Statistical Machine Learning (BE4M33SSU)
Seminar 1. Machine Learning Examples

Czech Technical University in Prague
Example 1: ImageNet (visual object classification)

Training set: $\mathcal{T}^m = \{(x^i, y^i) \in \mathcal{X} \times \mathcal{Y} | i = 1, \ldots, m\}$, where:

- \mathcal{X} are images from ImageNet,
- \mathcal{Y} is a set of output classes (ILSVRC 2012 defines $|\mathcal{Y}| = 1000$ of them).
Example 1: ImageNet (visual object classification)

- **Class of prediction strategies:** VGGNet (Zisserman, et al., 2014), i.e. a convolutional neural network with fixed structure. Note that a convolutional neural network with p layers is a function composition $h_\theta(x) = (f_{\theta_p} \circ f_{\theta_{p-1}} \circ \ldots \circ f_{\theta_1})(x)$. Its outputs are interpreted as class probabilities.

- **Loss function:** negative log-likelihood of class probabilities (a.k.a. cross entropy)

$$
\ell(y^i, h(x^i)) = - \sum_{c \in \mathcal{Y}} \mathbb{I}\{y^i = c\} \log(h_c(x^i)).
$$

- **Learning approach:** empirical risk minimisation, gradient descent

$$
R_T^m(\theta) = \frac{1}{m} \sum_{i=1}^{m} \ell(y^i, h_\theta(x^i)) \to \min_\theta
$$
Example 1: ImageNet (visual object classification)

- Results by VGGNet

- More details in lectures on **deep learning**
Example 2: licence plate recognition

Online app estimating the Travel Time for cars in Prague based on the number plate recognition: https://unicam.camea.cz/Discoverer/TravelTime3/map
Example 2: licence plate recognition

Input image \(x \in \mathcal{X} \) of size \([H \times W]\)

Model of synthetic license plate images

A set of templates \(w = (w_a | a \in \mathcal{A}) \) for each character from \(\mathcal{A} \)

A segmentation \(y = (s_1, \ldots, s_L) \in \mathcal{Y}(x) \), where \(s = (a, k) \), \(a \in \mathcal{A} \) is a character code and \(k \in \{1, \ldots, W\} \) is a character position, together with templates \(w \) defines a synthetic image:

An admissible segmentation \(y \in \mathcal{Y}(x) \) ensures that the templates are not overlapping and that the synthetic image has the same width as the input image \(x \):

\[
 k(s_1) = 1, \ W = k(s_L) + \omega(s_L) - 1, \text{ and } k(s_i) = k(s_{i-1}) + \omega(s_{i-1}), \forall i > 1
\]

where \(\omega : \mathcal{A} \to \mathcal{N} \) are widths of the templates.
Example 2: licence plate recognition

- We want a classifier which outputs the segmentations $y \in \mathcal{Y}(x)$ defining a synthetic image most similar (measured by correlation) to the input image x:

$$\hat{y} = h(x; w) = \arg \max_{(s_1, \ldots, s_L) \in \mathcal{Y}(x)} \sum_{i=1}^{L} \sum_{j=1}^{\omega(a(s_i))} \left< \text{col}(x, j + k(s_i) - 1), \text{col}(w_{a(s_i)}, j) \right>$$

- **Problem:** How to construct the templates $w = \{w_a | a \in A\}$ so that the classifier $h(x; w)$ predicts a segmentation with small Hamming distance to the correct one?

- **Solution:** Select the templates w so that the classifier $h(x; w)$ performs well on a training set $\{(x^1, y^1), \ldots, (x^m, y^m)\}$ and simultaneously control the over-fitting.

- More details in the lecture on **Structured Output Support Vector Machines**.
Example 3: Joint segmentation & registration

Given: set of images, each containing an object instance, and a shape model

![Example images](image1) ![Example images](image2) ![Example images](image3)

Task: segment & register each image to the reference frame (shape model)

- image $\mathbf{x} = \{x_i \in \mathbb{R}^3 \mid i \in D'\}$, binary segmentation $\mathbf{y} = \{y_i \in \{0, 1\} \mid i \in D\}$
- shape model $p(\mathbf{y}) = \prod_{i \in D} p_i(y_i)$, with binomial distributions $p_i(y_i = 0, 1)$.
- appearance model $p_\theta(x_j \mid (Ty)_j), j \in D'$, where
 - T is an affine transformation,
 - $p_{\theta_0}(x_j \mid y'_j = 0), p_{\theta_1}(x_j \mid y'_j = 1)$ are two mixtures of Gaussians.
Example 3: Joint segmentation & registration

- loss function $\ell(y, y') = \sum_{i \in D} \mathbb{1}\{y_i \neq y'_i\}$, i.e. Hamming distance

(1) Segmentation for **known** T and θ: minimise expected Hamming distance between true and estimated segmentation \Rightarrow

$$y = h_{T, \theta}(x) = \{h_i(x) \mid i \in D\}$$

$$h_i(x) = \arg\max_{y_i = 0, 1} p_\theta((T^{-1}x)_i \mid y_i) \cdot p_i(y_i)$$

(2) How to estimate unknown T and θ? See lecture on the **EM-Algorithm**.