
Figure 1: Interest in web service APIs. Source: https://blog.wishtack.com/
rest-apis-best-practices-and-security/

What is a web service?

A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network.

— W3C, Web Services Glossary

We can identify two major classes of Web services:

• REST-compliant Web services, in which the primary purpose of the
service is to manipulate XML representations of Web resources using a
uniform set of ”stateless” operations; and

• arbitrary Web services, in which the service may expose an arbitrary
set of operations.

— W3C, Web Services Architecture (2004)

Web Service API Distribution

REST vs SOAP Interest

Basic terms

• Uniform Resource Identifier (URI) is a string of characters used to identify
a resource. (e.g., http://www.fel.cvut.cz/cz/education/)

• The Hypertext Transfer Protocol (HTTP) is an application protocol for
distributed, collaborative, hypermedia information systems. It is the foundation
of data communication for the World Wide Web.

– initiated by Tim Berners-Lee at CERN in 1989

1

Figure 2: Interest over time for REST API versus SOAP API based on Google Insights
for Search. Source: https://www.google.com/trends

• Representational State Transfer (REST) is an architectural style for dis-
tributed hypermedia systems.

– defined in 2000 by Roy Fielding in his doctoral dissertation

1 HTTP

HTTP protocol basics

• HTTP is a client-server application-level protocol

• Typically runs over a TCP/IP connection

• Extensible – e.g., video, image support

• Stateless

• Cacheable

• Requires reliable transport protocol – no UDP

HTTP Request

• Message header

– Request line – identifies HTTP method, URI and protocol version

– Request headers

• Message body

2

Figure 3: HTTP request example. Source: https://www.ntu.edu.sg/home/
ehchua/programming/webprogramming/HTTP_Basics.html

Figure 4: HTTP request example. Source: https://www.ntu.edu.sg/home/
ehchua/programming/webprogramming/HTTP_Basics.html

HTTP Response

• Message header

– Status line – identifies protocol version and response status code

– Response headers

• Message body

HTTP Headers
Typical, often used HTTP headers

HTTP Methods

GET

• Used to retrieve resource at request URI

• Safe and idempotent

• Cacheable

• Can have side effects, but not expected

• Can be conditional or partial (If-Modified-Since, Range)

3

Request Response

Content • Content-Type • Content-Type
• Content-Length • Content-Length
• Content-Encoding • Content-Encoding
• Accept

Caching • If-Modified-Since • Last-Modified
• If-Match • ETag

Miscellaneous • Cookie • Set-Cookie
• Host • Location
• Authorization
• User-Agent

POST

• Requests server to create new resource from the specified body

• Can be used also to update resources

• Should respond with 201 status and location of newly created resource on success

• Neither safe nor idempotent

• No caching

HTTP Methods

PUT

• Requests server to store the specified entity under the request URI

• Server may possibly create a resource if it does not exist

• Usually used to update resources

• Idempotent, unsafe

DELETE

• Used to ask server to delete resource at the request URI

• Idempotent, unsafe

• Deletion does not have to be immediate

4

HTTP Response Status Codes

• 1xx – rarely used

• 2xx – success

– 200 OK – requests succeeded, usually contains data

– 201 Created – returns a Location header for new resource

– 202 Accepted – server received request and started processing

– 204 No Content – request succeeded, nothing to return

• 3xx – redirection

– 304 Not Modified – resource not modified, cached version can be used

HTTP Response Status Codes

• 4xx – client error

– 400 Bad Request – malformed syntax

– 401 Unauthorized – authentication required

– 403 Forbidden – server has understood, but refuses request

– 404 Not Found – resource not found

– 405 Method Not Allowed – specified method is not supported

– 409 Conflict – resource conflicts with client data

– 415 Unsupported Media Type – server does not support media type

• 5xx – server error

– 500 Internal Server Error – server encountered error and failed to process
request

2 RESTful web services

Understanding REST

• REST is an architectural style, not standard

• It was designed for distributed systems to address architectural properties such as
performance, scalability, simplicity, modifiability, visibility, portability, and relia-
bility

• REST architectural style is defined by 6 principles/architectural constraints (e.g.,
client-server, stateless)

• System/API that conforms to the constraints of REST can be called RESTful

5

REST principles

1. Client-server

2. Uniform interface

• Resource-based

• Manipulation of resource through representation

• Self-descriptive messages

• Hypermedia as the engine of application state

3. Stateless interactions

4. Cacheable

5. Layered system

6. Code on demand (optional)

Building RESTful API

• Can be build on top of existing web technologies

• Reusing semantics of HTTP 1.1 methods

– Safe and idempotent methods

– Typically called HTTP verbs in context of services

– Resource oriented, correspond to CRUD operations

– Satisfies uniform interface constraint

• HTTP Headers to describe requests & responses

• Content negotiation

HTTP GET

GET /eshop/rest/categories HTTP/1.1
Host: localhost:8080
Accept: application/json
Cache-Control: no-cache

HTTP/1.1 200
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Content-Type: application/json;charset=UTF-8

[{
"id": 2,
"name": "CPU"

}, {
"id": 7,
"name": "Graphic card"

6

}, {
"id": 11,
"name": "RAM"

}]

HTTP verbs – POST

POST /eshop/rest/categories HTTP/1.1
Host: localhost:8080
Content-Type: application/json
Cookie: EAR_JSESSIONID=18162708908C126C0BA5A3D3081CCAC9
Cache-Control: no-cache

