Statistical Machine Learning (BE4M33SSU) Lecture 12: Ensembling

Jan Drchal

Czech Technical University in Prague Faculty of Electrical Engineering Department of Computer Science

Overview

р

2/43

Topics covered in the lecture:

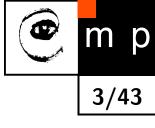
- Ensemble Methods
- Bias-Variance Decomposition
- Bagging
- Random Forests
- Boosting and Gradient Boosting
- Gradient Boosted Trees

Ensemble Methods

Inspired in Wisdom of the crowd

- (weighted) averaging or taking majority vote
- cancelling effect of noise of individual opinions,
- examples: politics, trial by jury (vs. trial by judge), sports (figure skating, gymnastics), Wikipedia, Quora, Stack Overflow, . . .
- Learning and aggregating multiple predictors
- Ensemble may be built using single or different types of predictors

Wikimedia Commons



Prediction Problem: Expected Risk and Error Decomposition

Expected risk for data generated by p(x, y):

$$R(h) = \mathbb{E}_{(x,y)\sim p}\Big(\ell(y,h(x))\Big)$$

р

4/43

- The best attainable (Bayes) risk is $R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$
- The best predictor in \mathcal{H} is $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$
- The predictor $h_m = A(\mathcal{T}^m)$ learned from \mathcal{T}^m has risk $R(h_m)$

Excess error measures deviation of the learned predictor from the best one:

$$\underbrace{\left(R(h_m) - R^*\right)}_{\text{excess error}} = \underbrace{\left(R(h_m) - R(h_{\mathcal{H}})\right)}_{\text{estimation error}} + \underbrace{\left(R(h_{\mathcal{H}}) - R^*\right)}_{\text{approximation error}}$$

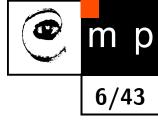
Risk Averaged over Datasets

- How will our predictor behave when sampling different training sets?
- We can define the errors considering average over all possible datasets \mathcal{T}^m , i.e., $\mathbb{E}_{\mathcal{T}^m}(R(h_m))$

The errors can be redefined as:

$$\underbrace{\left(\mathbb{E}_{\mathcal{T}^m}(R(h_m)) - R^*\right)}_{\text{excess error}} = \underbrace{\left(\mathbb{E}_{\mathcal{T}^m}(R(h_m)) - R(h_{\mathcal{H}})\right)}_{\text{estimation error}} + \underbrace{\left(R(h_{\mathcal{H}}) - R^*\right)}_{\text{approximation error}}$$

Predictors Averaged over Datasets



Let us also define a model averaged over all possible datasets:

$$g_m(x) = \mathbb{E}_{\mathcal{T}^m}\Big(h_m(x)\Big)$$

• Unlike individual h_m models, g_m has an access to the whole p(x,y)

- Note: in general $g_m \neq h_{\mathcal{H}}$ due to training algorithm A involved in h_m .
- Also: g_m can't be actually evaluated for infinite number of \mathcal{T}^m datasets

Bias-Variance Decomposition for Regression

Consider a regression problem with data generated as follows:

$$y = h^*(x) + \epsilon$$

where ϵ is noise: $\mathbb{E}(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2$, e.g., $\epsilon \sim \mathcal{N}(0, \sigma^2)$

• Use squared loss:

$$\ell(y, h(x)) = \left(h(x) - y\right)^2$$

• The optimal predictor $h^*(x)$ has a nonzero risk (for $\sigma^2 > 0$):

$$R^* = \mathbb{E}_{x,y}\left(\left(h^*(x) - y\right)^2\right) = \mathbb{E}_{\epsilon}\left(\epsilon^2\right) = \operatorname{Var}(\epsilon) = \sigma^2$$

Bias-Variance Decomposition for Regression 2

• The expected risk for h_m can be decomposed:

$$\mathbb{E}_{\mathcal{T}^m} \Big(R(h_m) \Big) = \mathbb{E}_{x,y,\mathcal{T}^m} \Big(\Big(h_m(x) - y \Big)^2 \Big)$$

= ...
$$= \underbrace{\mathbb{E}_{x,y,\mathcal{T}^m} \Big(\Big(h_m(x) - g_m(x) \Big)^2 \Big)}_{\text{variance}} + \underbrace{\mathbb{E}_{x,y} \Big(\Big(g_m(x) - h^*(x) \Big)^2 \Big)}_{\text{bias}^2} + \underbrace{\sigma^2}_{\text{noise}}$$

The error splits into three terms

- variance: difference of h_m from the averaged predictor g_m ,
- **bias**²: difference of the averaged predictor g_m from the optimal one,
- noise: irreducible determined by data

