
Program flow, variables,
conditionals,

essential pieces
Tomáš Svoboda, http://cmp.felk.cvut.cz/~svoboda

Programming Essentials, EECS, CTU in Prague

Oct 12, 2016

http://cmp.felk.cvut.cz/~svoboda
http://eecs.fel.cvut.cz

variables

• integers (int), 4,7,8

• strings (str), “hello”

• floats (float), 1.0, 5.7

• type(1.0)

2

How to name variables

• the longer life the longer name

• the more important the longer name

• think about readability of the code

• a meaningfull name does not add the meaning just
by itself. The code must do this.

3

reserved names

4

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

76trombones is illegal because it does not begin with a letter. more$ is illegal because it
contains an illegal character, the dollar sign. But what’s wrong with class?

It turns out that class is one of the Python keywords. Keywords define the language’s syntax
rules and structure, and they cannot be used as variable names.

Python has thirty-something keywords (and every now and again improvements to Python in-
troduce or eliminate one or two):

and as assert break class continue
def del elif else except exec
finally for from global if import
in is lambda nonlocal not or
pass raise return try while with
yield True False None

You might want to keep this list handy. If the interpreter complains about one of your variable
names and you don’t know why, see if it is on this list.

Programmers generally choose names for their variables that are meaningful to the human
readers of the program — they help the programmer document, or remember, what the variable
is used for.

Caution: Beginners sometimes confuse “meaningful to the human readers” with “mean-
ingful to the computer”. So they’ll wrongly think that because they’ve called some variable
average or pi, it will somehow magically calculate an average, or magically know that
the variable pi should have a value like 3.14159. No! The computer doesn’t understand
what you intend the variable to mean.
So you’ll find some instructors who deliberately don’t choose meaningful names when they
teach beginners — not because we don’t think it is a good habit, but because we’re trying
to reinforce the message that you — the programmer — must write the program code to
calculate the average, and you must write an assignment statement to give the variable pi
the value you want it to have.

2.4 Statements

A statement is an instruction that the Python interpreter can execute. We have only seen the
assignment statement so far. Some other kinds of statements that we’ll see shortly are while
statements, for statements, if statements, and import statements. (There are other kinds
too!)

When you type a statement on the command line, Python executes it. Statements don’t produce
any result.

2.4. Statements 15

avoid also the names of built-in
functions

5

https://docs.python.org/3.4/library/functions.html

https://docs.python.org/3.4/library/functions.html

avoid also some too generic

• max, min, abs

• list, string, array

• be specific, descriptive

6

statement

• an instruction the Python can execute

• does not produce any result

• day = “Saturday” is a statement

• we will see more …

7

expressions

• evaluation of an expression produces a value

• 1+1

• abs(-3)

• …

8

crunching-numbers

• read numbers from user

• compute average

9

operators and operands

• operand operator operand

• 1 + 3

• 6/4 vs 6//4 (floor division)

• 7%4 (modulus operator)

10

order of operations -
PEMDAS

1. Parentheses

2. Exponentiation

3. Multiplication and Division

4. Addition and Subtraction

left-to-right evaluation on the same level, with the
exception of exponentiation (**)

11

operators and data types

• Python is very flexible in this

• one symbol can have different meaning depending
on the data type(s)

12

converting types

• comfortable, especially strings to numbers and back

• may help

• use wisely

13

input

• get an input from the user

• the result is a str data type

• type conversion

14

assignment = not like the
math =

15

 1 a = 4
 2 b = 5
 3 a = a+b

• the variables can change over time
• think about score in a game
• what is the difference between a=a+b and a==a+b?

