
1

PRG – PROGRAMMING ESSENTIALS

1

Lecture 11 – Classes & Objects continued …
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start

Michal Reinštein
Czech Technical University in Prague, 

Faculty of Electrical Engineering, Dept. of Cybernetics, 
Center for Machine Perception
http://cmp.felk.cvut.cz/~reinsmic/

reinstein.michal@fel.cvut.cz

21/12/2017 Michal Reinštein, Czech Technical University in Prague



2

RECAP: OOP PERSPECTIVE
2

21/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

OOP is about changing the perspective

• Syntax for a function call: function_name(variable)
function is the one who executes on the variable

• Syntax in OOP: object_name.function_name()
object is the one who executes its method on given data / 
attribute



3

RECAP: CLASS vs. TUPLE
3

21/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• Advantage of using a class (e.g. Point) rather than a tuple is 
that class methods are sensible operations for points, but 
may not be appropriate for other tuples
(e.g. calculate the distance from the origin)

• Class allows to group together sensible operations as well as 
data to apply the methods on

• Each instance of the class has its own state
• Method behaves like a function but it is invoked on a specific 

instance



4

RECAP: EXAMPLE – INSTANCE METHODS
4

21/12/2017 Michal Reinštein, Czech Technical University in Prague

SOURCE https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods



5

RECAP: EXAMPLE – CLASS METHODS
5

21/12/2017 Michal Reinštein, Czech Technical University in Prague

SOURCE https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods



6

CLASSES, OBJECTS
6

21/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

• EXAMPLE: assume a rectangle that is oriented either vertically 
or horizontally, never at an angle;
specify the upper-left corner of the rectangle, and the size



7

CLASSES, OBJECTS
7

21/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html

• To specify the upper-left corner embed a Point object within 
the new Rectangle object

• Create two new Rectangle objects, and then print them 
producing



8

DOT OPERATOR COMPOSITION
8

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• The dot operator composes.
• The expression box.corner.x means:

“Go to the object that box refers to and select its attribute 
named corner, then go to that object and select its attribute 
named x”

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html



9

OBJECTS ARE MUTABLE
9

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• Change the state of an object by making an assignment to one 
of its attributes.

• Provide a method to encapsulate this inside the class.
• Provide another method to move the position of the rectangle 

elsewhere

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html



10

OBJECT EQUALITY
10

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• EXAMPLE: if two objects are the same, does it mean they 
contain the same data or that they are the same object?

• The is operator was used in previous examples on the lists 
when explaining aliases: it allows to find out if two references 
refer to the same object

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html



11

OBJECT EQUALITY
11

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• Shallow equality: When is is True, this type of equality is 

called shallow equality because it compares only the 

references and not the contents of the objects

• Deep equality: To compare the contents of the objects a 

function like same_coordinates needs to be created

• NOTE: if two variables refer to the same object, they have 

both shallow and deep equality

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html



12

OBJECT EQUALITY
12

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• Think about shallow & deep copy when designing classes!
• EXAMPLE: even though the two lists (or tuples, etc.) are 

distinct objects with different memory addresses, for lists 
the == operator tests for deep equality, while in the case of 
points it makes a shallow test

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html



13

OBJECT COPY
13

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• Aliasing makes code difficult to read – changes made in one 
place might have unexpected effects in another place

• Copying object is an alternative to aliasing: the copy module 
contains a function copy that can duplicate any object

• EXAMPLE: import the copy module and use the copy function 
to make a new Point: p1 and p2 are not the same point, but 
they contain the same data (shallow copy)

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html



14

OBJECT COPY
14

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• EXAMPLE: Assume Rectangle, which contains a reference to 
a Point: copy copies the reference to the Point object, so both 
the old Rectangle and the new one refer to a single Point.

• Invoking grow on one of the Rectangle objects would not 
affect the other, 
but invoking move on either would affect both

• The shallow copy has created an alias to the Point that 
represents the corner

• Copy module contains a function named deepcopy that 
copies not only the object but also any embedded objects

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html



15

OBJECT COPY
15

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• Deep copy: To copy the contents of an object as well as any 

embedded objects, and any objects embedded in them, etc. 

(implemented as deepcopy function in copy module)

• Deep equality: Equality of values, or two references that point 

to objects that have the same value.

• Shallow copy: To copy the contents of an object, including any 

references to embedded objects.

(implemented by the copy function in the copy module)

• Shallow equality: Equality of references, or two references 

that point to the same object.

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_II.html



16

CLASSES, OBJECTS
16

21/12/2017 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

• EXAMPLE: user-defined type called MyTime that records the 
time of day

• Initializer using an __init__ method to ensure that every 
instance is created with appropriate attributes



17

PURE FUNCTIONS
17

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• EXAMPLE: write two versions of a function add_time, which 

calculates the sum of two MyTime objects

• Function that creates a new MyTime object and returns a 

reference to the new object is pure function because it does 
not modify any of the objects passed to it as parameters and it 
has no side effects

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html



18

PURE FUNCTIONS
18

21/12/2017 Michal Reinštein, Czech Technical University in Prague

EXAMPLE: create two MyTime objects:
current_time, which contains the 
current time; and bread_time, which 
contains the amount of time it takes for 
a breadmaker to make bread. Then 
use add_time to figure out when the 
bread will be done

PROBLEM: we do not deal with cases 
where the number of seconds or minutes 
adds up to more than sixty. 

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html



19

MODIFIERS
19

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• It can be useful for a function to modify one or more of the 

objects it gets as parameters

• Usually, the caller keeps a reference to the objects it passes, 

so any changes the function makes are visible to the caller 

(modifier function)

• Increment, which adds a given number of seconds to 

a MyTime object, is a natural example of a modifier

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html



20

MODIFIERS
20

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• Include functions that work with MyTime objects into 
the MyTime class (conversion of increment to a method)

• Move the definition into the class definition and change the 
name of the first parameter to self (Python convention)

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html



21

INSIGHT
21

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• INSIGHT: MyTime object is a three-digit number in base 60!