Excess Error vs. Bias and Variance

The excess error is defined as:

 $\mathbb{E}_{\mathcal{T}^m}(R(h_m)) - R^*$

• As $R^* = \sigma^2$ we get:

$$\mathbb{E}_{\mathcal{T}^m}(R(h_m)) - R^* = \underbrace{\mathbb{E}_{x,y}\left(\left(g_m(x) - h^*(x)\right)^2\right)}_{\text{bias}^2} + \underbrace{\mathbb{E}_{x,y,\mathcal{T}^m}\left(\left(h_m(x) - g_m(x)\right)^2\right)}_{\text{variance}}$$

We have

- **bias**² \approx approximation error,
- variance \approx estimation error

Derivation of the Bias-Variance Decomposition

$$\mathbb{E}_{\mathcal{T}^m} \Big(R(h_m) \Big) = \mathbb{E}_{x,y,\mathcal{T}^m} \Big(\Big(h_m(x) - y \Big)^2 \Big)$$

$$= \mathbb{E}_{x,y,\mathcal{T}^m} \Big(\Big(h_m(x) - g_m(x) + g_m(x) - y \Big)^2 \Big)$$

$$= \mathbb{E}_{x,y,\mathcal{T}^m} \Big(\Big(h_m(x) - g_m(x) \Big)^2 + \Big(g_m(x) - y \Big)^2 \Big)$$

$$+ 2 \Big(h_m(x) - g_m(x) \Big) \Big(g_m(x) - y \Big) \Big)$$

$$= \mathbb{E}_{x,y,\mathcal{T}^m} \Big(\Big(h_m(x) - g_m(x) \Big)^2 \Big) + \mathbb{E}_{x,y,\mathcal{T}^m} \Big(\Big(g_m(x) - y \Big)^2 \Big)$$

$$+ \mathbb{E}_{x,y} \Big(2 \Big(\underbrace{\mathbb{E}_{\mathcal{T}^m} \Big(h_m(x) \Big)}_{g_m(x)} - g_m(x) \Big) \Big(g_m(x) - y \Big) \Big)$$

Ð

m p

10/43

Derivation of the Bias-Variance Decomposition 2

We get:

$$\mathbb{E}_{\mathcal{T}^m}\Big(R(h_m)\Big) = \underbrace{\mathbb{E}_{x,y,\mathcal{T}^m}\Big(\Big(h_m(x) - g_m(x)\Big)^2\Big)}_{\text{variance}} + \mathbb{E}_{x,y,\mathcal{T}^m}\Big(\Big(g_m(x) - y\Big)^2\Big)$$

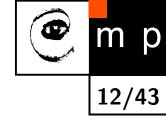
Note that the second term does not depend on \mathcal{T}^m :

$$\mathbb{E}_{x,y,\mathcal{T}^m}\left(\left(g_m(x)-y\right)^2\right) = \mathbb{E}_{x,y}\left(\left(g_m(x)-y\right)^2\right)$$

Derivation of the Bias-Variance Decomposition 3

Let us continue with the second term:

$$\begin{split} \mathbb{E}_{x,y} \bigg(\left(g_m(x) - y \right)^2 \bigg) &= \mathbb{E}_{x,\epsilon} \bigg(\left(g_m(x) - h^*(x) - \epsilon \right)^2 \bigg) \\ &= \mathbb{E}_{x,\epsilon} \bigg(\left(g_m(x) - h^*(x) \right)^2 + \epsilon^2 - 2\epsilon \bigg(g_m(x) - h^*(x) \bigg) \bigg) \\ &= \mathbb{E}_x \bigg(\bigg(g_m(x) - h^*(x) \bigg)^2 \bigg) + \mathbb{E}_\epsilon \bigg(\epsilon^2 \bigg) \\ &\underbrace{-2\mathbb{E}_{x,\epsilon} \bigg(\epsilon \bigg(g_m(x) - h^*(x) \bigg) \bigg)}_{=0} \\ &= \underbrace{\mathbb{E}_x \bigg(\bigg(g_m(x) - h^*(x) \bigg)^2 \bigg)}_{\text{bias}^2} + \underbrace{\sigma^2}_{\text{noise}} \end{split}$$



Pointwise Bias-Variance

We can express the bias and variance as function of x by not integrating over in expected values

