Data collection planning - TSP(N), PC-TSP(N), and OP(N))

Jan Faigl

Department of Computer Science

Faculty of Electrical Engineering Czech Technical University in Prague

Lecture 07

B4M36UIR - Artificial Intelligence in Robotics

1 / 51 Jan Faigl, 2018 2 / 51 Jan Faigl, 2018 B4M36UIR - Lecture 07: Data Collection Planning B4M36UIR - Lecture 07: Data Collection Planning Motivation **TSP TSPN GTSP** Noon-Bean Transformation OPN Motivation **TSP TSPN GTSP** Noon-Bean Transformation OPN

Part I

Part 1 – Data Collection Planning

Overview of the Lecture

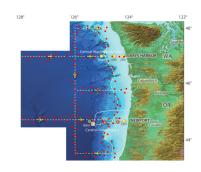
- Part 1 Data Collection Planning
 - Data Collection Planning Motivational Problem
 - Traveling Salesman Problem (TSP)
 - Traveling Salesman Problem with Neighborhoods (TSPN)
 - Generalized Traveling Salesman Problem (GTSP)
 - Noon-Bean Transformation
 - Orienteering Problem (OP)
 - Orienteering Problem with Neighborhoods (OPN)

Autonomous Data Collection

Having a set of sensors (sampling stations), we aim to determine a cost-efficient path to retrieve data autonomous underwater vehicles (AUVs) from the individual sensors

E.g., Sampling stations on the ocean floor

■ The planning problem is a variant of the Traveling Salesman Problem



Two practical aspects of the data collection can be identified

- 1. Data from particular sensors may be of different importance
- 2. Data from the sensor can be retrieved using wireless communication

These two aspects (of general applicability) can be considered in the Prize-Collecting Traveling Salesman Problem (PC-TSP) and Orienteering Problem (OP) and their extensions with neighborhoods

Motivation TSP TSPN GTSP Noon-Bean Transformation OP OPN Motivation TSP TSPN GTSP Noon-Bean Transformation OP O

Prize-Collecting Traveling Salesman Problem with Neighborhoods (PC-TSPN)

- Let n sensors be located in \mathbb{R}^2 at the locations $S = \{s_1, \ldots, s_n\}$
- Each sensor has associated penalty $\xi(s_i) \ge 0$ characterizing additional cost if the data are not retrieved from s_i
- Let the data collecting vehicle operates in \mathbb{R}^2 with the motion cost $c(p_1, p_2)$ for all pairs of points $p_1, p_2 \in \mathbb{R}^2$
- The data from s_i can be retrieved within δ distance from s_i

Jan Faigl, 2018

B4M36UIR - Lecture 07: Data Collection Planning

B4M36UIR - Lecture 07: Data Collection Planning

6 / 51

B4M36UIR - Lecture 07: Data Collection Planning

7 / 51

Motivation

TSP

TSPN

GTSP No

Noon-Bean Transformation

OPN Motivation

Jan Faigl, 2018

TSPN

TSP

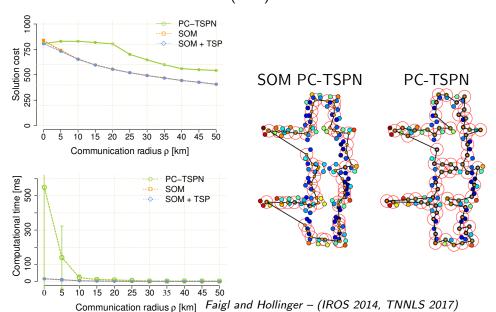
ΓSP N

Noon-Bean Transformation

OPN

PC-TSPN - Example of Solution

Ocean Observatories Initiative (OOI) scenario



PC-TSPN – Optimization Criterion

The PC-TSPN is a problem to

- Determine a set of unique locations $P = \{p_1, \dots, p_k\}$, $k \le n$, $p_i \in \mathbb{R}^2$, at which data readings are performed
- Find a cost efficient tour T visiting P such that the total cost C(T) of T is minimal

$$C(T) = \sum_{(p_{l_i}, p_{l_{i+1}}) \in T} c(p_{l_i}, p_{l_{i+1}}) + \sum_{s \in S \setminus S_T} \xi(s),$$
(1)

where $S_T \subseteq S$ are sensors such that for each $s_i \in S_T$ there is p_{l_j} on $T = (p_{l_1}, \ldots, p_{l_{k-1}}, p_{l_k})$ and $p_{l_i} \in P$ for which $|(s_i, p_{l_i})| \leq \delta$.