Conditionals

16

what is it all about

• test some condition

• change the program behaviour accordingly

17

18

entering a bar

age > 17
yes no

next, or wait

you can enter sorry, not this time

comparison operators

19

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

x == y # Produce True if ... x is equal to y
x != y # ... x is not equal to y
x > y # ... x is greater than y
x < y # ... x is less than y
x >= y # ... x is greater than or equal to y
x <= y # ... x is less than or equal to y

Although these operations are probably familiar, the Python symbols are different from the
mathematical symbols. A common error is to use a single equal sign (=) instead of a double
equal sign (==). Remember that = is an assignment operator and == is a comparison operator.
Also, there is no such thing as =< or =>.

Like any other types we’ve seen so far, Boolean values can be assigned to variables, printed,
etc.

>>> age = 18
>>> old_enough_to_get_driving_licence = age >= 17
>>> print(old_enough_to_get_driving_licence)
True
>>> type(old_enough_to_get_driving_licence)
<class ’bool’>

5.2 Logical operators

There are three logical operators, and, or, and not, that allow us to build more complex
Boolean expressions from simpler Boolean expressions. The semantics (meaning) of these
operators is similar to their meaning in English. For example, x > 0 and x < 10 produces
True only if x is greater than 0 and at the same time, x is less than 10.

n % 2 == 0 or n % 3 == 0 is True if either of the conditions is True, that is, if the
number n is divisible by 2 or it is divisible by 3. (What do you think happens if n is divisible
by both 2 and by 3 at the same time? Will the expression yield True or False? Try it in your
Python interpreter.)

Finally, the not operator negates a Boolean value, so not (x > y) is True if (x > y)
is False, that is, if x is less than or equal to y.

The expression on the left of the or operator is evaluated first: if the result is True, Python
does not (and need not) evaluate the expression on the right — this is called short-circuit evalu-
ation. Similarly, for the and operator, if the expression on the left yields False, Python does
not evaluate the expression on the right.

So there are no unnecessary evaluations.

5.3 Truth Tables

A truth table is a small table that allows us to list all the possible inputs, and to give the results
for the logical operators. Because the and and or operators each have two operands, there are

54 Chapter 5. Conditionals

truth tables

20

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

only four rows in a truth table that describes the semantics of and.

a b a and b
False False False
False True False
True False False
True True True

In a Truth Table, we sometimes use T and F as shorthand for the two Boolean values: here is
the truth table describing or:

a b a or b
F F F
F T T
T F T
T T T

The third logical operator, not, only takes a single operand, so its truth table only has two
rows:

a not a
F T
T F

5.4 Simplifying Boolean Expressions

A set of rules for simplifying and rearranging expressions is called an algebra. For example,
we are all familiar with school algebra rules, such as:

n * 0 == 0

Here we see a different algebra — the Boolean algebra — which provides rules for working
with Boolean values.

First, the and operator:

x and False == False
False and x == False
y and x == x and y
x and True == x
True and x == x
x and x == x

Here are some corresponding rules for the or operator:

x or False == x
False or x == x
y or x == x or y
x or True == True
True or x == True
x or x == x

5.4. Simplifying Boolean Expressions 55

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

only four rows in a truth table that describes the semantics of and.

a b a and b
False False False
False True False
True False False
True True True

In a Truth Table, we sometimes use T and F as shorthand for the two Boolean values: here is
the truth table describing or:

a b a or b
F F F
F T T
T F T
T T T

The third logical operator, not, only takes a single operand, so its truth table only has two
rows:

a not a
F T
T F

5.4 Simplifying Boolean Expressions

A set of rules for simplifying and rearranging expressions is called an algebra. For example,
we are all familiar with school algebra rules, such as:

n * 0 == 0

Here we see a different algebra — the Boolean algebra — which provides rules for working
with Boolean values.