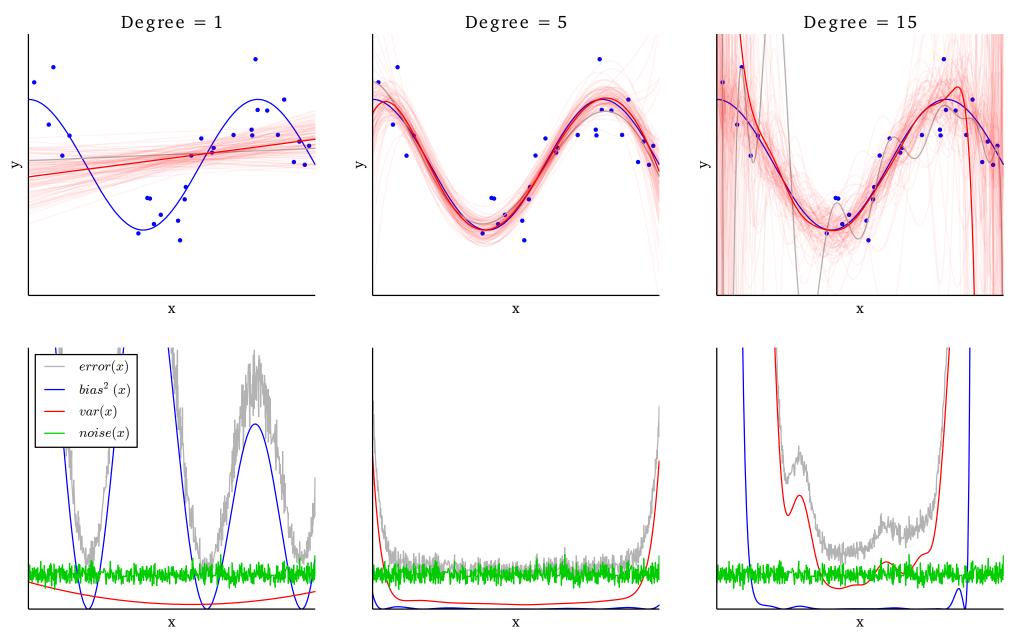
$$\mathbb{E}_{y|x,\mathcal{T}^m}\Big(\ell(y,h_m(x))\Big) = \mathbb{E}_{y|x,\mathcal{T}^m}\left(\left(h_m(x)-y\right)^2\right)$$
$$= \underbrace{\operatorname{Var}_{y|x,\mathcal{T}^m}\left(h_m(x)\right)}_{\text{variance}(x)} + \underbrace{\mathbb{E}_{y|x}\left(\left(g_m(x)-h^*(x)\right)^2\right)}_{\text{bias}(x)^2} + \underbrace{\sigma^2}_{\text{noise}}$$

Bias-Variance: Example

m p

14/43

Polynomial regression with a varying degree of polynomial



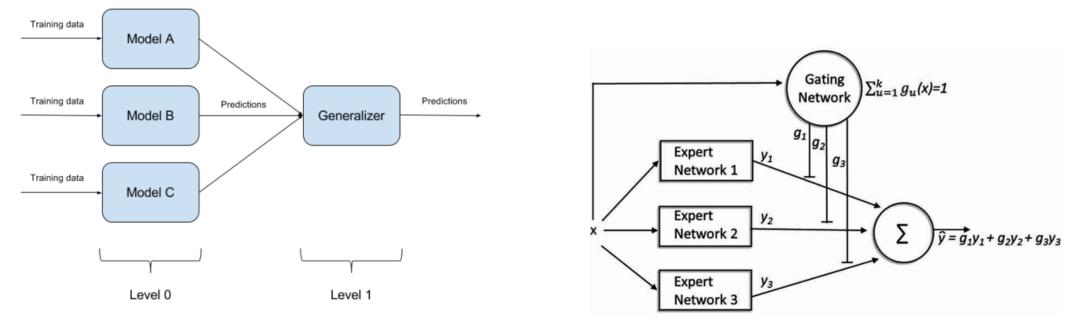
Gilles Louppe: Understanding Random Forests: From Theory to Practice, 2014

Ensembling Approaches

(2) m p 15/43

- Bagging (Bootstrap AGGregatING):
 - sample different training sets from the original training set
 - train *high variance low bias* predictors based on these sets and average them
 - exploits independence between predictors
- Boosting:
 - sequentially train *low variance high bias* predictors
 - subsequent predictors learn to fix the mistakes of the previous ones
 - exploits dependence between learners

