
GEOMETRIC SEARCHING
PART 1: POINT LOCATION

PETR FELKEL
FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Mount]

Version from 17.1.2016

Felkel: Computational geometry

(2)

 Point location (static) – Where am I?
– (Find the name of the state, pointed by mouse cursor)
– Search space S: a planar (spatial) subdivision
– Query: point Q
– Answer: region containing Q

 Orthogonal range searching – Query a data base
(Find points, located in d-dimensional axis-parallel box)

– Search space S: a set of points
– Query: set of orthogonal intervals q
– Answer: subset of points in the box
– (Was studied in DPG)

Geometric searching problems

Felkel: Computational geometry

(3)

Point location

 Point location in polygon
 Planar subdivision
 DCEL data structure
 Point location in planar subdivision

– slabs
– monotone sequence
– trapezoidal map

Felkel: Computational geometry

(4)

1. Ray crossing - O(n)
– Compute number t of intersections

of ray with polygon edges
(e.g., X+ after point move to origin)

– If odd(t) then inside
else out

– Singular cases must be handled!
• Do not count horizontal line segments
• Take non-horizontal segments as half-open

(upper point not part of the segment)

Point location in polygon by ray crossing

+1 1 in
+1 +1 +1 3 in

+0 +1 1 in

+2
2 out

+1 +1 +1 +1 4 out

0 out+0 +0

0 out+0 +0

+1
2 out

+1
2 out

+1

+0+0 3 in+1 +1+1

Felkel: Computational geometry

(5)

Point location in polygon

2. Winding number - O(n)
(number of turns around the point)
– Sum angles i = —(pi, z, pi+1)
– If (sum i = 2p) then inside (1 turn)
– If (sum i = 0) then outside (no turn)
– About 20-times slower than ray crossing

2p 0

Felkel: Computational geometry

(6)

Point location in polygon
3. Position relative to all edges

– For convex polygons
– If (left from all edges) then inside

 Position of point in relation to the line segment
(Determination of convex polygon orientation)

– Convex polygon,
noncollinear points pi= [xi, yi, 1], pi+1 = [xi+1, yi+1, 1], pi+2 = [xi+2, yi+2, 1]

xi yi 1 > 0 => point left from edge (CCW polygon)
xi+1 yi+1 1
xi+2 yi+2 1 < 0 => point right from edge (CW polygon)

pi pi+1

pi+2

Felkel: Computational geometry

(7)

Area of Triangle

= Vector perpendicular to both vectors AB and AC
 For vectors in plane is perpendicular to the plane

(normal)
 In 2D (plane xy) – has only z-coordinate is non-zero
 |AB x AC| = z-coordinate of the normal vector
 = area of parallelopid
 = 2x area T of triangle ABC

A B

C

A B

C

A B

C

Vector product of vectors AB x AC

AB x AC

Felkel: Computational geometry

(8)

Area of Triangle
 T = ½ |AB x AC|

 a = B - A
 b = C – A
 T = ½ (ax by - ay bx)

A B

C

a

b

Ax Ay 1
Bx By 1
Cx Cy 1

2T = = Ax By + BxCy + Cx Ay - Ax Cy - BxAy - Cx By

=> 2T = Ax By + BxCy + Cx Ay - Ax Cy - BxAy - Cx By

= sign ௫ݍ − ௫݌ ௬ݎ − ௬݌ − ௬ݍ − ௬݌ ௫ݎ − ௫Počítáme orientation݌ jako sign(2T) nebo

Felkel: Computational geometry

(9)

Point location in polygon

4. Binary search in angles
Works for convex and star-shaped polygons
1. Choose any point q inside / in the polygon core
2. q forms wedges with polygon edges
3. Binary search of wedge výseč based on angle
4. Finaly compare with one edge (left, CCW => in,

right, CW => out)

q

p1

p2

p3

p4

p5

z
z´

CCW CW

Felkel: Computational geometry

(10)

Planar graph

Planar graph U=set of nodes, H=set of arcs

= Graph G = (U,H) is planar, if it can be embedded into
plane without crossings

Planar embedding of planar graph G = (U,H)
= mapping of each node in U to vertex in the plane and

each arc in H into simple curve (edge) between the two
images of extreme nodes of the arc, so that no two
images of arc intersect except at their endpoints

