
1

PRG – PROGRAMMING ESSENTIALS

1

Lecture 9 – Debugging, Practical Examples
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start

Michal Reinštein
Czech Technical University in Prague,

Faculty of Electrical Engineering, Dept. of Cybernetics,
Center for Machine Perception
http://cmp.felk.cvut.cz/~reinsmic/

reinstein.michal@fel.cvut.cz

29/11/2018 Michal Reinštein, Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start
http://cmp.felk.cvut.cz/~reinsmic/
mailto:reinstein.michal@fel.cvut.cz

2

DEBUGGING
2

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source https://realpython.com/python-debugging-pdb/

• Debugging in Python (pdb) vs. debugging in PyCharm (IDE)

• Reference for pdb debugging:
https://realpython.com/python-debugging-pdb/

https://realpython.com/python-debugging-pdb/
https://realpython.com/python-debugging-pdb/

3

DEBUGGING IN PYCHARM
3

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html

Quadratic formula - known as the A, B, C formula, it’s used for solving a
simple quadratic equation: ax2 + bx + c = 0
https://www.khanacademy.org/math/algebra/quadratics/solving-quadratics-
using-the-quadratic-formula/a/quadratic-formula-explained-article

https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.khanacademy.org/math/algebra/quadratics/solving-quadratics-using-the-quadratic-formula/a/quadratic-formula-explained-article

4

DEBUGGING
4

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html

https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html

5

DEBUGGING
5

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html

https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html

6

DEBUGGING – PLACING BREAKPOINTS
6

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html

https://www.jetbrains.com/help/pycharm/using-breakpoints.html

https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/using-breakpoints.html

7

DEBUGGING – STARTING DEBUGGER
7

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html

https://www.jetbrains.com/help/pycharm/starting-the-debugger-session.html

https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/starting-the-debugger-session.html

8

DEBUGGING – INLINE DEBUGGING
8

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html

https://www.jetbrains.com/help/pycharm/inline-debugging.html

https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/inline-debugging.html

9

DEBUGGING – ADVANCED TOOLS
9

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html

• Stepping toolbar
https://www.jetbrains.com/help/pycharm/debug-tool-
window.html#steptoolbar

• Watching variables
https://www.jetbrains.com/help/pycharm/debug-tool-
window-variables.html

• Evaluating expressions
https://www.jetbrains.com/help/pycharm/evaluating-
expressions.html

https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/debug-tool-window.html
https://www.jetbrains.com/help/pycharm/debug-tool-window-variables.html
https://www.jetbrains.com/help/pycharm/evaluating-expressions.html

10

DEBUGGING
10

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

The first step in debugging is to figure out which kind of
error you are dealing with:

1. Syntax errors
2. Runtime errors
3. Semantic errors

http://openbookproject.net/thinkcs/python/english3e/app_a.html

11

SYNTAX ERRORS
11

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• In case of syntax errors the error messages may not be often
that helpful. The most common messages are:

SyntaxError: invalid syntax
SyntaxError: invalid token

http://openbookproject.net/thinkcs/python/english3e/app_a.html

12

SYNTAX ERRORS
12

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• Unterminated string (especially multiline) may cause
an invalid token error at the end of your program, or it may
treat the following part of the program as a string until it
comes to the next string. In the second case, it might not
produce an error message at all!

• Unclosed bracket — (, {, or [— Python continues with the
next line as part of the current statement. Generally, an error
occurs almost immediately in the next line.

• Comparison vs. assignment, i.e. = instead of == inside a
conditional.

http://openbookproject.net/thinkcs/python/english3e/app_a.html

13

SYNTAX ERRORS
13

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• Keywords – double check not to use a Python keyword as

variable name

• Colon presence – make sure to have a colon at the end of the

header of every compound statement, including for, while, if,

and def statements
• Indentation consistency – indentation must be consistent

throughout the whole code; indent with either spaces or tabs

but but do not mix both approaches; each level should be

nested the same amount

• String consistency – strings in the code should have matching
quotation marks, do not mix different styles

http://openbookproject.net/thinkcs/python/english3e/app_a.html

14

PROGRAM „HANGS“
14

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• Infinite loop

• Infinite recursion

• Flow of execution

http://openbookproject.net/thinkcs/python/english3e/app_a.html

15

GETTING EXCEPTIONS
15

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

Error during runtime: Python

prints a message that includes

the name of the exception, the

line of the program where the

problem occurred, and a

traceback

http://openbookproject.net/thinkcs/python/english3e/app_a.html

16

GETTING EXCEPTIONS
16

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• Using breakpoints – Put a breakpoint on the line causing the

exception and explore the state of flow and variables

• Explore the traceback – The traceback identifies the function

that is currently running, and then the function that invoked

it, and then the function that invoked that function (tracing
the complete list of invocations up to the critical point)
including the line number in your file where each of these

calls occurs.

