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Synonyms

– EM-Algorithm

Related Concepts

– Maximum likelihood estimation
– Bayesian inference
– Unsupervised learning

Definition

The Expectation Maximisation Algorithm iteratively maximises the likeli-
hood of a training sample with respect to unknown parameters of a probability
model under the condition of missing information. The training sample is as-
sumed to represent a set of independent realisations of a random variable defined
on the underlying probability space.

Background

One of the main paradigms of statistical pattern recognition and Bayesian
inference is to model the relation between the observable features x ∈ X of
an object and its hidden state y ∈ Y by a joint probability measure p(x, y).
This probability measure is, however, often known only up to some parameters
θ ∈ Θ. It is thus necessary to estimate these parameters from a training sample,
which is assumed to represent a sequence of independent realisations of a random
variable. If, ideally, these are realisations of pairs (x, y), then the corresponding
estimation methods are addressed as supervised learning. It is, however, quite
common that some of those variables describing the hidden state are latent.
These latent variables are never observed in the training data. Therefore, it is
necessary to marginalise over them in order to estimate the unknown parameters
θ. Corresponding estimation methods are known as unsupervised learning. More-
over, especially in computer vision, the observation x and the hidden state y both
may have a complex structure. The latter can be e.g., a segmentation, a depth
map or a similar object. Consequently, it is often not feasible to provide the com-
plete information y for the realisations in the sample. This means to estimate
the parameters in the situation of missing information. The EM-algorithm is a
method searching for maximum likelihood estimates of the unknown parameters
under such conditions.

Theory



All the situations described in the previous section can be treated in a uniform
way by assuming the training sample as a set of independent realisations of a
random variable.

Let Ω be a finite sample space, F be its power set and pθ : F → R+ be a
probability measure defined up to unknown parameters θ ∈ Θ. Let X : Ω → X
be a random variable and T = (x1, x2, . . . , xn) be a sequence of independent
realisations of X (see e.g. [1,2] for a formal definition of independent realisa-
tions). The Maximum Likelihood estimator provides estimates of the unknown
parameters θ by maximising the probability of T

θ∗ = argmax
θ

n∏
i=1

pθ(Ωi), (1)

where Ωi denotes the pre-image {ω ∈ Ω | X(ω) = xi}. If the logarithm is taken,
the task reads equivalently

θ∗ = argmax
θ

L(x1, . . . , xn, θ) = argmax
θ

n∑
i=1

log
∑
ω∈Ωi

pθ(ω). (2)

Remark 1. It is often assumed that Ω is a Cartesian product Ω = X×Y and that
X simply projects onto the first component X(x, y) = x. Then the probability
pθ(Ωi) =

∑
y∈Y pθ(xi, y) is nothing but the marginalisation over all possible y.

This special case will be considered in an example below. ut

The optimisation task (2) is often complicated and hardly solvable by standard
optimisation methods – either because the objective function is not concave or
because θ represents a set of parameters of different natures. Suppose, however,
that the task of parameter estimation is feasible if complete information, i.e. a
set of realisations of ω ∈ Ω is available. This applies in particular if the cor-
responding simpler objective function

∑
i log pθ(ωi) is concave with respect to

θ or if the task decomposes into simpler, independent optimisation tasks with
respect to individual components of a parameter collection.

The key idea of the Expectation Maximisation algorithm is to exploit this
circumstance and to solve the optimisation task (2) by iterating the following
two feasible tasks:

(1) given a current estimate of θ, determine the missing information, i.e., pθ(ω|Ωi)
for each element xi ∈ T and

(2) given the complete information, solve the corresponding estimation task,
resulting in an improved estimate of θ.

To further substantiate this idea of “iterative splitting” of the task (2), it is
convenient to introduce non-negative auxiliary variables αi(ω), ω ∈ Ωi, for each
element xi of the learning sample T such that they fulfil∑

ω∈Ωi

αi(ω) = 1, ∀i = 1, 2, . . . , n. (3)



These variables αi can be seen as (so far arbitrary) posterior probabilities p(ω|Ωi)
for ω ∈ Ωi, given a realisation xi. The log-likelihood of a realisation xi can be
written by their use as

log pθ(Ωi) =
∑
ω∈Ωi

αi(ω) log pθ(Ωi) =

=
∑
ω∈Ωi

αi(ω) log pθ(ω)−
∑
ω∈Ωi

αi(ω) log
pθ(ω)

pθ(Ωi)
, (4)

where the first equality follows directly from (3). The log-likelihood of the train-
ing sample can be therefore expressed equivalently as

L(x1, . . . , xn, θ) =

n∑
i=1

∑
ω∈Ωi

αi(ω) log pθ(Ωi) =

=

n∑
i=1

∑
ω∈Ωi

αi(ω) log pθ(ω)−
n∑
i=1

∑
ω∈Ωi

αi(ω) log pθ(ω|Ωi). (5)

The expression as a whole does not depend on the specific choice of the auxiliary
variables α, whereas the minuend and subtrahend do. Moreover, note that the
minuend is nothing but the likelihood of a sample of complete data, if the α are
interpreted as the missing information, i.e., posterior probabilities for ω ∈ Ωi
given the observation xi.