Every planar graph can be embedded in such a way that
arcs map to straight line segments [Fáry 1948]

Felkel: Computational geometry

(11)

Planar subdivision

= Partition of the plane determined by straight line
planar embedding of a planar graph.
Also called PSLG – Planar Straight Line Graph

 (embedding of a planar graph in the plane such
that its arcs are mapped into straight line
segments)

connected disconnected

Felkel: Computational geometry

(12)

Planar subdivision

Vertex = embedding of graph node

Edge = embedding of graph arc
(open – without vertices)

Complexity (size) of a subdivision = sum of number of vertices +
+ number of edges +
+ number of faces it consists of

Euler’s formula: |V| - |E| + |F| >= 2

Face = maximal connected subset of a plane that
doesn’t contain points on edges nor vertices

(open polygonal region whose
boundary is formed by edges and vertices
from the subdivision)

Felkel: Computational geometry

(13)

DCEL = Double Connected Edge List

 A structure for storage of planar subdivision
 Operations like:

Pointers to next
and prev edge

Walk around boundary of a
given face

Get incident face

Half-edge, op. Twin(e),
unique Next(e), Prev(e)

[Berg] [Berg]

Felkel: Computational geometry

(14)

DCEL = Double Connected Edge List

 Vertex record v
– Coordinates(v) and pointer to one IncidentEdge(v)

 Face record f
– OuterComponent(f) pointer (boundary)
– List of holes – InnerComponent(f)

 Half-edge record e
– Origin(e), Twin(e), IncidentFace(e)
– Next(e), Prev(e)
– [Dest(e) = Origin(Twin(e))]

 Possible attribute data for each

[Berg]

Felkel: Computational geometry

(15)

DCEL = Double Connected Edge List

One of edges

List of holes

[Berg]

Felkel: Computational geometry

(16)

DCEL simplifications

 If no operations with vertices and no attributes
– No vertex table (no separate vertex records)
– Store vertex coords in half-edge origin (in the half-edge table)

 If no need for faces (e.g. river network)
– No face record and no IncidentFace() field (in the half-edge table)

 If only connected subdivision allowed
– Join holes with rest by dummy edges
– Visit all half-edges by simple graph traversal
– No InnerComponent() list for faces

Felkel: Computational geometry

(17)

Point location in planar subdivision

 Using special search structures
an optimal algorithm can be made with

– O(n) preprocessing,
– O(n) memory and
– O(log n) query time.

 Simpler methods
1.Slabs O(log n) query, O(n2) memory
2.monotone chain tree O(log2 n) query, O(n2) memory
3.trapezoidal map O(log n) query expected time

O(n) expected memory

Felkel: Computational geometry

(18)

1. Vertical (horizontal) slabs [Dobkin and Lipton, 1976]

 Draw vertical or horizontal lines through vertices
 It partitions the plane into vertical slabs

– Avoid points with same x coordinate (to be solved later)

[Berg]

Felkel: Computational geometry

(19)

Horizontal slabs example

2. Find slab part in Tx for x

1. Find slab
in Ty for y

Tx and Ty are arrays

Felkel: Computational geometry

(20)

Horizontal slabs complexity

 Query time O(log n)
– O(log n) time in slab array Ty (size max 2n endpoints)
– + O(log n) time in slab array Tx (slab crossed max by n

edges)

 Memory O(n2)
– Slabs: Array with y-coordinates of vertices … O(n)
– For each slab O(n) edges intersecting the slab

O(n log n) construction
O(log n) query
O(n2) memory

[Berg]

Felkel: Computational geometry

(21)

2. Monotone chain tree [Lee and Preparata, 1977]

 Construct monotone planar subdivision
– The edges are all monotone in the same direction

 Each separator chain
– is monotone (can be projected to line an searched)
– splits the plane into two parts – allows binary search

 Algorithm
– Preprocess: Find the separators (e.g., horizontal)
– Search:

Binary search among separators (Y) … O(log n)
Binary search along the separator (X) … O(log n)

– Not optimal, but simple
– Can be made optimal, but the algorithm

and data structures are complicated

O(log2 n) query
O(n2) memory

Felkel: Computational geometry

(22)