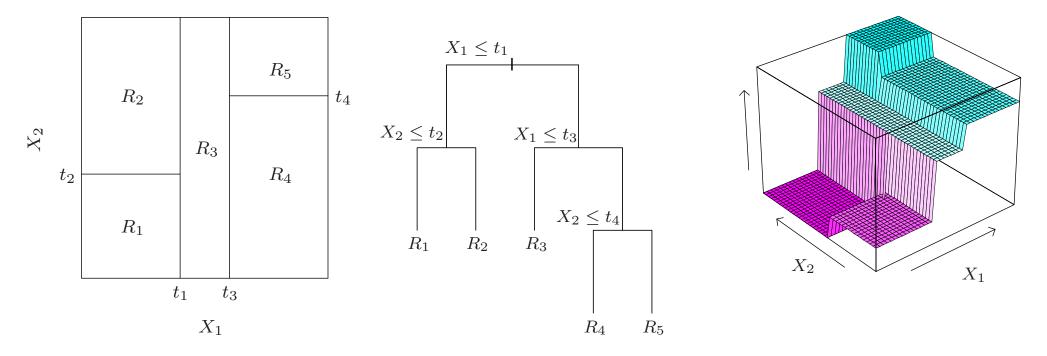
Stacking and Mixture of Experts



https://www.commonlounge.com/discussion/9331c0d004704e89bd4d1da08fd7c7bc

Decision/Regression Trees

- Nodes at the same level correspond to mutually exclusive subsets of the original training data as well as mutually exclusive subsets of the input space X
- Inner node further splits its subset



Hastie et al.: The Elements of Statistical Learning, 2009

Decision/Regression Trees (contd.)

- Training set: $T^m = \{(x_i, y_i) \mid i = 1, ..., m\}, x_i = (x_{i1}, x_{i2}, ..., x_{ip})$
- Input space split into regions defined in leaves: $R_r, \ r \in \{1, \dots, M\}$
- We can model *region responses* by constants $c_r, r \in \{1, ..., M\}$ but other possibilities, e.g., linear regression are possible
- Prediction:

$$h(\boldsymbol{x}) = \sum_{r=1}^{M} c_r [\boldsymbol{x} \in R_r]$$

• For sum of squares *loss function* $\sum_{i=1}^{m} (y_i - h(x_i))^2$ we set the responses to be the averages over regions:

$$\hat{c}_r = \frac{1}{|S_r|} \sum_{\boldsymbol{x}_i \in R_r} y_i$$
 (see seminar)

where we define samples per region sets : $S_r = \{(\boldsymbol{x}_i, y_i) : (\boldsymbol{x}_i, y_i) \in \mathcal{T}^m \land \boldsymbol{x}_i \in R_r\}$

Greedy Learning of Decision/Regression Trees

How many distinct decision trees with n Boolean attributes for binary classification?

p

19/43

- $\bullet\,$ at least as many as boolean functions of p attributes
- = number of distinct truth tables with 2^p rows: 2^{2^p}
- For 6 Boolean attributes at least 18,446,744,073,709,551,616 trees!
- Learning is NP-complete: [Hyafil and Rivest 1976]
- We need heuristics \Rightarrow greedy approach
- Recursively choose the "most important" attribute to find a small tree consistent with the training data
- Split points:
 - **nominal attribute**: try all possibilities
 - ordinal/continuous attribute: try attribute values based on all training data samples or their subset

Regression Trees: Which Attribute to Split?

- The "most important" attribute for regression trees would be the one, for which the split reduces the loss (sum of squared errors) by the greatest amount
- We have:

$$h(\boldsymbol{x}) = \sum_{r=1}^{M} c_r [\boldsymbol{x} \in R_r]$$

• Consider splitting attribute j and split point s, we split an original region R into a pair of half-planes for an ordinal (e.g., continuous) attribute:

$$R_L(j,s) = \{ \boldsymbol{x} | \boldsymbol{x} \in R \land x_j \leq s \} \text{ and } R_R(j,s) = \{ \boldsymbol{x} | \boldsymbol{x} \in R \land x_j > s \}$$

similarly for a nominal attribute:

$$R_L(j,s) = \{ \boldsymbol{x} | \boldsymbol{x} \in R \land x_j = s \} \text{ and } R_R(j,s) = \{ \boldsymbol{x} | \boldsymbol{x} \in R \land x_j \neq s \}$$

Regression Trees: Which Attribute to Split? (contd.)

• We seek for an attribute j and a split point s which minimize:

$$\min_{c_L} \sum_{\boldsymbol{x}_i \in R_L(j,s)} (y_i - c_L)^2 + \min_{c_R} \sum_{\boldsymbol{x}_i \in R_R(j,s)} (y_i - c_R)^2$$

for $(\boldsymbol{x}_i, y_i) \in S \subseteq \mathcal{T}^m$ ($S = \mathcal{T}^m$ for the root node) and $R = R_L \cup R_R$

Inner minimizations (region response values) are solved by averaging tree outputs per region:

$$\hat{c}_L = \frac{1}{|S_L(j,s)|} \sum_{x_i \in R_L(j,s)} y_i$$
 and $\hat{c}_R = \frac{1}{|S_R(j,s)|} \sum_{x_i \in R_R(j,s)} y_i$

where $S_k(j,s) = \{(\boldsymbol{x}_i, y_i) \mid (\boldsymbol{x}_i, y_i) \in \mathcal{T} \land \boldsymbol{x}_i \in R_k(j,s)\}$