• Explore different levels on the stack – The first step is to

examine the place in the program where the error occurred

and then trace the origin

http://openbookproject.net/thinkcs/python/english3e/app_a.html

17

GETTING EXCEPTIONS
17

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• NameError

• TypeError

http://openbookproject.net/thinkcs/python/english3e/app_a.html

18

GETTING EXCEPTIONS
18

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• KeyError
• AttributeError
• IndexError

http://openbookproject.net/thinkcs/python/english3e/app_a.html

19

SEMANTIC ERRORS
19

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• Semantic errors are the hardest – The compiler and the
runtime system provide no information about what is wrong.

• Formulate hypothesis & validate – The first step is to make a
connection between the program text and the behavior;
formulate hypothesis about what the program is actually
doing.
• Placing print statements and break points

(conditional break points)
• Use trivial data (back to basics) or dummy inputs to

simulate desired behavior as well as failures
• Walking the program step-by-step
• Writing unit tests and integration tests to avoid future

breaking changes (testing is our save game button!)

http://openbookproject.net/thinkcs/python/english3e/app_a.html

20

DEBUGGING – SIMPLE vs. COMPLEX
20

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

1. Start with simple, better readable and more verbose code
2. Verify the functionality

(solve syntax, runtime and semantic errors)
3. Write tests to ensure the code does not break with changes
4. Perform refactoring and optimization

http://openbookproject.net/thinkcs/python/english3e/app_a.html

21

DEBUGGING – SIMPLE vs. COMPLEX
21

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• Complex expressions – Writing complex expressions is fine as
long as they are readable; try to break a complex expression
into a series of assignments to temporary variables

• Explicit vs. implicit – The explicit version is easier to read
because the variable names provide additional
documentation; easier to debug because the types of the
intermediate variables can be inspected for correct values

http://openbookproject.net/thinkcs/python/english3e/app_a.html

22

RECAP: PROGRAM DEVELOPMENT
22

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/fruitful_functions.html

• Incremental development technique – avoid long debugging

sessions by adding and testing only a small amount of code at

a time.

• EXAMPLE: We want to find the distance between two points,
given by the coordinates (x1, y1) and (x2, y2).
(Pythagorean theorem)

What are the inputs (parameters)?
What is the output (return value)?

http://openbookproject.net/thinkcs/python/english3e/fruitful_functions.html

23

RECAP: PROGRAM DEVELOPMENT
23

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/fruitful_functions.html

Define interface

Process parameters

Temporary variables

Return result

http://openbookproject.net/thinkcs/python/english3e/fruitful_functions.html

24

DEBUGGING – SIMPLE vs. COMPLEX
24

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• Use parentheses – Whenever the order of evaluation is not

clear, use parentheses. This way mistakes will be avoided and

the code will be more readable especially for those who did
not memorize the rules of precedence …

http://openbookproject.net/thinkcs/python/english3e/app_a.html

25

DEBUGGING – CALL FOR HELP!
25

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• Asking for help is essential, https://stackoverflow.com/ is the

best friend, you can learn a lot from the mistakes of others!

• Make sure you ask the right question! (not easy)

• When you bring someone in to help, be sure to give them the

right & complete information they need:

• If there is an error message, what is it and what part of the

program does it indicate?

• What was the last thing you did before errors occurred?

• What were the last lines of code that you wrote,

or what is the new test case that fails?

• What have you tried so far, and what have you learned?

http://openbookproject.net/thinkcs/python/english3e/app_a.html
https://stackoverflow.com/

26

TIPS & HINTS: FUNCTIONS
26

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

There are two kinds of functions:

• fruitful, or value-returning functions, which calculate and

return a value that we want

• void (non-fruitful) functions that perform actions that we

want done

http://openbookproject.net/thinkcs/python/english3e/app_e.html

27

TIPS & HINTS: FUNCTIONS
27

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

http://openbookproject.net/thinkcs/python/english3e/app_e.html

28

TIPS & HINTS: FLOW OF CONTROL
28

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

• Solve the problem: “Does the list have any odd numbers?”
• The logic “If I find an odd number I can return True” is fine.
• There are two issues (bugs) – which ones?

http://openbookproject.net/thinkcs/python/english3e/app_e.html

29

TIPS & HINTS: FLOW OF CONTROL
29

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

• PROBLEM 1: Cannot return False after only looking at one
item — False can be returned only after all the items were
explored, and none of them were odd
(line 6 should not be there, line 7 has to be outside the loop)

• PROBLEM 2: Consider what happens if this function is called
with an argument that is an empty list: any_odd([])

http://openbookproject.net/thinkcs/python/english3e/app_e.html

30

TIPS & HINTS: FLOW OF CONTROL
30

30/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

• PROBLEM 1: Cannot return False after only looking at one
item — False can be returned only after all the items were
explored, and none of them were odd
(line 6 should not be there, line 7 has to be outside the loop)

