Statistical Machine Learning (BE4M33SSU)
Lecture 10: Markov Random Fields

Czech Technical University in Prague

- Markov Random Fields & Gibbs Random Fields
- Approximated Inference for MRFs
- (Generative) Parameter learning for MRFs
Motivation: Two Examples from Computer Vision

Example 1 (Image segmentation)

Recall the segmentation model used in the EM-Algorithm lab, where $x : D \rightarrow \mathbb{R}^3$ denotes an image and $s : D \rightarrow K$ denotes its segmentation (K – set of segment labels)

$$p(s) = \prod_{i \in D} p(s_i) = \frac{1}{Z(u)} \exp \sum_{i \in D} u_i(s_i) \quad \text{and} \quad p(x | s) = \prod_{i \in D} p(x_i | s_i)$$

This model is pixelwise independent and, consequently, so is the inference.

We want to take into account that:

- neighbouring pixels belong more often than not to the same segment,
- the segment boundaries are in most places smooth, . . .

We may consider e.g. a prior model for segmentations

$$p(s) = \frac{1}{Z(u)} \exp \left[\sum_{i \in D} u_i(s_i) + \sum_{\{i,j\} \in E} u_{ij}(s_i, s_j) \right],$$

where E are edges connecting neighbouring pixels in D.
Motivation: Two Examples from Computer Vision

Example 2 (Motion Flow)

Given two (consecutive) images $x, x' : D \rightarrow \mathbb{R}^3$ from a video, determine the motion flow, i.e. find a displacement vector v_i for each pixel $i \in D$.

- projections of the same 3D points look similar in x and x'.

- 3D points projected onto neighbouring image pixels move more often than not coherently.

- Assume a discriminative model $p(v \mid x, x')$ since the method does not intend to model the image appearance.

\[
p(v \mid x, x') = \frac{1}{Z(x, x')} \exp \left[- \sum_{i \in D} \| x_i - x'_{i+v_i} \|^2 - \alpha \sum_{\{i,j\} \in E} \| v_i - v_j \|^2 \right]
\]

Such models can be generalised for stereo cameras and combined with segmentation approaches.
Markov Random Fields & Gibbs Random Fields

Let \((V, E)\) denote an undirected graph and let \(S = \{S_i \mid i \in V\}\) be a field of random variables indexed by the nodes of the graph and taking values from a finite set \(K\).

Definition 1 A joint probability distribution \(p(s)\) is a Gibbs Random Field on the graph \((V, E)\) if it factorises over the the nodes and edges, i.e.

\[
p(s) = \frac{1}{Z(u)} \exp \left[\sum_{i \in V} u_i(s_i) + \sum_{\{i, j\} \in E} u_{ij}(s_i, s_j) \right].
\]

Remark 1 This can be generalised to Gibbs random fields on hypergraphs.
Markov Random Fields & Gibbs Random Fields

Definition 2 A probability distribution $p(s)$ is a Markov Random Field w.r.t. graph (V,E) if

$$p(s_A, s_B \mid s_C) = p(s_A \mid s_C)p(s_B \mid s_C)$$

holds for any subsets $A, B \subset V$ and a separating set C.

Theorem 1 (Hammersley, Clifford, 1971)
If the distribution $p(s)$ is an MRF w.r.t. graph (V,E) and strictly positive, then it is a GRF on the hypergraph defined by all cliques of (V,E) and vice versa.

Remark 2 The following tasks for MRFs / GRFs are NP-complete

- Computing the most probable labelling $s^* \in \arg\max_{s \in K^V} p(s)$.
- Computing the normalisation constant

$$Z(u) = \sum_{s \in K^V} \exp \left[\sum_{i \in V} u_i(s_i) + \sum_{(i,j) \in E} u_{ij}(s_i, s_j) \right].$$

The same holds for computing marginal probabilities of $p(s)$.
Computing the most probable labelling, MRFs with boolean variables

Consider \(\log p(s) \), replace \(u \to -u \). The task reads then

\[
\sum_{i \in V} u_i(s_i) + \sum_{\{i,j\} \in E} u_{ij}(s_i, s_j) \to \min_{s \in K^V}
\]

If the variables \(s_i, i \in V \) are boolean: the functions \(u_i, u_{ij} \) can be written as polynomials in the variables \(s_i = 0, 1 \), and, by re-defining the unary functions \(u_i \) if necessary, the task reads as

\[
\mathbf{s}^* = \arg \min_{s \in K^V} \sum_{\{i,j\} \in E} \alpha_{ij} |s_i - s_j| + \sum_{i \in V} \beta_i s_i
\]

\[
= \arg \min_{s \in K^V} \sum_{\{i,j\} \in E} \alpha_{ij} |s_i - s_j| + \sum_{i \in V_+} \beta_i s_i + \sum_{i \in V_-} |\beta_i|(1 - s_i),
\]

where \(V_+ = \{i \in V \mid \beta_i \geq 0\} \) and \(V_- = V \setminus V_+ \). This is a \textbf{MinCut-problem}!
Computing the most probable labelling, MRFs with boolean variables

