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Previously ... on multi-agent systems.

Sequence-Form Representations

Solving Extensive-Form Games



Extensive-Form Games

Let's assume that we want to play some normal-form game twice.
For example, rock-paper-scissors:
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How can we model such games?

We can model the game as an extensive-form game.

Pros: we already know how to solve such a game.
Cons: it is unnecessarily large.



RPS Played Twice as an Extensive-Form Games

We can use a model specific for repeated games.



Finitely Repeated Games

Definition

In repeated games we assume that a normal-form game, termed
the stage game, is played repeatedly. If the number of repetitions
(or rounds) is finite, we talk about finitely repeated games.

Question

How can we solve finitely repeated games?

We can use backward induction.

Why does this work if we have an extensive-form game with
imperfect information?



Infinitely Repeated Games

Definition

Assume that a stage game is played repeatedly. If the number of
repetitions (or rounds) is infinite, we talk about infinitely repeated
games.

We cannot use extensive-form games as a underlying model. There
are no leafs to assign utility values to. We need to define other
utility measures:

Definition
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Given an infinite sequence of payoffs r; 7, 7,”",... for player i, the

average reward of i is
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Infinitely Repeated Games

Definition

Given an infinite sequence of payoffs r(l),rl@), ... for player 4, and

@

a discount factor 8 with 0 < 8 < 1, the future discounted reward is
> ped)
j=1

Why do we use discount factor?
m a player cares more about immediate rewards

m a repeated game can terminate after each round with
probability 1 — 8



Strategies in Repeated Games

How can we represent the strategies in infinitely repeated games?
(the game tree is infinite)

B a stationary strategy — a randomized strategy that is played in
each stage game

Is this enough? Consider a repeated prisoners dilemma — what is
the most famous strategy in repeated prisoners dilemma?

Tit-for-tat: the player starts by cooperating and thereafter chooses
in round j 4+ 1 the action chosen by the other player in round j.

We can have more complex strategies consisting of
states/machines.



Strategies in Repeated Games

Given a game G = (N, A, u) that will be played repeatedly, an
automaton M; for player 7 is a four-tuple (Qi,q?,éi,fi), where:

Q; is a set of states;

q? is the start state;

0; defines a transition function mapping the current state and an
action profile to a new state, §; : Q; X A — Q;

fi is a strategy function associating with every state an action
for player ¢, f; : Q; — A;.

G
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A strategy for Tit-for-Tat



Strategies in Repeated Games

Definition

A payoff profile r = (r1,r9,...,7y,) is enforceable if Vi € N,
T > ;.

where v; is a minmax value for player ¢

v; = min maxu;(s_;, ;)
S_;€ES_; s;€S;

Definition

A payoff profile r = (r1,r2,...,7,) is feasible if there exist
rational, nonnegative values «a, such that for all ¢, we can express
73 as Y, 4 Qali(a), with - -y aq =1



Nash Strategies in Repeated Games

Theorem (Folk Theorem)

Consider any n-player normal-form game G and any payoff profile
r= (1,72, n)-

If r is the payoff profile for any Nash equilibrium s of the
infinitely repeated G with average rewards, then for each
player i, r; is enforceable.

If r is both feasible and enforceable, then r is the payoff
profile for some Nash equilibrium of the infinitely repeated G
with average rewards.



Stochastic Games

Let's generalize the repeated games. We do not have to play the
same normal-form game repeatedly. We can play different
normal-form games (possibly for infinitely long time).

Definition (Stochastic game)

A stochastic game is a tuple (Q, N, A, P, R), where:
Q@ is a finite set of games
N is a finite set of players
A is a finite set of actions, A; are actions available to player i
P

is a transition function P : @ x A x @ :— [0, 1], where
P(q,a,q) is a probability of reaching game ¢’ after a joint
action a is played in game ¢

b

is a set of reward functions ; : Q x A — R



Stochastic Games

Similarly to repeated games we can have several different rewards
(or objectives):

m discounted

m average

m reachability /safety

In reachability objectives a player wants to visit certain games
infinitely often.

Related to reaching some target state (for example attacking a
target) in a game without a pre-determined horizon.



Stochastic Games - Examples

Repeated prisoners dilemma:
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Dante's purgatory:
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Equilibria in Stochastic Games

Definition (History)

Let hy = (g0, @0,q1,a1,- .. ,a:1,q:) denote a history of ¢ stages of a
stochastic game, and let H; be the set of all possible histories of
this length.