Tree Learning Algorithm


```
BUILD-TREE(S)
 1 i = \text{IMPURITY}(S)
 2 \hat{i}, \hat{j}, \hat{s}, \hat{S}_L, \hat{S}_R = 0, 0, 0, \emptyset, \emptyset
 3
   for j \in \{1, ..., p\}
 4
           for s \in \text{SPLIT-POINTS}(S, j)
 5
                 S_L, S_R = SPLIT(S, j, s)
 6
                 i_L = \text{IMPURITY}(S_L)
 7
                 i_R = \text{IMPURITY}(S_R)
                 if i_L + i_R < \hat{i} and |S_L| > 0 and |S_R| > 0
 8
 9
                       \hat{i}, \hat{j}, \hat{s}, \hat{S}_L, \hat{S}_R = (i_L + i_R), j, s, S_L, S_R
     if \hat{i} > i
10
           N_L = \text{BUILD-TREE}(\hat{S}_L)
11
           N_R = \text{BUILD-TREE}(\hat{S}_R)
12
           return DECISION-NODE(\hat{j}, \hat{s}, N_L, N_R)
13
     else return LEAF-NODE(S)
14
```

- ${\ensuremath{/\!\!/}}$ e.g., the squared loss
- ${\ensuremath{/\!\!/}}$ current best kept in these
- ${\ensuremath{/\!\!/}}$ iterate over attributes
- // iterate over all split points

Bias and Variance of Decision Trees

- Small changes of training data lead to big differences in final trees
- Decision trees grown deep enough have typically:
 - low bias
 - high variance

\Rightarrow overfitting

Idea: average multiple models to reduce variance while (happily) not increasing bias much

Averaging Models

Define regression model b as an average of K models:

$$b(x) = \frac{1}{K} \sum_{i=1}^{K} h_m^{(i)}(x)$$

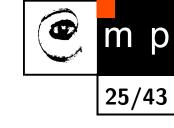
trained using a set of i.i.d. datasets of size $m: \mathcal{D}^m = \{\mathcal{T}_1^m, \dots, \mathcal{T}_K^m\}$

Note that b(x) approximates the averaging model

$$g_m(x) = \mathbb{E}_{\mathcal{T}^m}\Big(h_m(x)\Big)$$

• The need for K different training sets \mathcal{T}_i^m is still impractical – why not to train a single model using $\mathcal{T}_1^m \cup \mathcal{T}_2^m \cup \ldots \mathcal{T}_K^m$ instead of b(x)?

Averaging Models: Bias

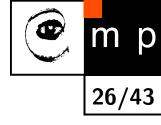


Bias remains unchanged when compared to a single model:

$$\begin{aligned} \mathsf{bias}(\mathsf{x})^2 &= \mathbb{E}_{y|x} \left(\left(g_m(x) - h^*(x) \right)^2 \right) \\ &= \mathbb{E}_{y|x} \left(\left(\mathbb{E}_{\mathcal{D}^m} \left(b(x) \right) - h^*(x) \right)^2 \right) \\ &= \mathbb{E}_{y|x} \left(\left(\mathbb{E}_{\mathcal{D}^m} \left(\frac{1}{K} \sum_{i=1}^K h_m^{(i)}(x) \right) - h^*(x) \right)^2 \right) \\ &= \mathbb{E}_{y|x} \left(\left(\frac{1}{K} \sum_{i=1}^K \mathbb{E}_{\mathcal{T}_i^m} \left(h_m^{(i)}(x) \right) - h^*(x) \right)^2 \right) \\ &= \mathbb{E}_{y|x} \left(\left(\mathbb{E}_{\mathcal{T}^m} \left(h_m(x) \right) - h^*(x) \right)^2 \right) \end{aligned}$$

where $\mathbb{E}_{\mathcal{T}^m}(h_m(x))$ was the $g_m(x)$ defined for a single model $h_m(x)$

Averaging Models: Variance



• For uncorrelated component models $h_m^{(i)}(x)$:

$$\operatorname{Var}_{\mathcal{D}^{m}}(b(x)) = \operatorname{Var}_{\mathcal{D}^{m}}\left(\frac{1}{K}\sum_{i=1}^{K}h_{m}^{(i)}(x)\right)$$
$$= \frac{1}{K^{2}}\sum_{i=1}^{K}\operatorname{Var}_{\mathcal{T}_{i}^{m}}\left(h_{m}^{(i)}(x)\right) = \frac{1}{K}\operatorname{Var}_{\mathcal{T}^{m}}\left(h_{m}(x)\right)$$

which is a great improvement based on the strong assumption

• There is no improvement for maximum correlation, i.e., all component models equal: $h_m^{(i)}(x) = h_m(x)$ for i = 1, ..., K, we get:

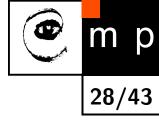
$$\operatorname{Var}_{\mathcal{D}^m}(b(x)) = \operatorname{Var}_{\mathcal{D}^m}\left(\frac{1}{K}\sum_{i=1}^K h_m^{(i)}(x)\right) = \operatorname{Var}_{\mathcal{T}^m}(h_m(x))$$

 \Rightarrow we need to train **uncorrelated** (diverse) component models while **keeping their bias reasonably low**

Bootstrapping

- igstarrow In practice we have only a single training dataset \mathcal{T}^m
- Bootstrapping is a method producing datasets \mathcal{T}_i^m for $i = 1, \ldots K$ by sampling \mathcal{T}^m uniformly with *replacement*
- Bootstrap datasets have the same size as the original dataset $|\mathcal{T}_i^m| = |\mathcal{T}^m|$
- \mathcal{T}_i^m is expected to have the fraction $1 \frac{1}{e} \approx 63.2\%$ of unique samples from \mathcal{T}^m , others are duplicates (see seminar)

Bagging

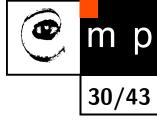


- Bagging = Bootstrap AGGregating [Breiman 1994]:
 - 1. Use bootstrapping to generate K datasets
 - 2. Train a model $h_m^{(i)}$ on each dataset \mathcal{T}_i^m
 - 3. Average the models
- When decision trees are used as the models \Rightarrow random forests
- Low bias is achieved by growing the trees to maximal depth
- Trees are decorrelated by:
 - training each tree on a different bootstrap dataset
 - randomization of split attribute selection

Random Forest Algorithm

- 1. For $i = 1 \dots K$:
 - (a) draw a bootstrap dataset \mathcal{T}_i^m from \mathcal{T}^m , $|\mathcal{T}_i^m| = |\mathcal{T}^m| = m$
 - (b) grow a tree $h_m^{(i)}$ using \mathcal{T}_i^m by recursively repeating the following, until the minimum node size n_{\min} is reached:
 - i. select \boldsymbol{k} attributes at random from the \boldsymbol{p} attributes
 - ii. pick the best attribute and split-point among the \boldsymbol{k}
 - iii. split the node into two daughter nodes
- 2. Output ensemble of trees b(x) averaging $h_m^{(i)}$ (regression) or selecting a majority vote (classification)
 - Node size n_{\min} is the number of dataset samples associated with the node, limits tree depth

Out-of-Bag (OOB) Error



- Cheap way of generalization error assessment for bagging
- ullet Bagging produces bootstrapped sets $\mathcal{T}_1^m, \mathcal{T}_2^m, \dots \mathcal{T}_K^m$
- For each $(x_i, y_i) \in \mathcal{T}^m$ select only trees which were not trained on this sample: $H_i = \{h_m^{(j)} \mid (x_i, y_i) \notin \mathcal{T}_j^m\}$
- Average only the OOB trees in H_i when evaluating error for (\boldsymbol{x}_i, y_i)
- Replacement for K-fold cross-validation

Feature Importance

- Random forests allow easy evaluation of feature importances
- Mean Decrease Impurity (MDI):
 - set $f_j = 0$ for all attributes $j = 1, \ldots, p$
 - traverse all trees processing all internal nodes
 - for each node having a split attribute j add its *impurity decrease* multiplied by the proportion of the *node size* to f_j

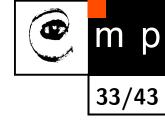
р

31/43

- Mean Decrease Accuracy (MDA), permutaion importance:
 - evaluate the forest using OOB
 - do the same with permuted values of an attribute j
 - watch decrease in accuracy: low decrease means unimportant feature

Boosting

- Sequentially train weak learners/predictors *low variance high bias*
- Subsequent predictors fix the mistakes of the previous ones reducing bias
- Methods discussed here:
 - Forward Stagewise Additive Modeling
 - Gradient Boosting Machine
 - Gradient Boosted Trees
 - AdaBoost



Forward Stagewise Additive Modeling (FSAM)

