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Linear classifier with minimal classification error

X is a set of observations and Y = {+1, —1} a set of hidden labels
¢: X — R" is fixed feature map embedding X to R"

Task: find linear classification strategy h: X — Y

h(x;w,b) = sign({w, p(x)) +b) = { ji :i EZ: Zggi 12 i 8

with minimal expected risk
RY1(h) = E(z y)p (50/ 'y, h(w))) where (%1 (y,y") = [y # /]
We are given a set of training examples
T ={(z"y) e (X xW)|i=1,...,m}

drawn from i.i.d. with the distribution p(x, y).
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ERM learning for linear classifiers
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The Empirical Risk Minimization principle leads to solving
(w*,b*) €  Argmin RV (h(-;w, b)) (1)

(w,b)e(R”xR)

where the empirical risk is

m

R w,0) = — S [yt # b w,b)

i=1
In this lecture we address the following issues:

1. The statistical consitency of the ERM for hypothesis space containing
linear classifiers.

2. Algorithmic issues: in general, there is no known algorithm solving the
task (1) in time polynomial in m.
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Vapnik-Chervonenkis (VC) dimension
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Definition 1. Let H C {—1,+1}* and {z!,..., 2™} € X™ be a set of m
input observations. The set {z!,... 2™} is said to be shattered by H if for
all y € {+1,—1}"™ there exists h € H such that h(z*) =y, i € {1,...,m}.

Definition 2. Let H C {—1,+1}*. The Vapnik-Chervonenkis dimension of
‘H is the cardinality of the largest set of points from X which can be
shattered by H.
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Definition 1. Let H C {—1,+1}* and {z!,..., 2™} € X™ be a set of m
input observations. The set {z!,... 2™} is said to be shattered by H if for
all y € {+1,—1}"™ there exists h € H such that h(z*) =y, i € {1,...,m}.

Definition 2. Let H C {—1,+1}*. The Vapnik-Chervonenkis dimension of
‘H is the cardinality of the largest set of points from X which can be
shattered by H.

Theorem 1. The VC-dimension of the hypothesis space of all linear
classifiers operating in n-dimensional feature space

H = {h(z;w,b) =sign({w, d(x)) +b) | (w,b) € (R" xR)} isn+ 1.
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Theorem 2. Let H C {+1,—1}* be a hypothesis space with VVC dimension
d<ooand T™ = {(z',y!),..., (™ y™)} € (X x V)™ a training set draw
from i.i.d. rand vars with distribution p(x,y). Then, for any € > 0 it holds

d
2 m€2
(sup‘RO/l Ro/l(h)‘ 26) §4< em) e~ 5 .
heH d
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d
2 m e
(sup‘RO/l Ro/l(h)‘ 26) §4< em) e~ 5 .
heH d

Corollary 1. Let H C {+1,—1}" be a hypothesis space with VVC dimension
d < co. Then ERM is statistically consistent in H w.r.t £°/1 loss function.

Corollary 2. Let H C {+1,—1}* be a hypothesis space with VVC dimension
d < 0o. Then, for any 0 < 0 < 1 the inequality

8(dlog(2m) + 1) + log 3)
m

RYM(h) < RY.A(h) + \/

holds for any h € ‘H with probability 1 — 0 at least.
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Training linear classifier from separable examples
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Definition 3. The examples T™ = {(z*,3*) € (X x V) | i =1,...,m} are
linearly separable w.r.t. feature map ¢: X — R" if there exists
(w,b) € R"™! such that

v ((w, (")) +b) > 0, ie{l,...,m} (2)

Perceptron algorithm:

Input: linearly separable examples 7™
Output: linear classifier with ROT/,},,(h(-; w, b)) =0

step1: w+ 0,0+ 0

step 2: find (x%, 3*) such that y*({(w, ¢(z*)) + ) < 0.
If not found exit, the current (w, b) solves the problem.

step 3: w +— w + y' p(x'), b+ b+ y® and goto to step 2.
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The intractable ERM problem we wish to solve

1 m
(w*,0*) € Argmin —
(w,b)e (R xR) M —

[y" # h(z';w,b))]
0/ (yi 1 (2w ,b))

where h(z;w,b) = sign({w, ¢(x)) + b).
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The intractable ERM problem we wish to solve

1 m
(w*,0*) € Argmin —
(w,b)e (R xR) M —

[y" # h(z';w,b))]
0/ (yi 1 (2w ,b))

where h(z;w,b) = sign({w, ¢(x)) + b).

The ERM problem is approximated by a tractable convex problem

1 & | |
(w*,b") € Argmin —Ymax{(), 1 —y'f(x";w,b)}
w n m 4 AN — >/

() ERAD T =1 Y, f (sw,b)

where f(z;w,b) = (w, p(x)) + b and Y(y, f(x)) is so called Hinge-loss.
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The hinge-loss upper bounds the 0/1-loss
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The hinge-loss is an upper bound of the 0/1-loss evaluated for the
predictor h(xz) = sign(f(x)):

[sign(f(x)) #yl = [y f(z) <0] < max{0,1 —y f(x)}

¢0/ 1(;,rf(:z;)) b (y, f(z))
max (0,1 —t)
1
[t < 0]
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Support Vector Machines

Find linear classifier h(xz;w,b) = sign({¢(x), w) + b) by solving

. A 1 | |
(w",b) = argmin (—HwHQ+—Zmax{0, L — yi((w, () + b)})
weR™,beR \ L m=—
p(Enalty A "Vl J
€rin emplrlca Eerror

The regularization constant A > 0 helps to prevent overfitting (i.e. high
estimation error) by constraining the parameter space.

e )\ > )\ implies [|[w]| < w3

Small ||w]| implies score f(x;w,b) = (w, ¢(x)) + b varies slowly.

e Cauchy inequality:

({p(x), w) — (P(2'), w))* < [|@(z) — @()[|*[|w]|?


http://cmp.felk.cvut.cz

Summary
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Topics covered in the lecture
Linear classifier
Vapnik-Chervonenkis dimension
Consistency + generalization bound for two-class prediction and 0/1-loss
ERM problem for linear classifiers
Perceptron for separable examples

SVM for non-seperable examples
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