• Another approach —convert the MyTime object into a single 
number

• The above method is added to the MyTime class to convert 

any instance into a corresponding number of seconds

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html



22

INSIGHT
22

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• In OOP wrap together the data and the operations 
• Solution is to rewrite the class initializer so that it can cope 

with initial values of seconds or minutes that are outside 

the normalized values

(normalized time: 3 hours 12 minutes and 20 seconds; the same 
time but not normalized 2 hours 70 minutes and 140 seconds)

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html



23

EXAMPLE
23

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• EXAMPLE: The after function should compare two times and 
specify whether the first time is strictly after the second

• More complicated because it operates on 
two MyTime objects not just one

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html



24

EXAMPLE
24

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• Lines 11-18 will only be reached if the two hour fields are the 

same.

• The test at line 16 is only executed if both times have the 

same hours and the same minutes.

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html



25

EXAMPLE
25

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• The whole example can be made easier using the previously 
discovered insight of converting the time into single integer!

• This is a great way to code this: 

if we want to tell if the first time is after the second time, turn 
them both into integers and compare the integers.

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html



26

OPERATOR OVERLOADING
26

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• Operator overloading: possibility to have different meanings 
for the same operator when applied to different types

• EXAMPLE: the + in Python means quite different things for 
integers (addition) and for strings (concatenation)!

• To override the addition operator + provide a method 
named __add__

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html



27

OPERATOR OVERLOADING
27

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• First parameter is the object on which the method is invoked

• Second parameter is named other to distinguish it from self

• To add two MyTime objects create and return a 

new MyTime object that contains their sum

• The expression t1 + t2 is equivalent to t1.__add__(t2)

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html



28

OPERATOR OVERLOADING
28

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• EXAMPLE: back to the Point class – adding two points adds 
their respective (x, y) coordinates

• EXAMPLE: several ways to override the behavior of the 
multiplication operator: by defining a method 
named __mul__, or __rmul__, or both

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html



29

OPERATOR OVERLOADING
29

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• If the left operand of * is a Point, Python invokes __mul__, 
which assumes that the other operand is also a Point
(this computes the dot product of the two Points)

• If the left operand of * is a primitive type and the right 
operand is a Point, Python invokes __rmul__, which 
performs scalar multiplication

• The result is always a new Point whose coordinates are a 
multiple of the original coordinates

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html



30

OPERATOR OVERLOADING
30

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• EXAMPLE: How is p2 * 2 evaluated? 

Since the first parameter is a Point, Python 
invokes __mul__ with 2 as the second argument. 
Inside __mul__, the program tries to access the x coordinate 
of other, which fails because an integer has no attributes

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html



31

POLYMORPHISM
31

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• Polymorphism: there are certain operations that can be 
applied to many types, such as the arithmetic operations

• EXAMPLE: multadd operation takes three parameters: 
multiplies the first two and then adds the third

• The first case: the Point is multiplied by a scalar and then 
added to another Point. 

• The second case: the dot product yields a numeric value, so 
the third parameter also has to be a numeric value

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html



32

POLYMORPHISM
32

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• EXAMPLE: front_and_back – consider a function which prints 
a list twice, forward and backward

• The reverse method is a modifier therefore a copy needs to 
be made before applying it (this way we prevent to modify the 
list the function gets as a parameter)

• Function like this that can take arguments with different types 
is called polymorphic

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html



33

POLYMORPHISM
33

21/12/2017 Michal Reinštein, Czech Technical University in Prague

• Python’s fundamental rule of polymorphism
called the duck typing rule:

If all of the operations inside the function can be applied to 
the type, the function can be applied to the type.

• The operations in the front_and_back function:
copy, reverse, print

• SOLUTION: copy works on any object, already written 
a __str__ method for Point objects, only reverse method for 
the Point class is needed

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html



34

EXAMPLES
34

21/12/2017 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775



35

EXAMPLES
35

21/12/2017 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775



36

EXAMPLES
36

21/12/2017 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775



37

EXAMPLES
37

21/12/2017 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775



38

EXAMPLES
38

21/12/2017 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775



39

EXAMPLES
39

21/12/2017 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775



40

EXAMPLES
40

21/12/2017 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775



41

EXAMPLES
41

21/12/2017 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775



42

EXAMPLES
42

21/12/2017 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775



43

EXAMPLES
43

21/12/2017 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775



44

INSPECTING OBJECTS
44

21/12/2017 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

• Use function dir for inspecting objects: output list of the 

attributes and methods



45

EXAMPLES
45

21/12/2017 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775



46

EXAMPLES
46

21/12/2017 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775



47

EXAMPLES
47

21/12/2017 Michal Reinštein, Czech Technical University in Prague

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775



48

REFERENCES
48

21/12/2017 Michal Reinštein, Czech Technical University in Prague

This lecture re-uses selected parts of the OPEN BOOK PROJECT
Learning with Python 3 (RLE)

http://openbookproject.net/thinkcs/python/english3e/index.html
available under GNU Free Documentation License Version 1.3)

• Version date: October 2012
• by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris Meyers) 
• Source repository is at https://code.launchpad.net/~thinkcspy-rle-

team/thinkcspy/thinkcspy3-rle
• For offline use, download a zip file of the html or a pdf version 

from http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

This lecture re-uses selected parts of the PYTHON TEXTBOOK
Object-Oriented Programming in Python

http://python-textbok.readthedocs.io/en/1.0/Classes.html#
(released under CC BY-SA 4.0 licence Revision 8e685e710775)