Starting with some reasonable choice for the initial θ(0) the likelihood is
iteratively increased by alternating the following two steps. The (E)xpectation
step calculates new α such that whatever new θ will be chosen subsequently,
the subtrahend will not increase. The (M)aximisation step relies on this and
maximises the minuend only, avoiding to deal with the subtrahend.

E-step α
(t)
i (ω) = pθ(t)

(
ω|Ωi

)
(6)

M-step θ(t+1) = argmax
θ

n∑
i=1

∑
ω∈Ωi

α
(t)
i (ω) log pθ(ω). (7)

From the conceptual point of view the E-step can be seen as inference – it cal-
culates the missing data, i.e., the posterior probabilities pθ(t)

(
ω|Ωi

)
for each

element xi in the training sample. The M-step utilises these posterior probabil-
ities for a supervised learning step. The names themselves stem from a rather
formal view: the E-step calculates the α and therefore the objective function in
(7) which has the form of an expectation of log pθ(ω). The computation of this
objective function is sometimes considered to be a part of the E-step. The name
for the M-step is obvious.

It is easy to see that the likelihood is monotonically increasing: The choice
(6) for α guarantees that the subtrahend in (5) can only decrease whatever new
θ will be chosen in the subsequent M-step. This follows from the inequality∑

ω∈Ωi

pθ(ω|Ωi) log pθ′(ω|Ωi) 6
∑
ω∈Ωi

pθ(ω|Ωi) log pθ(ω|Ωi) ∀θ′ 6= θ. (8)



Since the M-step chooses the new θ so as to maximise the minuend, the like-
lihood can only increase (or stay constant). Another convenient way to prove
monotonicity of the EM algorithm can be found in [3,4]. These tutorials con-
sider the EM algorithm as the maximisation of a lower bound of the likelihood.

It remains unclear whether the global optimum of the likelihood is reached
in a fix-point of the algorithm. Moreover, it happens quite often that the M-step
is infeasible for complex models pθ. Then a weaker form of the EM algorithm is
used by choosing θ(t+1) so as to guarantee an increase of the objective function
of the M-step.

The derivation of the concept of the EM algorithm was given here for a
discrete probability space and discrete random variables. It can be however gen-
eralised for uncountable probability spaces and random variables X with con-
tinuous probability density.

Example The EM-algorithm is often considered for the following special case.
The sampling space Ω is a Cartesian product Ω = X×Y and the random variable
X simply projects onto the first component X(x, y) = x. The parameters θ ∈ Θ
of the probability pθ(x, y) are to be estimated given a sequence of independent
realisations of x. In this special case, the log-likelihood has the form

L =

n∑
i=1

log
∑
y∈Y

pθ(xi, y). (9)

Its decomposition (5) is

L =

n∑
i=1

∑
y∈Y

αi(y) log pθ(xi, y)−
n∑
i=1

∑
y∈Y

αi(y) log pθ(y|xi). (10)

The EM-algorithm itself then reads

E-step α
(t)
i (y) = pθ(t)(y|xi) (11)

M-step θ(t+1) = argmax
θ

n∑
i=1

∑
y∈Y

α
(t)
i (y) log pθ(xi, y). (12)

History and applications The classic paper [5] is often cited as the first one
introducing the EM algorithm in its general form. It should be noted, however,
that the method was introduced and analysed substantially earlier for a broad
class of pattern recognition tasks in [6] and for exponential families in [7].

A comprehensive discussion of the EM algorithm can be found in [8] and in
the context of pattern recognition in [9,10]. Standard application examples are
parameter estimation for mixtures of Gaussians [8] and the Mean Shift algo-
rithm [11]. Another important application is parameter estimation for Hidden
Markov Models. This model class is extensively used for automated speech recog-
nition. The corresponding EM algorithm is known as Baum-Welch algorithm in



this context [12]. Rather complex applications of the EM algorithm arise in the
context of parameter estimation for Markov Random Fields [13].
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