
Statistical Machine Learning (BE4M33SSU)
Lecture 7: Generative learning, EM-Algorithm

Czech Technical University in Prague

� Generative vs. Discriminative Learning

� Maximum Likelihood Estimator, consistency

� Expectation Maximisation Algorithm
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1. Generative vs. Discriminative Learning

Generative learning:
� Model the joint probability distributions pθ(x,y) for features x ∈ X and hidden states
y ∈ Y. The distributions are parametrised by θ ∈Θ.

� Inference rule (if true parameter θ0 is known):

h(x) ∈ argmax
y∈Y

∑
y′∈Y

pθ0(y
′ | x)`(y′,y)

� Learning: if θ0 ∈Θ is not known, estimate it from training data
T m =

{
(xi,yi) ∈ X ×Y | i= 1, . . . ,m

}
e.g. by Maximum Likelihood estimator.

Discriminative learning(1):
� Model only the conditional distributions pθ(y | x), θ ∈Θ.
� Inference rule (if true parameter θ0 is known): as above
� Learning: if θ0 ∈Θ is not known, estimate it by maximising the conditional likelihood
on the training data T m.

θ∗ ∈ argmax
θ∈Θ

m∑
i=1

logpθ(y
i | xi)
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1. Generative vs. Discriminative Learning

Discriminative learning(2):

� Model the class of inference rules h ∈H directly.

� Optimal inference (if p(x,y) is known):

h0(x) = argmin
y∈Y

∑
y′∈Y

p(x,y′)`(y′,y)

� Estimate the best inference rule h∗ ∈H by minimising the empirical risk on the training
data

h∗ ∈ argmin
h∈H

1

m

m∑
i=1

`(yi,h(xi))
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1. Generative vs. Discriminative Learning

Example (Gaussian Discriminative Analysis, Logistic Regression, Linear Classifier)

y = 0,1, y ∼Bernoulli(α) and x ∈ Rn, x | y = 0∼N (µ0,V ), x | y = 1∼N (µ1,V ), i.e.

p(y) = αy(1−α)1−y

p(x | y) =
1

(2π)n/2|V |1/2
exp
[
−1

2
(x−µy) ·V −1 · (x−µy)

]
Generative learning: Denote I1 = {i | yi = 1} and I0 correspondingly. ML estimator for
training data T m =

{
(xi,yi) | i= 1, . . . ,m

}
gives

α∗ =
1

m
|I1|

µ∗0 =
1

|I0|
∑
i∈I0

xi, µ∗1 =
1

|I1|
∑
i∈I1

xi

V ∗ =
1

m

m∑
i=1

(xi−µyi)⊗ (xi−µyi)
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1. Generative vs. Discriminative Learning

Discriminative learning(1): Notice that the posterior conditional probabilities can be
expressed as

p(y | x) =
exp[y(〈w,x〉+ b)]

1 + exp[〈w,x〉+ b]
,

i.e. a logistic regression, where w and b are some functions of α, µ0, µ1 and V .

Estimate w and b by maximising the conditional likelihood on training data

(w∗, b∗) ∈ argmax
w,b

{∑
i∈I1

(〈
w,xi

〉
+ b
)
−

m∑
i=1

log
(
1 + exp(

〈
w,xi

〉
+ b)

)}

The objective is concave in w and b. Its global optimum can be found by gradient ascent.

Discriminative learning(2): The optimal inference rule is a linear classifier. ⇒ Learn it by
minimising the empirical risk. ⇒ SVM
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1. Generative vs. Discriminative Learning

Question: The three methods will provide different decision boundaries when trained on the
same dataset. Which one is better?

General answer:

� Generative learning makes stronger assumptions and is more data efficient when the
assumptions are (nearly) correct.

� Discriminative learning makes weaker assumptions and is less data efficient but
significantly more robust to deviations from model assumptions.
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2. Consistency of the Maximum Likelihood estimator

Let T m =
{
zi
∣∣ i= 1, . . . ,m

}
be i.i.d. generated from pθ0(z), with θ0 ∈Θ unknown.

Which conditions ensure consistency of the MLE θ∗ = argmax
θ∈Θ

logpθ(T m)?

Pθ0

(
‖θ0−θ∗(T m)‖> ε

) m→∞−−−−→ 0

Denote log-likelihood of training data L(θ,T m) = 1
m

m∑
i=1

logpθ(z
i)

and expected log-likelihood L(θ) = Eθ0

(
L(θ,T m)

)
=
∑
z∈Z

pθ0(z) logpθ(z)

Consider L(θ,T m) = L(θ) +
[
L(θ,T m)−L(θ)

]
� Suppose, θ0 = argmax

θ∈Θ
L(θ) holds, i.e. the model is identifiable,

� The Law of Large Numbers (LLN) tells us

Pθ0

(
|L(θ,T m)−L(θ)|> ε

) m→∞−−−−→ 0

for each θ and any ε > 0.

Question: Is this sufficient to ensure consistency of the MLE?
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2. Consistency of the Maximum Likelihood estimator

Identifiability of the model θ0 is easy to prove if pθ0(z) 6≡ pθ(z) holds ∀θ 6= θ0.