Definition (Behavioral strategy)

A behavioral strategy s;(h¢, a;;) returns the probability of playing
action a;; for history hy.

Definition (Markov strategy)

A Markov strategy s; is a behavioral strategy in which
si(ht, ai;) = si(hy, a;;) if ¢ = q;, where ¢; and g; are the final
games of h; and h}, respectively.



Equilibria in Stochastic Games

A strategy profile is called a Markov perfect equilibrium if it
consists of only Markov strategies, and is a Nash equilibrium.

Theorem

Every n-player, general-sum, discounted-reward stochastic game
has a Markov perfect equilibrium.



Equilibria in Stochastic Games

For other rewards, Markov perfect equilibrium does not have to
exist.

hide, throw



Approximating Optimal Strategies in Stochastic Games

Standard algorithms from Markov Decision Processes, value and
strategy iteration, translate to stochastic games.

Algorithm 1. Value Iteration

1 t:=0

2 90 := (0,...,0,1) # the vector #° is indexed 0,1,...,N,N + 1
3. while true do

4 t:=t+1

5 UD =10

6 UN_H[ =1

7: forie{l,?,,. N}do

& | B = val(A; (0°1))




Approximating Optimal Strategies in Stochastic Games

Algorithm 2. Strategy Iteration

1 t:=1

2. x! := the strategy for Player I playing uniformly at each position
3. while true do

4 y* := an optimal best reply by Player II to x*
5: fori € {0,1,2,...,N,N + 1} do

6: L vf i= pi(zt,y")
.

8

9

ti=t+1
fori e {1,2,...,N}do

if val(A; (1¥=1)) > v~ ! then
10: |z} := maximin(A;(v*~1))

else
L at = .‘.L':_l




Succinct Representations

compact representation of the game with n = |N| players
we want to reduce the input from |S|V1 to |S|¢, where d < |V

it is less important which player plays which action, but how many
players play certain action

examples of succinct representations :
m congestion games (network congestion games, ...)
m polymatrix games (zero-sum polymatrix games)

m graphical games (action graph games)



Atomic Congestion Games

We have n players, set of edges F, strategies for each player are
paths in the network (S), and there is a congestion function

ce :{0,1,...,n} — ZT. When all players choose their strategy
path s; € S; we have the load of edge ¢, {5(e) = |{s; : e € s;}| and

Ui = =Y ey, Cells(€)).
Braess' paradox

x 100

100
B

100 drivers that want to go from s to ¢.
What is Nash equilibrium?



Atomic Congestion Games

Now consider that we introduce a new edge between A and B,
such that C(A,B) (l’) =0, Vz e K(A,B)-

A

100

What is Nash equilibrium?



Atomic Congestion Games

Theorem

Every atomic congestion game has a pure Nash equilibrium.

We can find it by an algorithm where players iteratively switch to
their pure best response. This holds for generalizations:

m weighted congestion games
m all games known as potential games

For some subclasses, it is polynomial to find a pure NE (e.g., for
symmetric network congestion games due to min-cost flow).



Invitation - Algorithmic Game Theory (XEP36AGT)

XEP36AGT Algorithmic Game Theo Extent of teaching: 24044
Guarantors: Bosansky B Roles: s Completion: ZK
Teachers: BoZansky B.
Responsible Department: 13136 4 Semester:
Anotation:

and problems - the

This course extends the knowledge in multiagent systems and game theory by focusing on the
and current algorithms for finding and approximating different solution concepts, the impact of different representations of games, and the applications of learning
techniques in game theory. The course is suitable for students that have already completed the course on Multiagent Systems (A4M36MAS) and either wish to
strengthen their knowledge in game theory, or they are working on related problems from artificial intelligence such as machine learning, decision theory, planning.

Course outlines:

Introduction to Game Theory
Fundamental Theorems (von Neumann, Nash, Kuhn)
Succinct Representations of Games

Finding Nash Equilibria

Approximating Nash Equilibria

Finding Correlated Equilibria

Finding Stackelberg Equilibria

Repeated Games
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Leamning and Dynamics in Games

10. Learning in Extensive-Form Games

11.  Games of Incomplete Information, Auctions
12.  Algorithmic Mechanism Design

13.  Mechanisms Without Money

14.  Stochastic Games
The structure of the lecutres covers the important algorithmic topics in game theory. Besides attending the lectures, the students are assumed to work on their
homework assignments that strenghten the understanding of the topic (4h per week).