- PC-TSPN includes other variants of the TSP
 - for $\delta = 0$ it is the PC-TSP
 - for $\xi(s_i) = 0$ and $\delta \ge 0$ it is the TSPN
 - for $\xi(s_i) = 0$ and $\delta = 0$ it is the ordinary TSP

Traveling Salesman Problem (TSP)

- Let S be a set of n sensor locations $S = \{s_1, \ldots, s_n\}$, $s_i \in \mathbb{R}^2$ and $c(s_i, s_j)$ is a cost of travel from s_i to s_i
- Traveling Salesman Problem (TSP) is a problem to determine a closed tour visiting each $s \in S$ such that the total tour length is minimal, i.e.,
 - determine a sequence of visits $\Sigma = (\sigma_1, \dots, \sigma_n)$ such that

minimize
$$_{\Sigma}$$

$$L = \left(\sum_{i=1}^{n-1} c(s_{\sigma_i}, s_{\sigma_{i+1}})\right) + c(s_{\sigma_n}, s_{\sigma_1})$$
subject to $\Sigma = (\sigma_1, \dots, \sigma_n), 1 < \sigma_i < n, \sigma_i \neq \sigma_i \text{ for } i \neq j$ (2)

- The TSP can be considered on a graph G(V, E) where the set of vertices V represents sensor locations S and E are edges connecting the nodes with the cost $c(s_i, s_i)$
- For simplicity we can consider $c(s_i, s_j)$ to be Euclidean distance; otherwise, it is a solution of the path planning problem

 Euclidean TSP
- If $c(s_i, s_j) \neq c(s_j, s_i)$ it is the **Asymmetric TSP**
- The TSP is known to be NP-hard unless P=NP

Motivation TSP TSPN GTSP Noon-Bean Transformation OP OPN Motivation TSP TSPN GTSP Noon-Bean Transformation OP OF

Existing solvers to the TSP

- Exact solutions
 - Branch and Bound, Integer Linear Programming (ILP)

 $E.g., \ Concorde \ solver - \ \verb|http://www.tsp.gatech.edu/concorde.html||$

- Approximation algorithms
 - Minimum Spanning Tree (MST) heuristic with $L \leq 2L_{opt}$
 - Christofides's algorithm with $L \leq \frac{3/2}{L_{opt}}$
- Heuristic algorithms
 - Constructive heuristic Nearest Neighborhood (NN) algorithm
 - 2-Opt local search algorithm proposed by Croes 1958
 - Lin-Kernighan (LK) heuristic

E.g., Helsgaun's implementation of the LK heuristic http://www.akira.ruc.dk/~keld/research/LKH

- Soft-Computing techniques, e.g.,
 - Variable Neighborhood Search (VNS)
 - Evolutionary approaches
 - Unsupervised learning

Jan Faigl, 2018 B4M36UIR – Lecture 07: Data Collection Planning

11 / 51

Jan Faigl, 2018 Motivation B4M36UIR - Lecture 07: Data Collection Planning

12 / 51

Motivation

TSP

TSPN

GTSP

Noon-Bean Transformati

OP

OPN

TSP

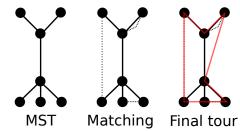
TSPN

GTSP

Noon-Bean Transformation

Christofides's Algorithm to the TSP

- Christofides's algorithm
 - 1. Compute the MST of the input graph *G*
 - 2. Compute the minimal matching on the odd-degree vertices
 - 3. Shortcut a traversal of the resulting Eulerian graph



