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Previously ... on multi-agent systems.

1 Coalitional/Cooperative Game Theory



Constraint Reasoning

Many real-world problems can be specified as constrained
programming.

Real-world scenarios are naturally constrained by limited resources
(money, time, energy).

The agents cooperatively seek optimal plan with respect to these
constraints. Examples:

scheduling and planning

sensor placement

solving coordination and optimization problems in MAS

Set of agents must come to some agreement, typically via some
form of negotiation, about which action each agent should take in
order to jointly obtain the best solution for the whole system.



Constraint Reasoning in/for MAS

In multi-agent systems: Distributed Constraint Reasoning Problems

Each agent negotiates locally with just a subset of other agents
(usually called neighbors) that are those that can directly influence
his/her behavior.

Leads to a distributed and a robust solution.

Particularly useful, when agents are lightweight/simple and there is
an open system (think Internet of Things).



Constraint Network

Definition

A constraint network N is formally defined as a triple 〈X,D,C〉,
where:

X = x1, . . . , xn is a set of variables;

D = {D1, . . . , Dn} is a set of variable domains, which
enumerate all possible values of the corresponding variables;
and

C = {C1, . . . , Cm} is a set of constraints; where a constraint
Ci is defined on a subset of variables Si ⊆ X which comprise
the scope of the constraint (ri = |Si| is the arity of
constraint i)



Hard vs. Soft Constraints

Hard constraint Ch
i is a Boolean predicate Pi that defines valid

joint assignments of variables in the scope

Pi : D
i
1 × . . .×Di

ri → {F, T}

Soft constraint Cs
i is a function Fi that maps every possible joint

assignment of all variables in the scope to a real value

Fi : D
i
1 × . . .×Di

ri → R



Binary Constraint Networks

Binary constraint networks are those where each constraint (soft or
hard) is defined over two variables.

Binary constraint networks can be represented by a constraint
graph.

Every constraint network can be mapped to a binary constraint
network:

requires the addition of variables and constraints

may increase the size of the model

Algorithms explained for binary constraints but can be extended to
n-ary.



Binary Constraint Networks



Types of Constraint Reasoning Problems

Constraint Satisfaction Problem (CSP)

Objective: find an assignment for all the variables in the
network that satisfies all constraints.

Extension to MaxCSP/MinCSP: Maximize the number of
satisfied constraints/minimize the number of violated
constraints.

Constraint Optimization Problem (COP)

Objective: find an assignment for all the variables in the
network that satisfies all constraints and optimizes a global
function.

Global function = aggregation (typically sum) of constrain
functions, i.e., F =

∑
Fi

COP provides more modeling power on the expense of more
complex solution algorithms.



Distributed Constraint Reasoning

When operating in a decentralized context:

a set of agents control variables

agents interact to find a solution to the constraint network



Distributed Constraint Reasoning

A distributed constraint reasoning problem consists of a constraint
network 〈X,D,C〉 and a set of agents A = A1, . . . , Ak where each
agent:

controls a subset of the variables Xi ⊆ X

is only aware of constraints that involve variable it controls

communicates only (locally) with its neighbors 1:1
agent-to-variable mapping assumed for algorithm explanation



Distributed Constraint Reasoning

Synchronous

A few agents are active,
most are waiting

Active agents take decisions
with up-to-date information

Low degree of concurrency

Poor robustness

Algorithms: direct
extensions of centralized
ones

Asynchronous

All agents are active
simultaneously

Information is less updated,
obsolescence appears

High degree of concurrency

High robustness

Algorithms: new approaches



Filtering

Each node communicates its domain to its neighbors, eliminates
from its domain the values that are not consistent with the values
received from the neighbors, and the process repeats. Specifically,
each node xi with domain Di repeatedly executes the procedure
Revise(xi, xj) for each neighbor xj .

Distributed variant of arc consistency from CSPs.

Recall: Is this sufficient?



Filtering

Filtering is a special case of inference rule termed unit resolution:

A1

¬(A1 ∧A2 ∧ . . . ∧An)

¬(A2 ∧ . . . ∧An)

x1 = red

¬(x1 = red ∧ x2 = red)

¬(x2 = red)
Generates forbidden value combinations called Nogoods.



Hyper Resolution

Can be generalized to hyper resolution:

A1 ∨A2 ∨ . . . ∨Am

¬(A1 ∧A1,1 ∧A1,2 ∧ . . .)

¬(A2 ∧A2,1 ∧A2,2 ∧ . . .)

...

¬(Am ∧Am,1 ∧Am,2 ∧ . . .)

¬(A1,1 ∧ . . . ∧A2,1 ∧ . . .)



Filtering using Hyper Resolution

Does the improved version help us?



Filtering using Hyper Resolution

Recall the example:

x1 derives ¬(x2 = red ∧ x3 = blue) and
¬(x2 = blue ∧ x3 = red)

x2 derives ¬(x3 = blue) and ¬(x3 = red)

now ∅ can be derived in Nogoods of agent x3

This algorithm generates all Nogoods that are possible.
This is intractable in general.
We need to employ search and backtracking.



Asynchronous Backtracking Algorithm (ABT) –
assumptions

Agents communicate by sending messages

An agent can send messages to others, iff it knows their
identifiers (directed communication / no broadcasting)

The delay transmitting a message is finite but random

For any pair of agents, messages are delivered in the order
they were sent

Agents know the constraints in which they are involved, but
not the other constraints

Each agent owns a single variable (agents = variables)

Constraints are binary (2 variables involved)



Asynchronous Backtracking Algorithm (ABT)

High Level Idea:

the algorithm makes an ordering on agents and assigns them
priority numbers

a higher-priority agent j informs a lower-priority agent k of its
assignment

lower-priority agent k evaluates the shared Cjk constraint with
its own assignment

if constraints are satisfied with the current assignment → no
action necessary
otherwise, agent k looks for a different value consistent with
choice of agent j
if such a consistent value exists → agent j adopts this value
and informs other low-priority agents
if such a consistent value does not exist, agent j updates
Nogoods and sends the message to agent j



Asynchronous Backtracking (ABT)

Asynchronous action; spontaneous assignment. Four operations:

1 Assignment:j takes value a, j informs all lower priority agents
in the neighborhood (ok? message).

2 Backtrack (no good): k has no consistent values with
higher-priority agents. k resolves nogoods and sends a
backtrack (nogood) message to the higher-priority agent in
the neighborhood with the lowest priority.

3 New links: j receives a nogood mentioning i, however, it is
not connected with j. j asks i to set up a link

4 Stop: “no solution” (empty set in nogood) detected by an
agent: stop

Solution: when agents are silent for a while (quiescence), every
constraint is satisfied → solution (detected by specialized
algorithms outside ABT)



ABT: Data Structures

Current context / agent view: values of higher-priority
constrained agents

NoGood store: each removed value has a justifying nogood

xi = a ∧ xj = b⇒ xk 6= c

Stored nogoods must be active: left-hand side of the nogood
satisfied in the current context

If a nogood is no longer active, it is removed (and the value is
available again)



ABT Example



ABT Improvements

ABT problem: highly constraint variables can be assigned very late

Solution: Use dynamic priorities

Change ok? and nogood messages to include agents current
priority

Use min-conflict heuristic: choose assignment minimizing the
number of violations with other agents

We can sacrifice the completeness for the scalability and use locally
optimal algorithms (hill-climbing, etc.).


