2, ..., q_r\}$ that maximizes $\angle p_{k-1}$, p_k , q_i (p_{k+1} is the new point in CH)
 - c) if $p_{k+1} = p_1$ then return $\{p_1, p_2, ..., p_k\}$

5. return "Fail, *m* was too small"

Chan's algorithm – estimation of *m*

ChansHull <i>Input:</i> points P <i>Output:</i> convex hull p ₁ …p _k	
 for <i>t</i> = 1, 2,, [lg lg <i>h</i>] do { a) let <i>m</i> = min(2^{2^t}, n) <i>b</i>) <i>L</i> = PartialHull(<i>P</i>, <i>m</i>) c) if <i>L</i> ≠ "Fail, <i>m</i> was too small" then return <i>L</i> 	
Sequence of choices of <i>m</i> are { 4, 16, 256,, $2^{2^{t}}$,, <i>n</i> } squares	
 Example: for h = 23 points on convex hull of n = 57 points, the algorithm will try this sequence of choices of <i>m</i> { 4, 16, 57 } 1. 4 and 16 will fail 2. 256 will be replaced by <i>n</i>=57 	
Felkel: Computational geometry (35)	

Complexity of Chan's Convex Hull?

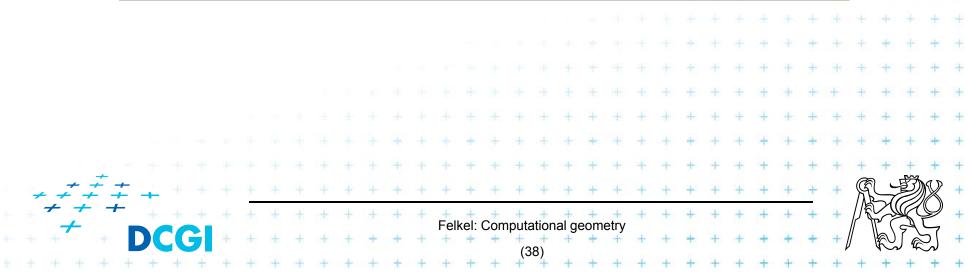
- The worst case: Compute all iterations
- t^{th} iteration takes O($n \log 2^{2^t}$) = O($n 2^t$)
- Algorithm stops when $2^{2^t} \ge h \implies t = [g \ lg \ h]$
- All $t = [lg \ lg \ h]$ iterations take:

Using the fact that
$$\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1$$

$$\sum_{i=1}^{\log h} n2^{t} = n \sum_{t=1}^{\log \log h} 2^{t} \le n2^{1+\log \log h} = 2n \log h = O(n \log h)$$

one iteration

Conclusion in 2D


- Graham's scan: $O(n \log n)$, O(n) for sorted pts
- Divide & Conquer: O(n log n)
- Quick hull:
- Jarvis's march:
- Chan's alg.:

 $O(n \log n)$, max $O(n^2) \sim$ distrib. O(hn), max $O(n^2) \sim pts$ on CH $O(n \log h) \sim pts on CH$ asymptotically optimal but constants are too high to be usefu Felkel: Computational geometry

References

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapter 5, <u>http://www.cs.uu.nl/geobook/</u>
- [Mount] David Mount, CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lectures 3 and 4. <u>http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml</u>
- [Chan] Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions., *Discrete and Computational Geometry*, 16, 1996, 361-368.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.389