{
"name": "Motherboard"

}

HTTP/1.1 201
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Location: http://localhost:8080/eshop/rest/categories/151

HTTP verbs – PUT

PUT /eshop/rest/products/8 HTTP/1.1
Host: localhost:8080
Content-Type: application/json
Cookie: EAR_JSESSIONID=18162708908C126C0BA5A3D3081CCAC9

{
"id":8,
"name":"MSI GeForce GTX 1050 Ti 4GT OC",
"amount":50,
"price":4490.0,
"categories":[{

"id":7,
"name":"Graphic card"

}],
"removed":false

}

HTTP/1.1 204
Cache-Control: no-cache, no-store, max-age=0, must-revalidate

HTTP verbs – DELETE

DELETE /eshop/rest/products/8 HTTP/1.1
Host: localhost:8080
Cookie: EAR_JSESSIONID=18162708908C126C0BA5A3D3081CCAC9
Cache-Control: no-cache

HTTP/1.1 204
Cache-Control: no-cache, no-store, max-age=0, must-revalidate

7

HTTP Verb CRUD Collection (e.g. /categories) Specific Item (e.g. /categories/{id})

POST Create 201 Created1 405 Method Not Allowed /409 Conflict3

GET Read 200 OK, list of categories 200 OK, single category/404 Not Found4

PUT Update/Replace 405 Method Not Allowed2 200 OK/204 No Content/404 Not Found4

PATCH Update/Modify 405 Method Not Allowed2 200 OK/204 No Content/404 Not Found4

DELETE Delete 405 Method Not Allowed2 200 OK/204 No Content/404 Not Found4

Table 1: Recommended return values of HTTP methods in combination with the re-
source URIs.

Recommended Interaction of HTTP Methods w.r.t. URIs

• 1 – returns Location header with link to /categories/{id} containing new ID

• 2 – unless you want to update/replace/modify/delete whole collection

• 3 – if resource already exists

• 4 – if ID is not found or invalid

Naming conventions

• resources should have name as nouns, not as verbs or actions

• plural if possible to apply

• URI should follow a predictable (i.e., consistent usage) and hierarchical structure
(based on structure-relationships of data)

Correct usages
POST /customers/12345/orders/121/items GET /customers/12345/orders/121/items/3
GET|PUT|DELETE /customers/12345/configuration

Anti-patterns
GET /services?op=update customer&id=12345&format=json PUT /customers/12345/update

The Richardson Maturity Model

• provides a way to evaluate compliance of API to REST constraints

2.1 HATEOAS

HATEOAS

• Hypermedia as the Engine of Application State

• Final level of the Richardson Maturity Model

• Client needs zero or little prior knowledge of an API

8

Figure 5: A model (developed by Leonard Richardson) that breaks down the principal
elements of a REST approach into three steps about resources, http verbs, and
hypermedia controls. Source: http://martinfowler.com/articles/
richardsonMaturityModel.html

• Client just needs to understand hypermedia

• Server provides links to further endpoints

• Often difficult to implement

– Not many usable libraries

HATEOAS Example
*EAR e-shop does not support HATEOAS.

{
"id": 2,
"name": "CPU",
"links": [{

"rel": "self",
"href": "http://localhost:8080/eshop/rest/categories/2"

}, {
"rel": "edit",
"href": "http://localhost:8080/eshop/rest/categories/2"

}, {
"rel": "products",
"href": "http://localhost:8080/eshop/rest/categories/2/products"

}]
}

We are using the Atom link format.

3 Linked Data

Linked Data

• Method of publishing structured data allowing to interlink them with other data

9

• Builds upon the original ideas of the Web

– Interconnected resources, but this time, machine-readable

• Knowledge-based systems, context-aware applications, precise domain description,
knowledge inference

• Still possible to build REST APIs, but resources have global identifiers now

• Attributes and relationships also globally identifiable and may have well-defined
meaning

Linked Data Example

{
"@context": {
"name": "http://www.w3.org/2000/01/rdf-schema#label",
"description": "http://purl.org/dc/terms/description",
"products": "http://onto.fel.cvut.cz/ontologies/eshop/has-product"

},
"@id": "http://onto.fel.cvut.cz/eshop/categories/cpu",
"products": {
"@id": "https://ark.intel.com/products/97455/Intel-Core-i3-7100-Processor-3M-Cache

-3-90-GHz",
"name": "Intel Core i3-7100"

},
"description": "Category of Central Processing Units for computers.",
"name": "CPU"

}

4 Conclusions

REST

Pros

• Easy to build

• Easy to use

• Standard technologies – HTTP, JSON, XML

• Platform-independent

• Stateless, cacheable

Cons

• No standard for REST itself – APIs build in various ways

• No standard for documentation and publishing REST API description

• No “registry” of REST services

10

The End

Thank You

Resources

• Fielding, R.T., 2000. Architectural styles and the design of network-based software
architectures (Doctoral dissertation, University of California, Irvine),

• Fowler, M., 2010. Richardson Maturity Model: steps toward the glory of REST.
Online at http://martinfowler.com/articles/richardsonMaturityModel.html.

• Lanthaler, M. and Gütl, C., 2012, April. On using JSON-LD to create evolvable RESTful services.
In Proceedings of the Third International Workshop on RESTful Design (pp. 25-32). ACM.

• https://spring.io/understanding/REST

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview

• http://linkeddata.org/

11