1. Initialize $f_0(x) = 0$

2. For k = 1 to K:

(a) Find

$$(\beta_k, \theta_k) = \operatorname*{argmin}_{\beta, \theta} \sum_{i=1}^m \ell\Big(y_i, f_{k-1}(x_i) + \beta b(x_i; \theta)\Big)$$

where $b(x_i; \theta_k)$ is the *basis function* and β_k the corresponding coefficient (b) Set $f_k(x) = f_{k-1}(x) + \beta_k b(x; \theta_k)$

3. Return $h_m(x) = f_K(x)$

FSAM and Gradient Descent

FSAM update looks very similar to the gradient descent one:

$$f_k(x) = f_{k-1}(x) + \beta_k b(x; \theta_k)$$

- Just think of
 - $\beta_k \approx$ step size (learning rate)
 - $b(x_i; \theta_k) \approx$ the negative of gradient

FSAM for Squared Loss



• Again consider regression with the squared loss:

$$\ell(y, f(x)) = (y - f(x))^2$$

• For FSAM we get:

$$\ell(y_i, f_k(x_i)) = \ell(y_i, f_{k-1}(x_i) + \beta_k b(x_i; \theta_k))$$
$$= (y_i - f_{k-1}(x_i) - \beta_k b(x_i; \theta_k))^2$$
$$= (r_{ik} - \beta_k b(x_i; \theta_k))^2$$

where $r_{ik} = y_i - f_{k-1}(x_i)$ is the *residual* of the current model for the *i*-th sample

- The task of FSAM is to fit the model $\beta_k b(x_i; \theta_k)$ to match the residuals
- The method is sometimes called the *least-squares boosting*

Gradient Boosting for Regression

In case of regression with squared loss we minimize:

$$\mathcal{L} = \sum_{i=1}^{m} \ell(y_i, f(x_i)) = \sum_{i=1}^{m} \frac{1}{2} (y_i - f(x_i))^2,$$

36/43

which is same as minimization of the empirical risk

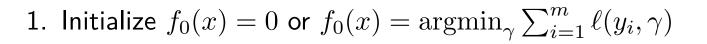
We can treat f(x₁), f(x₂),..., f(x_m) as parameters and take derivatives:

$$\frac{\partial \mathcal{L}}{\partial f(x_i)} = \frac{\partial \left(\sum_{j=1}^m \ell(y_j, f(x_j))\right)}{\partial f(x_i)} = \frac{\partial \ell(y_i, f(x_i))}{\partial f(x_i)}$$
$$= f(x_i) - y_i = -r_i$$

• The *least-squares boosting* hence takes steps in the negative gradient direction where $r_i = -\frac{\partial \mathcal{L}}{\partial f(x_i)}$

This approach can be generalized for any differentiable loss function!

Gradient Boosting Machine



2. For k = 1 to K:

(a) Compute:

$$\boldsymbol{g}_{k} = \left[\frac{\partial \ell(y_{i}, f_{k-1}(x_{i}))}{\partial f_{k-1}(x_{i})}\right]_{i=1}^{m}$$

(b) Fit a regression model $b(\cdot; \theta)$ to $-\boldsymbol{g}_k$ using squared loss:

$$\theta_k = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^m \left[(-\boldsymbol{g}_k)_i - b(x_i; \theta) \right]^2$$

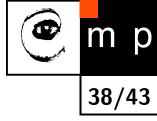
(c) Choose a fixed step size $\beta_k = \beta > 0$ or use line search:

$$\beta_k = \underset{\beta>0}{\operatorname{argmin}} \sum_{i=1}^m \ell\Big(y_i, f_{k-1}(x_i) + \beta b(x_i; \theta_k)\Big)$$

(d) Set $f_k(x) = f_{k-1}(x) + \beta_k b(x; \theta_k)$

3. Return $h_m(x) = f_K(x)$

Gradient Boosted Trees



- Gradient Boosting Tree is GBM where all weak learners f_k are decision or regression trees
- Use limit on depth/number of leaves/node size for the weak learners \Rightarrow high bias
- Meta-parameters such as K (number of trees) and β (learning rate) have to be found using cross validation
- Model is built sequentially (unlike random forests)
- Highly optimized algorithms based on Gradient Boosting Trees:
 - XGBoost, LightGBM
 - parallelization, scalability, regularization

AdaBoost M1

Binary classifier: $\mathcal{Y} = \{-1, 1\}$

- 1. Initialize the weights $w_i = 1/m$ for i = 1, 2, ..., m
- 2. For k = 1 to K:

(a) Fit a classifier $f_k(x; \theta_k)$ to the training data using loss weighted by w_i :

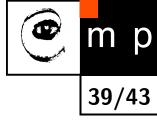
$$\theta_k = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^m w_i [\![y_i \neq f_k(x_i; \theta)]\!]$$