First, the and operator:

x and False == False
False and x == False
y and x == x and y
x and True == x
True and x == x
x and x == x

Here are some corresponding rules for the or operator:

x or False == x
False or x == x
y or x == x or y
x or True == True
True or x == True
x or x == x

5.4. Simplifying Boolean Expressions 55

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

only four rows in a truth table that describes the semantics of and.

a b a and b
False False False
False True False
True False False
True True True

In a Truth Table, we sometimes use T and F as shorthand for the two Boolean values: here is
the truth table describing or:

a b a or b
F F F
F T T
T F T
T T T

The third logical operator, not, only takes a single operand, so its truth table only has two
rows:

a not a
F T
T F

5.4 Simplifying Boolean Expressions

A set of rules for simplifying and rearranging expressions is called an algebra. For example,
we are all familiar with school algebra rules, such as:

n * 0 == 0

Here we see a different algebra — the Boolean algebra — which provides rules for working
with Boolean values.

First, the and operator:

x and False == False
False and x == False
y and x == x and y
x and True == x
True and x == x
x and x == x

Here are some corresponding rules for the or operator:

x or False == x
False or x == x
y or x == x or y
x or True == True
True or x == True
x or x == x

5.4. Simplifying Boolean Expressions 55

simplifying comparisons

• make it simple

• a and False = ?

• a and True = ?

• a or True = ?

21

logical opposites

22

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

5.9 The return statement

The return statement, with or without a value, depending on whether the function is fruitful
or void, allows us to terminate the execution of a function before (or when) we reach the end.
One reason to use an early return is if we detect an error condition:

1 def print_square_root(x):
2 if x <= 0:
3 print("Positive numbers only, please.")
4 return
5

6 result = x**0.5
7 print("The square root of", x, "is", result)

The function print_square_root has a parameter named x. The first thing it does is
check whether x is less than or equal to 0, in which case it displays an error message and then
uses return to exit the function. The flow of execution immediately returns to the caller, and
the remaining lines of the function are not executed.

5.10 Logical opposites

Each of the six relational operators has a logical opposite: for example, suppose we can get a
driving licence when our age is greater or equal to 17, we can not get the driving licence when
we are less than 17.

Notice that the opposite of >= is <.

operator logical opposite
== !=
!= ==
< >=
<= >
> <=
>= <

Understanding these logical opposites allows us to sometimes get rid of not operators. not
operators are often quite difficult to read in computer code, and our intentions will usually be
clearer if we can eliminate them.

For example, if we wrote this Python:

1 if not (age >= 17):
2 print("Hey, you’re too young to get a driving licence!")

it would probably be clearer to use the simplification laws, and to write instead:

1 if age < 17:
2 print("Hey, you’re too young to get a driving licence!")

5.9. The return statement 61

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

5.9 The return statement

The return statement, with or without a value, depending on whether the function is fruitful
or void, allows us to terminate the execution of a function before (or when) we reach the end.
One reason to use an early return is if we detect an error condition:

1 def print_square_root(x):
2 if x <= 0:
3 print("Positive numbers only, please.")
4 return
5

6 result = x**0.5
7 print("The square root of", x, "is", result)

The function print_square_root has a parameter named x. The first thing it does is
check whether x is less than or equal to 0, in which case it displays an error message and then
uses return to exit the function. The flow of execution immediately returns to the caller, and
the remaining lines of the function are not executed.

5.10 Logical opposites

Each of the six relational operators has a logical opposite: for example, suppose we can get a
driving licence when our age is greater or equal to 17, we can not get the driving licence when
we are less than 17.

Notice that the opposite of >= is <.

operator logical opposite
== !=
!= ==
< >=
<= >
> <=
>= <

Understanding these logical opposites allows us to sometimes get rid of not operators. not
operators are often quite difficult to read in computer code, and our intentions will usually be
clearer if we can eliminate them.

For example, if we wrote this Python:

1 if not (age >= 17):
2 print("Hey, you’re too young to get a driving licence!")

it would probably be clearer to use the simplification laws, and to write instead:

1 if age < 17:
2 print("Hey, you’re too young to get a driving licence!")