- If all edge weights are non-negative, i.e. $\alpha_{ij} \geq 0$, $\forall \{i,j\} \in E$: the task can be solved via MinCut – MaxFlow duality,

- If some of the α-s are negative: apply approximation algorithms, e.g. relax the discrete variables to $s_i \in [0,1]$, consider an LP-relaxation of the task and solve the LP task e.g. by Tree-Reweighted Message Passing (Kolmogorov, 2006)

- If the variables s_i are multivalued, and all pairwise functions $u_{ij}(s_i, s_j)$ are submodular: the task can be reduced to a task with boolean variables and solved by via MinCut – MaxFlow duality.
Computing the most probable labelling (general case)

\[u(s) = \sum_{i \in V} u_i(s_i) + \sum_{\{i,j\} \in E} u_{ij}(s_i, s_j) \rightarrow \min_{s \in K^V} \]

If the problem is not submodular \(\Rightarrow \) resort to approximation algorithms, e.g.

Move making algorithms:

Construct a sequence of labellings \(s^{(t)} \) with decreasing values of the objective function \(u(s^{(i)}) \):

- Define neighbourhoods \(\mathcal{N}(s) \subset K^V \) such that the task

 \[\arg \min_{s \in \mathcal{N}(s')} \sum_{\{i,j\} \in E} u_{ij}(s_i, s_j) + \sum_{i \in V} u_i(s_i) \]

 is tractable for every \(s' \).

- Iterate

 \[s^{(t+1)} \in \arg \min_{s \in \mathcal{N}(s^{(t)})} \sum_{\{i,j\} \in E} u_{ij}(s_i, s_j) + \sum_{i \in V} u_i(s_i) \]

 until no further improvement possible.
Computing the most probable labelling (general case)

α-Expansions (Boykov et al., 2001)

- Define the neighbourhoods by choosing a label \(\alpha \in K \) and setting

\[
N_\alpha(s) = \{ s' \in K^V \mid s'_i = \alpha \text{ if } s'_i \neq s_i \}.
\]

Notice that \(|N_\alpha(s)| = 2^V \).

- The task

\[
\arg\min_{s \in N_\alpha(s')} \sum_{\{i,j\} \in E} u_{ij}(s_i, s_j) + \sum_{i \in V} u_i(s_i)
\]

can be encoded as labelling problem with boolean variables.

- It can be solved by MinCut-MaxFlow if

\[
u_{ij}(k, k') + u_{ij}(\alpha, \alpha) \leq u_{ij}(\alpha, k') + u_{ij}(k, \alpha)
\]

holds for all pairwise functions \(u_{ij} \) and all \(k, k' \in K \).
Learning parameters of MRFs

Learning task: Given i.i.d. training data $\mathcal{T}^m = \{s^\ell \in K^V \mid \ell = 1, \ldots, m\}$, estimate the parameters u_i, u_{ij} of the MRF.

The maximum likelihood estimator reads

$$
\log p_u(\mathcal{T}^m) = \frac{1}{m} \sum_{\ell=1}^m \left[\sum_{\{i,j\} \in E} u_{ij}(s^\ell_i, s^\ell_j) + \sum_{i \in V} u_i(s^\ell_i) \right] - \log Z(u) \rightarrow \max_{u_i, u_{ij}}.
$$

It is intractable: the objective function is concave in u, but we can compute neither $\log Z(u)$ nor its gradient (in polynomial time).

We may use the **pseudo-likelihood** estimator (Besag, 1975) instead. It is based on the following observation

- Let \mathcal{N}_i denote the neighbouring nodes of $i \in V$.

- We can compute the conditional distributions

$$
p(s_i \mid s_{\mathcal{V}\setminus i}) = p(s_i \mid s_{\mathcal{N}_i}) \sim e^{u_i(s_i)} \prod_{j \in \mathcal{N}_i} e^{u_{ij}(s_i, s_j)}
$$
Learning parameters of MRFs

The pseudo-likelihood of a single example $s \in \mathcal{T}^m$ is defined by

$$L_p(u) = \sum_{i \in V} \log p_u(s_i \mid s_{N_i})$$

$$= 2 \sum_{\{i,j\} \in E} u_{ij}(s_i, s_j) + \sum_{i \in V} u_i(s_i) - \sum_{i \in V} \log \sum_{s_i \in K} \exp \left[u_i(s_i) + \sum_{j \in N_i} u_{ij}(s_i, s_j) \right]$$

The pseudo-likelihood estimator is

- a concave function of the parameters u,
- tractable, i.e. both $L_p(u, \mathcal{T}^m)$ and its gradient are easy to compute,
- consistent.