
Assignment 3: Implementation of ear clipping method for simple
polygon triangulation [16 points]
Computational Geometry course at DCGI FEE CTU, winter 2017
Petr Felkel, Vojtěch Bubník

This is the third exercise for the Computational Geometry class. Its first goal is to implement
an ear clipping method for triangulation a simple planar polygon (Jordan polygon). Its second
goal is to convert the triangulation to Delaunay triangulation.

You can choose from two variants of the implementation:

1. Implementation using simple data structure – list of triangles as triples of point
indices without any other topology information stored, or

2. Implementation using a DCEL representation from an open source library OpenMesh.

In the first variant, ear cutting is simpler to implement, as we do not need to update
information about the topology in DCEL data structure. But the Delaunay triangulation is a
more complex task, as the topology information is missing.

In the second variant with the OpenMesh library, it is harder to implement the ear cutting,
but the Delaunay triangulation is simpler.

Ear clipping triangulation [11 points]

One way to triangulate a simple polygon is based on the fact that any simple polygon with at
least four vertices without holes has at least two 'ears'. Ears are triangles with two sides
being the edges of the polygon and the third one completely inside it (i.e., not crossing any
other polygon edge. In other words, the ear does not contain any other simple polygon
vertex) [1]. The algorithm then consists of finding such an ear, removing it from the polygon
(which results in a new polygon that still meets the conditions) and repeating until there is
only one triangle left [2].

This algorithm is easy to implement, but slower than some other algorithms, and it only
works on polygons without holes. This method is known as ear clipping and sometimes ear
trimming. An efficient algorithm for cutting off ears in linear time each was discovered by
Hossam ElGindy, Hazel Everett, and Godfried Toussaint [3].

Delaunay retriangulation [5 points]

Take the triangulation made by ear cutting as an input and convert it to Delaunay
triangulation by iterative testing of inner edges and edge flipping of non-Delaunay edges.
Use the inCircle predicate to check the Delaunay conditions.

Open Mesh library
OpenMesh [4][5] is a generic and efficient data structure for representing and manipulating
polygonal meshes. OpenMesh is developed at the Computer Graphics Group, RWTH Aachen.
The development was funded by the German Ministry of Research and Education (BMBF).
OpenMesh makes use of the GNU Lesser General Public License v3.

OpenMesh was designed with the following goals in mind:

 Flexibility: provide a basis for many different algorithms without the need for
adaptation.

 Efficiency: maximize time efficiency while keeping memory usage as low as
possible.

 Ease of use: wrap complex internal structure in an easy-to-use interface.

For detail introduction, read the subsections of “Using and understanding OpenMesh” [6].
You can find some important pieces information in the following text.

The Halfedge Data Structure
OpenMesh uses a halfedge-based mesh representation, based on Linked lists or arrays – a
variant of DCEL data structure, described in the lecture. It provides an explicit representation
of vertices, halfedges, edges, and faces. It uses the following convention:

 Each vertex references one outgoing halfedge, i.e. one of
the halfedges that start at this vertex (1).

 Each face references one of the halfedges bounding it
(2).

 Each halfedge provides a handle to
o the vertex it points to (3),
o the face it belongs to (4)
o the next halfedge inside the face (ordered

counter-clockwise) (5),
o the opposite halfedge (6),
o (optionally: the previous halfedge in the face (7)).

Figure 1. DCEL data structure in OpenMesh library

Note to (1):
For efficiency reasons, a boundary vertex references a boundary edge (such edge belongs (4)
to a surrounding face, i.e., has a surrounding face on its left side).

Note to storage of halfedges:

The halfedges are stored in pairs in the edge table where each Edge contains array of two
opposite halfedges:

 class Edge
 {
 friend class ArrayKernel;
 Halfedge halfedges_[2];
 };

Storing in pairs allows to address the individual halfedges by the lowest significant bit of
HalfedgeHandle and simultaneously, to address complete edge (a pair of halfedges) by right
shifted HalfedgeHandle.
The EdgeHandle contains an index to the table of Edges.
The HalfedgeHandle index is created from EdgeHandle index by left bit shift and addition of
the last bit 0 or 1

The mesh.halfedge_handle(*edgeIt, 0) // returns the first halfedge of the edge *edgeIt.
The mesh.halfedge_handle(*edgeIt, 1) // returns the second halfedge of the edge
*edgeIt.

