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Linear classifier with minimal classification error

� X is a set of observations and Y = {+1,−1} a set of hidden labels

� φ : X → Rn is fixed feature map embedding X to Rn

� Task: find linear classification strategy h : X → Y

h(x;w, b) = sign(〈w,φ(x)〉+ b) =

{
+1 if 〈w,φ(x)〉+ b ≥ 0

−1 if 〈w,φ(x)〉+ b < 0

with minimal expected risk

R0/1(h) = E(x,y)∼p

(
`0/1(y, h(x))

)
where `0/1(y, y′) = [[y 6= y′]]

� We are given a set of training examples

T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m}

drawn from i.i.d. with the distribution p(x, y).

http://cmp.felk.cvut.cz
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ERM learning for linear classifiers

� The Empirical Risk Minimization principle leads to solving

(w∗, b∗) ∈ Argmin
(w,b)∈(Rn×R)

R
0/1
T m(h(·;w, b)) (1)

where the empirical risk is

R
0/1
T m(h(·;w, b)) =

1

m

m∑
i=1

[[yi 6= h(xi;w, b)]]

In this lecture we address the following issues:

1. The statistical consitency of the ERM for hypothesis space containing
linear classifiers.

2. Algorithmic issues: in general, there is no known algorithm solving the
task (1) in time polynomial in m.

http://cmp.felk.cvut.cz
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Vapnik-Chervonenkis (VC) dimension

Definition 1. Let H ⊆ {−1,+1}X and {x1, . . . , xm} ∈ Xm be a set of m
input observations. The set {x1, . . . , xm} is said to be shattered by H if for
all y ∈ {+1,−1}m there exists h ∈ H such that h(xi) = yi, i ∈ {1, . . . ,m}.

Definition 2. Let H ⊆ {−1,+1}X . The Vapnik-Chervonenkis dimension of
H is the cardinality of the largest set of points from X which can be
shattered by H.
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input observations. The set {x1, . . . , xm} is said to be shattered by H if for
all y ∈ {+1,−1}m there exists h ∈ H such that h(xi) = yi, i ∈ {1, . . . ,m}.

Definition 2. Let H ⊆ {−1,+1}X . The Vapnik-Chervonenkis dimension of
H is the cardinality of the largest set of points from X which can be
shattered by H.

Theorem 1. The VC-dimension of the hypothesis space of all linear
classifiers operating in n-dimensional feature space
H = {h(x;w, b) = sign(〈w,φ(x)〉+ b) | (w, b) ∈ (Rn × R)} is n+ 1.
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Consistency of prediction with two classes and 0/1-loss

Theorem 2. Let H ⊆ {+1,−1}X be a hypothesis space with VC dimension
d <∞ and T m = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m a training set draw
from i.i.d. rand vars with distribution p(x, y). Then, for any ε > 0 it holds

P
(
sup
h∈H

∣∣∣R0/1(h)−R0/1
T m(h)

∣∣∣ ≥ ε) ≤ 4

(
2 em

d

)d
e−

m ε2

8 .
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Corollary 1. Let H ⊆ {+1,−1}X be a hypothesis space with VC dimension
d <∞. Then ERM is statistically consistent in H w.r.t `0/1 loss function.

Corollary 2. Let H ⊆ {+1,−1}X be a hypothesis space with VC dimension
d <∞. Then, for any 0 < δ < 1 the inequality

R0/1(h) ≤ R0/1
T m(h) +

√
8
(
d log(2m) + 1) + log 4

δ

)
m

holds for any h ∈ H with probability 1− δ at least.

http://cmp.felk.cvut.cz
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Training linear classifier from separable examples

Definition 3. The examples T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m} are
linearly separable w.r.t. feature map φ : X → Rn if there exists
(w, b) ∈ Rn+1 such that

yi(〈w,φ(xi)〉+ b) > 0 , i ∈ {1, . . . ,m} (2)

Perceptron algorithm:

Input: linearly separable examples T m

Output: linear classifier with R0/1
T m(h(·;w, b)) = 0

step 1: w ← 0, b← 0

step 2: find (xi, yi) such that yi(〈w,φ(xi)〉+ b) ≤ 0.
If not found exit, the current (w, b) solves the problem.

step 3: w ← w + yiφ(xi) , b← b+ yi and goto to step 2.

http://cmp.felk.cvut.cz
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Training linear classifier from NON-separable examples

� The intractable ERM problem we wish to solve

(w∗, b∗) ∈ Argmin
(w,b)∈(Rn×R)

1

m

m∑
i=1

[[yi 6= h(xi;w, b))]]︸ ︷︷ ︸
`0/1(yi,h(xi;w,b))

where h(x;w, b) = sign(〈w,φ(x)〉+ b).
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1

m

m∑
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where h(x;w, b) = sign(〈w,φ(x)〉+ b).

� The ERM problem is approximated by a tractable convex problem

(w∗, b∗) ∈ Argmin
(w,b)∈(Rn×R)

1

m

m∑
i=1

max{0, 1− yif(xi;w, b)}︸ ︷︷ ︸
ψ(yi,f(xi;w,b))

where f(x;w, b) = 〈w,φ(x)〉+ b and ψ(y, f(x)) is so called Hinge-loss.

http://cmp.felk.cvut.cz
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The hinge-loss upper bounds the 0/1-loss

� The hinge-loss is an upper bound of the 0/1-loss evaluated for the
predictor h(x) = sign(f(x)):

[[sign(f(x)) 6= y]]︸ ︷︷ ︸
`0/1(y,f(x))

= [[ y f(x) ≤ 0]] ≤ max{0, 1− y f(x)}︸ ︷︷ ︸
ψ(y,f(x))

1
[[t ≤ 0]]

max(0, 1− t)

10 t

http://cmp.felk.cvut.cz
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Support Vector Machines

� Find linear classifier h(x;w, b) = sign(〈φ(x),w〉+ b) by solving

(w∗, b∗) = argmin
w∈Rn,b∈R

(
λ

2
‖w‖2︸ ︷︷ ︸
penalty
term

+
1

m

m∑
i=1

max{0, 1− yi(〈w,φ(xi)〉+ b)}︸ ︷︷ ︸
empirical error

)

� The regularization constant λ ≥ 0 helps to prevent overfitting (i.e. high
estimation error) by constraining the parameter space.

• λ1 > λ2 implies ‖w∗1‖ ≤ ‖w∗2‖

� Small ‖w‖ implies score f(x;w, b) = 〈w,φ(x)〉+ b varies slowly.

• Cauchy inequality:
(〈φ(x),w〉 − 〈φ(x′),w〉)2 ≤ ‖φ(x)− φ(x′)‖2‖w‖2

http://cmp.felk.cvut.cz
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Summary

Topics covered in the lecture

� Linear classifier

� Vapnik-Chervonenkis dimension

� Consistency + generalization bound for two-class prediction and 0/1-loss

� ERM problem for linear classifiers

� Perceptron for separable examples

� SVM for non-seperable examples

http://cmp.felk.cvut.cz
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