■ For the triangle inequality, the length of such a tour *L* is

$$L \leq \frac{3}{2}L_{optimal}$$
,

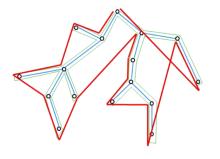
where $L_{optimal}$ is the cost of the optimal solution of the TSP

Length of the MST is $\leq L_{optimal}$

Sum of lengths of the edges in the matching $\leq rac{1}{2} L_{optimal}$

MST-based Approximation Algorithm to the TSP

- Minimum Spanning Tree Heuristic
 - Compute the MST (denoted T) of the input graph G
 - 2. Construct a graph *H* by doubling every edge of *T*
 - 3. Shortcut repeated occurrences of a vertex in the tour



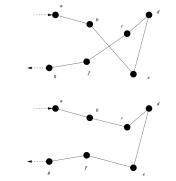
■ For the triangle inequality, the length of such a tour *L* is

$$L \leq 2L_{optimal}$$
,

where $L_{optimal}$ is the cost of the optimal solution of the TSP

2-Opt Heuristic

- 1. Use a construction heuristic to create an initial route
 - NN algorithm, cheapest insertion, farther insertion
- 2. Repeat until no improvement is made
 - 2.1 Determine swapping that can shorten the tour (i,j) for $1 \le i \le n$ and $i+1 \le j \le n$
 - route[0] to route[i-1]
 - route[i] to route[j] in reverse order
 - route[j] to route[end]
 - Determine length of the route
 - Update the current route if length is shorter than the existing solution



Unsupervised Learning based Solution of the TSP

- Sensor locations $S = \{s_1, \ldots, s_n\}$, $s_1 \in \mathbb{R}^2$; Neurons $\mathcal{N} = (\nu_1, \ldots, \nu_m)$, $\nu_i \in \mathbb{R}^2$, m = 2.5n
- Learning gain σ ; epoch counter i; gain decreasing rate $\alpha = 0.1$; learning rate $\mu = 0.6$
- 1. $\mathcal{N} \leftarrow \text{init ring of neurons as a small ring around some } s_i \in S$, e.g., a circle with radius 0.5
- 2. $i \leftarrow 0$; $\sigma \leftarrow 12.41n + 0.06$;
- //clear inhibited neurons
- 4. **foreach** $s \in \Pi(S)$ (a permutation of S)
 - 4.1 $\nu^* \leftarrow \operatorname{argmin}_{\nu \in \mathcal{N} \setminus I} ||(\nu, s)||$
 - 4.2 **foreach** ν in d neighborhood of ν^*

$$u \leftarrow \nu + \mu f(\sigma, d)(s - \nu)$$
 $f(\sigma, d) = \begin{cases}
e^{-\frac{d^2}{\sigma^2}} & \text{for } d < 0.2m, \\
0 & \text{otherwise,}
\end{cases}$

- 4.3 $I \leftarrow I \cup \{\nu^*\}$ // inhibit the winner
- 5. $\sigma \leftarrow (1-\alpha)\sigma$; $i \leftarrow i+1$; 6. If (termination condition is not satisfied) Goto Step 3: Otherwise retrieve solution

ing of connected

Termination condition can be

- Maximal number of learning epochs i < i_{max} , e.g., $i_{max} = 120$
- Winner neurons are negligibly close to sensor locations, e.g., less than 0.001

Somhom, S., Modares, A., Enkawa, T. (1999): Competition-based neural network for the multiple travelling salesmen problem with minmax objective. Computers & Operations Research. Faigl, J. et al. (2011): An application of the self-organizing map in the non-Euclidean Traveling Salesman Problem. Neurocomputing.

