STATISTICAL MACHINE LEARNING (WS2017)
SEMINAR 7

Assignment 1. Let s, s9, ..., s, 1 be K-valued random variables, where K is a finite
set. Their joint probability distribution is a Markov model on a cycle

n—1
1
p(s) = 7 ggi(3i73i+l)

where indices i + 1 are considered modulo n. The functions g;: K? — R, are given
and Z is a normalisation constant. Find an algorithm for searching the most probable
realisation

s* = argmax p(s).
seK™

What complexity has it?

Assignment 2. Suppose your task is to automatically determine the thickness of the
epidermis layer in OCT images (Optical Coherence Tomography) of skin . The epi-
dermis is the topmost skin layer followed by the dermis. The boundary between them
is called epidermis-dermis junction (see Figure). Propose an approach that combines a
Deep Network with a Hidden Markov Model for sequences. Discuss how to learn the
parameters of the respective model parts provided you are given annotated training data.
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Assignment 3. Consider the class of (min, +)-problems on graphs, which require to
find the labelling



2

where (V. F) is an undirected graph, K is a finite label set and u;: KX — R and
u;;: K* — R are given functions. Prove that this class is NP-hard by reducing the
maximum clique problem to it.

Hint: Suppose that the graph (V/, E’) is an input instance for the maximum clique
problem. Consider the graph (V, E) with V = V', E = E’ and the label set K = {0,1}.
Find functions u; and wu;; such that a labelling s is optimal if and only if it “encodes” a
maximum clique.

Assignment 4. Let X' C R? be a set of input observations and ) = {+1, —1} a set of
hidden states. A two-class linear classifier is defined as
. 1 if (v,x)+b>0
M v,b) = { —1 if (v,z)+b<0
where (v,b) € R4t denote its parameters. The parameters (v, b) can be learned from

examples 7™ = {(z',y’) € X x Y | i = 1,...,m} by the SVM algorithm which
minimizes the average of the hinge loss

Flv,b) = % > ma{o, 1 - yi((a v) + )}

A generic linear classifier is defined as

W' (a; w) = arg max(w, ¢(x,y)) (D)
yey
where w € R" are parameters and ¢p: X x ) — R" is a joint feature map. The param-
eters w can be learned from examples 7" by the SO-SVM algorithm which minimizes
the average of the margin re-scaling loss

m

F/(’LU) = E maX{O, I)l}\aj{Xl}(f(yz’y) + <wa d)(mzvy» - <’lU, ¢(mz’yz)>} (2)
i=1 IS Yy

where ¢: ) x Y — R, is some target loss depending on the application at hand.

Your task is to show that the standard SVM is a special case of the SO-SVM algorithm.
To this end, define the joint feature map ¢ and the target loss ¢ such that the two-
class classifier h(x; v, b) is equivalent to the generic linear classifier /’(x; w) and the
objectives of the standard SVM and the SO-SVM are equivalent as well. In other words,
you need to define ¢ and ¢ such that

h(z;v,b) = W (x; (v,D)), Ve € X, and F(v,b) = F'((v,b)),Yv e R, b ER,
where (v,b) € R?™! denotes a vector obtained by concatenating v and b.

Assignment 5. Let X C R? be a set of input observations and ) = {1,..., Y} a set of
hidden states. The linear multi-class classifier is defined as

h(x; W, b) = arg max({w,, x) + b,) (3)

yey
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where W = (wy, ..., wy) € R®Y is a matrix whose columns are the class templates
and b= (by,...,by) € RY is a vector of the class biases.

a) Define the joint feature map ¢: X x ) — R" and the corresponding joint parameter
vector w € R™ composed of W and b such that the generic linear classifier (1) and the
multi-class classifier (3) are equivalent, that is, ' (x; w) = h(x; W, b), Vo € X.

b) Given a training set 7™ = {(z’,y") € X x Y | i = 1,...,m}, the SO-SVM
algorithm learns the parameters of the generic linear classifier (1) by solving a convex
problem
w* = argmin (inH2 + F’(w)) 4)
weRn? 2
where A > 0 is a regularization constant and the empirical risk proxy F’(w) is defined

by (2). Use ¢ derived in point a) to instantiate the problem (4) for the multi-class linear
classifier (3) and the 0/1-loss I(y,y') = [y # ¥/'].

¢) Rewrite the convex program from point b) as an equivalent quadratic programming
task. What is the number of linear constraints of the quadratic program ?