Useful OpenMesh methods:
Having different object handles (hh=halfedge handle, fh = face handle, vh = vertex handle,
etc…), the useful get and set methods of the mesh object are (see Figure 1 as a reference for
member numbers). We omit the word handle in description of parameters, so “vertex”
means “vertex handle,” etc. See the OpenMesh documentation [6][7] for details:

(1) Each vertex references one outgoing halfedge, i.e. one of the halfedges that start
at this vertex (1).
mesh.halfedge_handle(vh) // get one halfedge starting in vertex vh
mesh.set_halfedge_handle(vh, hh) // set this halfedge

(2) Each face references one of the halfedges bounding it
mesh.halfedge_handle(fh) // get one of the face halfedges
mesh.set_face_handle(hh, fh) // set one of the face halfedges

Each halfedge provides a handle to

(3) the vertex it points to
mesh.to_vertex_handle(hh) // get vertex to which hh points
mesh.set_vertex_handle(hh, to_vh); // set vertex to which hh points

and additionally
mesh.from_vertex_handle(hh) // get starting vertex of hh (to of opposite)

(4) the face it belongs to
mesh.face_handle(hh) // get face left from the edge
set_face_handle(hh, fh) // set face left from the edge

(5) the next halfedge inside the face (ordered counter-clockwise)
mesh.next_halfedge_handle(hh) // get next CCW edge
mesh.set_next_halfedge_handle(hh, hhNext) // set pointer to next CCW edge

(6) the opposite halfedge
mesh.opposite_halfedge_handle(hh) // the twin halfedge

(7) the previous halfedge in the face
mesh.prev_halfedge_handle(hh) // handle of the previous CCW edge
mesh.set_prev_halfedge_handle(hh, hhPrev) // set pointer to prev CCW edge

See also:

mesh.point(vh); // get position for vertex handle vh
mesh.insert_edge(hhFrom, hhTo) // Inserts an edge between to_vh(hhFrom) and from_vh(hhTo)

The tasks:
1) Implement the ear clipping method and test it on provided sets of points [11 points]
Implement the ear clipping method using chosen data structure. Submit the resulting
modified main.cpp file.

3-ears_width_OpenMesh.zip
Version using OpenMesh implementation of DCEL data structure – please,
unpack the included OpenMesh.zip

3-ears_no_OpenMesh.zip
Version using list of triangles as triples of point indices without any other
topology information stored

2) Try to find two simple polygons, where naïve and precise predicates give different
results and explain them [bonus 2 points]

3) Implement the Constraint Delaunay re-triangulation [5 points]

Perform edge-flip operation for inner edges until no edge has a positive inCircle test.

Links
[1] Meisters, G. H., “Polygons have ears,” American Mathematical Monthly, June/July 1975,

pp. 648-651.
http://www.cgeo.ulg.ac.be/CG/polygons_have_ears.pdf

[2] Polygon triangulation. http://en.wikipedia.org/wiki/Polygon_triangulation
[3] ElGindy, H., Everett, H., and Toussaint, G. T., (1993) "Slicing an ear using prune-and-

search," Pattern Recognition Letters, 14, (9):719–722.
http://www-cgrl.cs.mcgill.ca/~godfried/publications/ear.pdf

[4] Botsch, Mario; S. Steinberg; S. Bischoff; L. Kobbelt: OpenMesh - a generic and efficient
polygon mesh data structure, 1st OpenSG Symposium, 2002.
http://www.graphics.rwth-aachen.de/media/papers/openmesh1.pdf

[5] What is OpenMesh?
http://www.openmesh.org/intro/

[6] Using and understanding OpenMesh
http://www.openmesh.org/media/Documentations/OpenMesh-Doc-Latest/a00006.html

[7] OpenMesh::Concepts::KernelT< FinalMeshItems > Class Template Reference
http://www.openmesh.org/media/Documentations/OpenMesh-Doc-Latest/a00181.html