0. Construct the chains
and the chain tree

1. Start with the middle chain
2. Find projection of x in the projection of

the chain – determine the segment
3. Identify position of x in relation to the

segment – Left or Right
(This is the position of x relatively to the
whole chain)

4. Continue in L or R chain -> goto 2.
or stop if in the leaf

C2

C1 C3

C5

A B D

F E

C4

G

Monotone chain tree example

C1

C2

C5

C2

C3

P

L

A B

D

E
F C4

G
C3 D

Felkel: Computational geometry

(23)

3. Trapezoidal map (TM) search
 The simplest and most practical known optimal algorithm
 Randomized algorithm with O(n) expected storage and

O(log n) expected query time
 Expectation depends on the random order of segments

during construction, not on the position of the segments
 TM is refinement of original subdivision
 Converts complex shapes into simple ones
 Weaker assumption on input:

– Input individual segments,
not polygons

– S = {s1, s2, …, sn}
– Si subset of first i segments
– Answer: segment below

the pointed trapezoid (D)
[Berg]

Felkel: Computational geometry

(24)

Trapezoidal map of line segments in general position

Input: individual segments S

– They do not intersect, except
in endpoints

– No vertical segments
– No 2 distinct endpoints with

the same x-coordinate

Trapezoidal map T

– Bounding rectangle
– 4 Bullets up and down
– Stop on input segment or

on bounding rectangle

[Mount]

Constru-
ction

Felkel: Computational geometry

(25)

Trapezoidal map of line segments in general position

 Faces are trapezoids D
with vertical sides

 Given n segments, TM has
– at most 6n+4 vertices
– at most 3n+1 trapezoids

 Proof:
– each point 2 bullets -> 1+2 points
– 2n endpoints * 3 + 4 = 6n+4 vertices

– start point –> max 2 trapezoids
– end point –> 1 trapezoid
– 3 * (n segments) + 1 left D => max 3n+1 D

+1

[Mount]

Trapezoidal map of line segments in general position

Each face has
 one or two vertical sides (trapezoid or triangle) and
 exactly two non-vertical sides

Felkel: Computational geometry

(26)

[Berg]

Two non-vertical sides

Non-vertical side
 is contained in a segment of S
 or in the horizontal edge of bounding rectangle R

Felkel: Computational geometry

(27)

top(D) - bounds from above

bottom(D) - bounds from below
[Berg]

Vertical sides – left vertical side of D

Felkel: Computational geometry

(28)

D

D

DD

Left vertical side is defined by the segment end-point p=leftp(D)
(a) common left point p itself
(b) by the lower vert. extension of left point p ending at bottom()
(c) by the upper vert. extension of left point p ending at top()
(d) by both vert. extensions of the right point p
(e) the left edge of the bounding rectangle R (leftmost D only)

[Berg]

Vertical sides - summary

Vertical edges are defined by segment endpoints
 leftp(D) = the end point defining the left edge of D
 rightp(D) = the end point defining the right edge of D

leftp(D) is
 the left endpoint of top() or bottom() (a,b,c)
 the right point of a third segment (d)
 the lower left corner of R (e)

Felkel: Computational geometry

(29)

Trapezoid D

 Trapezoid D is uniquely defined by the segments
top(D), bottom(D)

 And by the endpoints
leftp(D), rightp(D)

Felkel: Computational geometry

(30)

Adjacency of trapezoids segments in general position

 Trapezoids D and D’ are adjacent, if they meet along a
vertical edge

 D1= upper left neighbor of D (common top(D) edge)
 D2 = lower left neighbor of D (common bottom(D))
 D3 is a right neighbor of D (common top(D) & bottom(D))

Felkel: Computational geometry

(31)

[Berg]

Representation of the trapezoidal map T

Special trapezoidal map structure Τ(S) stores:
 Records for all line segments and end points
 Records for each trapezoid D ϵ Τ(S)

– Definition of D - pointers to segments top(D), bottom(D),
- pointers to points leftp(D), rightp(D)

– Pointers to its max four neighboring trapezoids
– Pointer to the leaf in the search structure D (see below)

 Does not store the geometry explicitly!
 Geometry of trapezoids is computed in O(1)

Felkel: Computational geometry

(32)

X

Felkel: Computational geometry

(33)