(b) Compute the weighted error rate

$$\epsilon_k = \frac{\sum_{i=1}^m w_i [\![y_i \neq f_k(x_i; \theta_k)]\!]}{\sum_{i=1}^m w_i}$$

(c) Compute the weight $\alpha_k = \log((1 - \epsilon_k)/\epsilon_k)$ (d) Set $w_i \leftarrow w_i \cdot \exp(\alpha_k \cdot [y_i \neq f_k(x_i; \theta_k)])$ for i = 1, 2, ..., m

3. Return $h_m(x) = \operatorname{sign}\left[\sum_{k=1}^K \alpha_k f_k(x;\theta_k)\right]$



AdaBoost is FSAM

Claim: AdaBoost is FSAM using the exponential loss

 $\ell(y, f(x)) = \exp(-yf(x))$

$$(\beta_k, \theta_k) = \underset{\beta, \theta}{\operatorname{argmin}} \sum_{i=1}^m \ell\Big(y_i, f_{k-1}(x_i) + \beta b(x_i; \theta)\Big)$$
$$= \underset{\beta, \theta}{\operatorname{argmin}} \sum_{i=1}^m \exp\Big(-y_i\Big(f_{k-1}(x_i) + \beta b(x_i; \theta)\Big)\Big)$$
$$= \underset{\beta, \theta}{\operatorname{argmin}} \sum_{i=1}^m w_i^{(k)} \exp\Big(-y_i\beta b(x_i; \theta)\Big),$$

where $w_i^{(k)} = \exp(-y_i f_{k-1}(x_i))$

AdaBoost is FSAM II

• We can rearrange further:

$$\begin{aligned} (\beta_k, \theta_k) &= \operatorname*{argmin}_{\beta, \theta} \sum_{i=1}^m w_i^{(k)} \exp\left(-y_i \beta b(x_i; \theta)\right) \\ &= \operatorname*{argmin}_{\beta, \theta} \left[e^{-\beta} \sum_{y_i = b(x_i; \theta)} w_i^{(k)} + e^{\beta} \sum_{y_i \neq b(x_i; \theta)} w_i^{(k)} \right] \\ &= \operatorname*{argmin}_{\beta, \theta} \left[\underbrace{(e^{\beta} - e^{-\beta})}_{>0 \text{ for } \beta > 0} \sum_{i=1}^m w_i^{(k)} [y_i \neq b(x_i; \theta)] + e^{-\beta} \sum_{i=1}^m w_i^{(k)} \right] \end{aligned}$$

• For any $\beta > 0$ we can minimize θ separately:

$$\theta_k = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^m w_i^{(k)} [y_i \neq b(x_i; \theta)] \quad \text{(same as AdaBoost 2(a))}$$

Let's minimize

$$(e^{\beta} - e^{-\beta}) \sum_{i=1}^{m} w_i^{(k)} [y_i \neq b(x_i; \theta_k)] + e^{-\beta} \sum_{i=1}^{m} w_i^{(k)}$$

with respect to β

$$(e^{\beta_k} + e^{-\beta_k}) \sum_{i=1}^m w_i^{(k)} [y_i \neq b(x_i; \theta_k)] - e^{-\beta_k} \sum_{i=1}^m w_i^{(k)} = 0$$
$$(e^{\beta_k} + e^{-\beta_k}) \epsilon_k - e^{-\beta_k} = 0$$

where
$$\epsilon_k = \frac{\sum_{i=1}^m w_i [y_i \neq b(x_i; \theta_k)]}{\sum_{i=1}^m w_i}$$
 as in AdaBoost 2(b)
Solving for β_k :

$$\beta_k = \frac{1}{2} \log \frac{1 - \epsilon_k}{\epsilon_k}$$

• Define $\alpha_k \triangleq 2\beta_k$ and compare to AdaBoost 2(c)

AdaBoost is FSAM IV



• We have
$$w_i^{(k)} = e^{-y_i f_{k-1}(x_i)}$$
 and $f_k(x) = f_{k-1}(x) + \beta_k b(x; \theta_k)$ so:
 $w_i^{(k+1)} = e^{-y_i \left(f_{k-1}(x_i) + \beta_k b(x_i; \theta_k)\right)} = w_i^{(k)} \cdot e^{-y_i \beta_k b(x_i; \theta_k)}$
• Finally $-y_i b(x_i; \theta_k) = 2 \cdot [y_i \neq b(x_i; \theta_k)] - 1$ gives the weight update:
 $w_i^{(k+1)} = w_i^{(k)} \cdot e^{\alpha_k [y_i \neq b(x_i; \theta_k)]} \cdot e^{-\beta_k}$

corresponding to AdaBoost 2(d) up to the factor $e^{-\beta_k}$ which is same for all weights and hence has no effect