5.9. The return statement 61

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

5.9 The return statement

The return statement, with or without a value, depending on whether the function is fruitful
or void, allows us to terminate the execution of a function before (or when) we reach the end.
One reason to use an early return is if we detect an error condition:

1 def print_square_root(x):
2 if x <= 0:
3 print("Positive numbers only, please.")
4 return
5

6 result = x**0.5
7 print("The square root of", x, "is", result)

The function print_square_root has a parameter named x. The first thing it does is
check whether x is less than or equal to 0, in which case it displays an error message and then
uses return to exit the function. The flow of execution immediately returns to the caller, and
the remaining lines of the function are not executed.

5.10 Logical opposites

Each of the six relational operators has a logical opposite: for example, suppose we can get a
driving licence when our age is greater or equal to 17, we can not get the driving licence when
we are less than 17.

Notice that the opposite of >= is <.

operator logical opposite
== !=
!= ==
< >=
<= >
> <=
>= <

Understanding these logical opposites allows us to sometimes get rid of not operators. not
operators are often quite difficult to read in computer code, and our intentions will usually be
clearer if we can eliminate them.

For example, if we wrote this Python:

1 if not (age >= 17):
2 print("Hey, you’re too young to get a driving licence!")

it would probably be clearer to use the simplification laws, and to write instead:

1 if age < 17:
2 print("Hey, you’re too young to get a driving licence!")

5.9. The return statement 61

temperature-convert

• a bit more convenient

• 30C should yield answer in F

• 70F should give answer in C

23

De Morgan’s laws

24

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Two powerful simplification laws (called de Morgan’s laws) that are often helpful when dealing
with complicated Boolean expressions are:

not (x and y) == (not x) or (not y)
not (x or y) == (not x) and (not y)

For example, suppose we can slay the dragon only if our magic lightsabre sword is charged to
90% or higher, and we have 100 or more energy units in our protective shield. We find this
fragment of Python code in the game:

1 if not ((sword_charge >= 0.90) and (shield_energy >= 100)):
2 print("Your attack has no effect, the dragon fries you to a crisp!")
3 else:
4 print("The dragon crumples in a heap. You rescue the gorgeous princess!")

de Morgan’s laws together with the logical opposites would let us rework the condition in a
(perhaps) easier to understand way like this:

1 if (sword_charge < 0.90) or (shield_energy < 100):
2 print("Your attack has no effect, the dragon fries you to a crisp!")
3 else:
4 print("The dragon crumples in a heap. You rescue the gorgeous princess!")

We could also get rid of the not by swapping around the then and else parts of the condi-
tional. So here is a third version, also equivalent:

1 if (sword_charge >= 0.90) and (shield_energy >= 100):
2 print("The dragon crumples in a heap. You rescue the gorgeous princess!")
3 else:
4 print("Your attack has no effect, the dragon fries you to a crisp!")

This version is probably the best of the three, because it very closely matches the initial English
statement. Clarity of our code (for other humans), and making it easy to see that the code does
what was expected should always be a high priority.

As our programming skills develop we’ll find we have more than one way to solve any problem.
So good programs are designed. We make choices that favour clarity, simplicity, and elegance.
The job title software architect says a lot about what we do — we are architects who engineer
our products to balance beauty, functionality, simplicity and clarity in our creations.

Tip: Once our program works, we should play around a bit trying to polish it up. Write
good comments. Think about whether the code would be clearer with different variable names.
Could we have done it more elegantly? Should we rather use a function? Can we simplify the
conditionals?

We think of our code as our creation, our work of art! We make it great.

5.11 Type conversion

We’ve had a first look at this in an earlier chapter. Seeing it again won’t hurt!

62 Chapter 5. Conditionals

can you attack the dragon or not?