Construction of trapezoidal map
 Randomized incremental algorithm

1. Create the initial bounding rectangle (T0 =1D) … O(n)
2. Randomize the order of segments in S
3. for i = 1 to n do
4. Add segment Si to trapezoidal map Ti

5. locate left endpoint of Si in Ti-1

6. find intersected trapezoids
7. shoot 4 bullets from endpoints of Si

8. trim intersected vertical bullet paths
[Mount]

Felkel: Computational geometry

(34)

Trapezoidal map point location

 While creating the trapezoidal map T
construct the Point location data structure D

 Query this data structure

Felkel: Computational geometry

(35)

Point location data structure D

 Rooted directed acyclic graph (not a tree!!)
– Leaves – trapezoids, each appears exactly once
– Internal nodes – 2 outgoing edges, guide the search

• x-node – x-coord x0 of segment start- or end-point
left child lies left of vertical line x=x0
right child lies right of vertical line x=x0

– used first to detect the vertical slab
• y-node – pointer to the line segment of the subdivision (not only its y!!!)

left – above, right – below
•

[Mount]

p1

s1

X

Felkel: Computational geometry

(36)

TM search example

right

left

below

above

right

[Mount]

Felkel: Computational geometry

(37)

Construction – addition of a segment

a) Single (left or right) endpoint - 3 new trapezoids

Trapezoid A replaced by
– * x-node for point p
– add left leaf for X D

– add right subtree
– * y-node for segment s
– add left leaf for Y D above
– add right leaf Z D below

[Mount]

Felkel: Computational geometry

(38)

Construction – addition of a segment

b) Two segment endpoints – 4 new trapezoids

Trapezoid A replaced by
– * x-node for point p
– * x-node for point q
– * y-node for segment s
– add leaves for U, X, Y, Z[Mount]

Felkel: Computational geometry

(39)

Construction – addition of a segment

c) No segment endpoint – create 2 trapezoids

Y

Z

sA

Trapezoid A replaced by
– * y-node for segment s
– add leaves for Y, Z

[Mount]

Felkel: Computational geometry

(40)

Segment insertion example

[Mount]

Felkel: Computational geometry

(41)

Analysis and proofs

 This holds:
– Number of newly created D for inserted segment:

ki = K+4 => O(ki) = O(1) for K trimmed bullet paths
– Search point O(log n) in average

=> Expected construction O(n(1+ log n)) = O(n log n)

 For detailed analysis and proofs see
– [Berg] or [Mount]

Felkel: Computational geometry

(42)

Handling of degenerate cases - principle

 No distinct endpoints lie on common vertical line
– Rotate or shear the coordinates x’=x+¶y, y’=y

[Berg]

Felkel: Computational geometry

(43)

Handling of degenerate cases - realization

 Trick
– store original (x,y), not the sheared x’,y’

– we need to perform just 2 operations:
1. For two points p,q determine if transformed

point q is to the left, to the right or on vertical line through
point p

– If xp = xq then compare yp and yq (on only for yp = yq)
– => use the original coords (x, y) and lexicographic order

2. For segment given by two points decide if 3rd point q lies
above, below or on the segment p1 p2

– Mapping preserves this relation
– => use the original coords (x, y)

Felkel: Computational geometry

(44)

Point location summary
 Slab method [Dobkin and Lipton, 1976]

– O(n2) memory O(log n) time
 Monotone chain tree in planar subdivision [Lee and Preparata,77]

– O(n2) memory O(log2 n) time
 Layered directed acyclic graph (Layered DAG) in planar

subdivision [Chazelle , Guibas, 1986] [Edelsbrunner, Guibas, and Stolfi, 1986]

– O(n) memory O(log n) time => optimal algorithm
of planar subdivision search
(optimal but complex alg.
=> see elsewhere)

 Trapeziodal map
– O(n) expected memory O(log n) expected time
– O(n log n) expected preprocessing (simple alg.)

Felkel: Computational geometry

(45)

References
 [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark

Overmars: Computational Geometry: Algorithms and Applications,
Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5 http://www.cs.uu.nl/geobook/

 [Mount] David Mount, - CMSC 754: Computational Geometry, Lecture
Notes for Spring 2007, University of Maryland
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