• PROBLEM 2: Consider what happens if this function is called
with an argument that is an empty list: any_odd([])

http://openbookproject.net/thinkcs/python/english3e/app_e.html

31

TIPS & HINTS: FLOW OF CONTROL
31

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

• Different solution …

• PROBLEM 3: What is the disadvantage of this code?

http://openbookproject.net/thinkcs/python/english3e/app_e.html

32

TIPS & HINTS: FLOW OF CONTROL
32

30/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

• Different solution …

• PROBLEM 3: The performance disadvantage of this one is that
it traverses the whole list, even if it knows the results already

http://openbookproject.net/thinkcs/python/english3e/app_e.html

33

TIPS & HINTS: FLOW OF CONTROL
33

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

This code is tighter but it is not as nice as the one that did the
short-circuit return as soon as the first odd number was found

http://openbookproject.net/thinkcs/python/english3e/app_e.html

34

TIPS & HINTS: BOOLEAN VALUES
34

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

http://openbookproject.net/thinkcs/python/english3e/app_e.html

35

TIPS & HINTS: STRINGS
35

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

Four really important operations on strings:

• len(str) finds the length of a string

• str[i] the subscript operation extracts the i’th
character of the string, as a new string

• str[i : j] the slice operation extracts a substring out of

a string

• str.find(target) returns the index where target occurs within

the string, or -1 if it is not found

http://openbookproject.net/thinkcs/python/english3e/app_e.html

36

TIPS & HINTS: STRINGS
36

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

• Task is to read lines of some data (e.g. python code file), find

function definitions and print their names
• The name of the function has to be isolated properly:

def some_function_name(x, y):

http://openbookproject.net/thinkcs/python/english3e/app_e.html

37

TIPS & HINTS: STRINGS
37

30/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

• PROBLEM: What if the function def is indented and does not
start at column 0?

• The code needs adjustment to detection of spaces – make
sure the characters in front of the def_pos position are spaces

• Handle special cases like comments:

I def initely like Python!

http://openbookproject.net/thinkcs/python/english3e/app_e.html

38

TIPS & HINTS: STRINGS
38

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

Verification of assumptions is necessary!
• ASSUMPTION 1: we assume on line 4 that we will find an

open parenthesis – this should be checked that it was done!

• ASSUMPTION 2: we assume that there is exactly one space
between the keyword def and the start of the function name;

this will not work for multiple spaces: def f(x)

http://openbookproject.net/thinkcs/python/english3e/app_e.html

39

TIPS & HINTS: LOOPING
39

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

• Loops are a key feature for most of the programs: to repeat
computation, accurately and fast

• EXAMPLE: Two functions sum1 and sum2 both generate ten
million random numbers and return their sum; both work!

• PROBLEM: What is the key performance difference?

http://openbookproject.net/thinkcs/python/english3e/app_e.html

40

TIPS & HINTS: LOOPING
40

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

http://openbookproject.net/thinkcs/python/english3e/app_e.html

41

TIPS & HINTS: LOOPING
41

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

• Simple performance monitoring: Open a tool like the

Performance Monitor (e.g. htop on Linux) on your computer,

and watch the memory usage.

How big can you make the list before you get a fatal memory
error in sum1?

• Similar when working with files: option to read the whole file

contents into a single string, or read one line at a time and

process each line as it is read.

Line-at-a-time is the more traditional and safer way to do
things — work comfortably no matter how large the file is.

http://openbookproject.net/thinkcs/python/english3e/app_e.html

42

TIPS & HINTS: LOOPING
42

29/11/2018 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

http://openbookproject.net/thinkcs/python/english3e/app_e.html

43

REFERENCES
43

29/11/2018 Michal Reinštein, Czech Technical University in Prague

• https://www.jetbrains.com/help/pycharm/part-1-debugging-python-
code.html

• https://realpython.com/python-debugging-pdb/

• https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19

• http://openbookproject.net/thinkcs/python/english3e/app_a.html

• http://openbookproject.net/thinkcs/python/english3e/app_e.html

• http://openbookproject.net/thinkcs/python/english3e/app_b.html

https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://realpython.com/python-debugging-pdb/
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19
http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_b.html

44

REFERENCES
44

29/11/2018 Michal Reinštein, Czech Technical University in Prague

This lecture re-uses selected parts of the OPEN BOOK PROJECT
Learning with Python 3 (RLE)

http://openbookproject.net/thinkcs/python/english3e/index.html
available under GNU Free Documentation License Version 1.3)

• Version date: October 2012
• by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris
Meyers)

• Source repository is at https://code.launchpad.net/~thinkcspy-rle-
team/thinkcspy/thinkcspy3-rle

• For offline use, download a zip file of the html or a pdf version
from http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