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Two powerful simplification laws (called de Morgan’s laws) that are often helpful when dealing
with complicated Boolean expressions are:

not (x and y) == (not x) or (not y)
not (x or y) == (not x) and (not y)

For example, suppose we can slay the dragon only if our magic lightsabre sword is charged to
90% or higher, and we have 100 or more energy units in our protective shield. We find this
fragment of Python code in the game:

1 if not ((sword_charge >= 0.90) and (shield_energy >= 100)):
2 print("Your attack has no effect, the dragon fries you to a crisp!")
3 else:
4 print("The dragon crumples in a heap. You rescue the gorgeous princess!")

de Morgan’s laws together with the logical opposites would let us rework the condition in a
(perhaps) easier to understand way like this:

1 if (sword_charge < 0.90) or (shield_energy < 100):
2 print("Your attack has no effect, the dragon fries you to a crisp!")
3 else:
4 print("The dragon crumples in a heap. You rescue the gorgeous princess!")

We could also get rid of the not by swapping around the then and else parts of the condi-
tional. So here is a third version, also equivalent:

1 if (sword_charge >= 0.90) and (shield_energy >= 100):
2 print("The dragon crumples in a heap. You rescue the gorgeous princess!")
3 else:
4 print("Your attack has no effect, the dragon fries you to a crisp!")

This version is probably the best of the three, because it very closely matches the initial English
statement. Clarity of our code (for other humans), and making it easy to see that the code does
what was expected should always be a high priority.

As our programming skills develop we’ll find we have more than one way to solve any problem.
So good programs are designed. We make choices that favour clarity, simplicity, and elegance.
The job title software architect says a lot about what we do — we are architects who engineer
our products to balance beauty, functionality, simplicity and clarity in our creations.

Tip: Once our program works, we should play around a bit trying to polish it up. Write
good comments. Think about whether the code would be clearer with different variable names.
Could we have done it more elegantly? Should we rather use a function? Can we simplify the
conditionals?

We think of our code as our creation, our work of art! We make it great.

5.11 Type conversion

We’ve had a first look at this in an earlier chapter. Seeing it again won’t hurt!

62 Chapter 5. Conditionals

and what about this?

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Two powerful simplification laws (called de Morgan’s laws) that are often helpful when dealing
with complicated Boolean expressions are:

not (x and y) == (not x) or (not y)
not (x or y) == (not x) and (not y)

For example, suppose we can slay the dragon only if our magic lightsabre sword is charged to
90% or higher, and we have 100 or more energy units in our protective shield. We find this
fragment of Python code in the game:

1 if not ((sword_charge >= 0.90) and (shield_energy >= 100)):
2 print("Your attack has no effect, the dragon fries you to a crisp!")
3 else:
4 print("The dragon crumples in a heap. You rescue the gorgeous princess!")

de Morgan’s laws together with the logical opposites would let us rework the condition in a
(perhaps) easier to understand way like this:

1 if (sword_charge < 0.90) or (shield_energy < 100):
2 print("Your attack has no effect, the dragon fries you to a crisp!")
3 else:
4 print("The dragon crumples in a heap. You rescue the gorgeous princess!")

We could also get rid of the not by swapping around the then and else parts of the condi-
tional. So here is a third version, also equivalent:

1 if (sword_charge >= 0.90) and (shield_energy >= 100):
2 print("The dragon crumples in a heap. You rescue the gorgeous princess!")
3 else:
4 print("Your attack has no effect, the dragon fries you to a crisp!")

This version is probably the best of the three, because it very closely matches the initial English
statement. Clarity of our code (for other humans), and making it easy to see that the code does
what was expected should always be a high priority.

As our programming skills develop we’ll find we have more than one way to solve any problem.
So good programs are designed. We make choices that favour clarity, simplicity, and elegance.
The job title software architect says a lot about what we do — we are architects who engineer
our products to balance beauty, functionality, simplicity and clarity in our creations.

Tip: Once our program works, we should play around a bit trying to polish it up. Write
good comments. Think about whether the code would be clearer with different variable names.
Could we have done it more elegantly? Should we rather use a function? Can we simplify the
conditionals?

We think of our code as our creation, our work of art! We make it great.

5.11 Type conversion

We’ve had a first look at this in an earlier chapter. Seeing it again won’t hurt!

62 Chapter 5. Conditionals