Let p(z), q(z) be two probability distributions s.t. p 6≡ q. Then∑
z∈Z

p(z) logp(z)>
∑
z∈Z

p(z) logq(z)

follows from strict concavity of the function log(x):

−KL(p ‖ q) =
∑
z∈Z

p(z) log
q(z)

p(z)
< log

∑
z∈Z

q(z)p(z)

p(z)
= log1 = 0

Further conditions needed to ensure consistency of ML estimators:
� ensure that L(θ,T m) has a global maximum w.r.t. θ for each T m: e.g. if Θ⊂ Rk is
compact and L is continuous in θ,

� ensure that the Uniform Law of Large Numbers (ULLN) holds, i.e.

Pθ0

(
sup
θ∈Θ
|L(θ,T m)−L(θ)|> ε

) m→∞−−−−→ 0

for any ε > 0. E.g. if L(θ,z) can be also upper bounded: logpθ(z)6 d(z) ∀θ with
Eθ0d(z)<∞.
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3. The Expectation Maximisation Algorithm

Unsupervised generative learning:

� The joint p.d. pθ(x,y), θ ∈Θ is known up to the parameter θ ∈Θ,

� given training data T m =
{
xi ∈ X

∣∣ i= 1,2, . . . ,m
}
i.i.d. generated from pθ0.

How shall we implement the MLE

θ∗(T m) = argmax
θ∈Θ

1

m

∑
x∈T m

logpθ(x) = argmax
θ∈Θ

1

m

∑
x∈T m

log
∑
y∈Y

pθ(x,y)

� If θ is a single parameter or a vector of homogeneous parameters ⇒ maximise the
log-likelihood directly.

� If θ is a collection of heterogeneous parameters ⇒ apply the Expectation
Maximisation Algorithm (Schlesinger, 1968, Sundberg, 1974, Dempster, Laird, and
Rubin, 1977)
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3. The Expectation Maximisation Algorithm

Because the original derivation of the algorithm is somewhat involved, we follow here an
alternative approach by Minka (1998):

� Introduce auxiliary variables αx(y)> 0, for each x ∈ T m, s.t.
∑
y∈Y

αx(y) = 1

� Construct a lower bound of the log-likelihood L(θ,T m)> LB(θ,α,T m)

� Maximise this lower bound by block-wise coordinate ascent.

Construct the bound:

L(θ,T m) =
1

m

∑
x∈T m

log
∑
y∈Y

pθ(x,y) =
1

m

∑
x∈T m

log
∑
y∈Y

αx(y)

αx(y)
pθ(x,y)>

LB(θ,α,T m) =
1

m

∑
x∈T m

∑
y∈Y

αx(y) logpθ(x,y)− 1

m

∑
x∈T m

∑
y∈Y

αx(y) logαx(y)
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3. The Expectation Maximisation Algorithm

Maximise LB(θ,α,T m) by block-coordinate ascent:

Start with some θ(0) and iterate

E-step Fix the current θ(t), maximise LB(θ(t),α,T m) w.r.t. α-s. This gives

α(t)
x (y) = pθ(t)(y | x).

M-step Fix the current α(t) and maximise LB(θ,α(t),T m) w.r.t. θ.

θ(t+1) = argmax
θ∈Θ

1

m

∑
x∈T m

∑
y∈Y

α(t)
x (y) logpθ(x,y)

This is equivalent to solving the MLE for annotated training data.

Claims:

� The bound is tight if αx(y) = pθ(y | x),

� The sequence of likelihood values L(θ(t),T m), t= 1,2, . . . is increasing, and the
sequence α(t), t= 1,2, . . . is convergent (under mild assumptions).

http://cmp.felk.cvut.cz


12/13
3. The Expectation Maximisation Algorithm

Example: A Naive Bayes model for string patterns

� x= (x1, . . . ,xn) strings of length n over a finite alphabet B,

� k = 0,1 string pattern class,

� joint distribution - Naive Bayes model

p(x,k) = p(k)

n∏
j=1

p(xj | k)

Learning problem: Given i.i.d. training data T m =
{
xi ∈ Bn

∣∣ i= 1,2, . . . ,m
}
,

estimate the class probabilities p(k) and the conditional probabilities p(xj | k), ∀xj ∈ B,
k = 1,2 and j = 1, . . . ,n.

Applying the EM algorithm: Start with some model p(0)(k), p(0)(xj | k) and iterate the
following steps until convergence.
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3. The Expectation Maximisation Algorithm

E-step Given the current model estimate p(t)(k), p(t)(xj | k), compute the posterior class
probabilities for each string xi in the training data T m

α(t)
x (k) = p(t)(k | x) =

p(t)(k)
∏n
j=1p

(t)(xj | k)∑
k′ p

(t)(k′)
∏n
j=1p

(t)(xj | k′)
.

M-step Re-estimate the model by

p(t+1)(k) =
1

m

∑
x∈T m

α(t)
x (k)

p(t+1)(xj = b | k) =

∑
x∈T m : xj=b

α
(t)
x (k)∑

x∈T mα
(t)
x (k)
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