Jan Faigl, 2018 Motivation

Jan Faigl, 2018

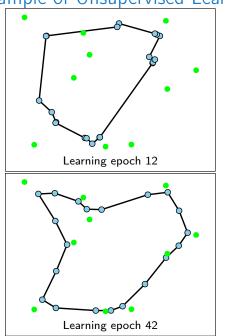
B4M36UIR - Lecture 07: Data Collection Planning **TSPN**

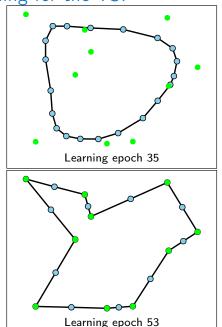
Noon-Bean Transformation

OPN

15 / 51

Example of Unsupervised Learning for the TSP





Jan Faigl, 2018 B4M36UIR - Lecture 07: Data Collection Planning 16 / 51 Motivation **TSP TSPN GTSP** Noon-Bean Transformation

Traveling Salesman Problem with Neighborhoods (TSPN)

- Instead visiting a particular location $s \in S$, $s \in \mathbb{R}^2$ we can request to visit, e.g., a region $r \subset \mathbb{R}^2$ to save travel cost, i.e., visit regions $R = \{r_1, \dots, r_n\}$
- The TSP becomes the TSP with Neighborhoods (TSPN) where it is necessary, in addition to the determination of the order of visits Σ , determine suitable locations $P = \{p_1, \dots, p_n\}, p_i \in r_i$, of visits to R
- The problem is a combination of combinatorial optimization to determine Σ with continuous optimization to determine P

minimize
$$_{\Sigma,P}$$

$$L = \left(\sum_{i=1}^{n-1} c(p_{\sigma_i}, p_{\sigma_{i+1}})\right) + c(p_{\sigma_n}, p_{\sigma_1})$$
subject to
$$R = \{r_1, \dots, r_n\}, r_i \subset \mathbb{R}^2$$

$$P = \{p_1, \dots, p_n\}, p_i \in r_i$$

$$\Sigma = (\sigma_1, \dots, \sigma_n), 1 \leq \sigma_i \leq n,$$

$$\sigma_i \neq \sigma_j \text{ for } i \neq j$$
Foreach $r_i \in R$ there is $p_i \in r_i$

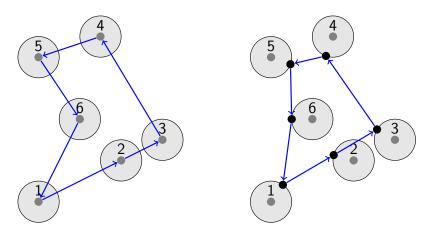
In general, TSPN is APX-hard, and cannot be approximated to within a factor $2 - \epsilon$, $\epsilon > 0$, unless P=NP.

Safra, S., Schwartz, O. (2006)



Traveling Salesman Problem with Neighborhoods (TSPN)

- **Euclidean TSPN** with disk shaped δ -neighborhoods
- Sequence of visits to the regions with particular locations of the visit



Approaches to the TSPN

■ A direct solution of the TSPN – approximation algorithms and heuristics

E.g., using evolutionary techniques or unsupervised learning Decoupled approach

1. Determine sequence of visits Σ independently on the locations P

E.g., as the TSP for centroids of the regions R 2. For the sequence Σ determine the locations P to minimize the

- total tour length, e.g.,
 - Touring polygon problem (TPP)
 - Sampling possible locations and use a forward search for finding the best locations
 - Continuous optimization such as hill-climbing E.g., Local Iterative Optimization (LIO), Váňa & Faigl (IROS 2015)

Sampling-based approaches

- For each region, sample possible locations of visits into a discrete set of locations for each region
- The problem can be then formulated as the **Generalized Traveling** Salesman Problem (GTSP)
- **E**uclidean TSPN with, e.g., disk-shaped δ neighborhoods
 - Simplified variant with regions as disks with radius δ remote sensing with the δ communication range

Jan Faigl, 2018 B4M36UIR - Lecture 07: Data Collection Planning 20 / 51

Jan Faigl, 2018

B4M36UIR - Lecture 07: Data Collection Planning

21 / 51

Motivation

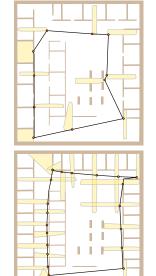
Noon-Bean Transformation

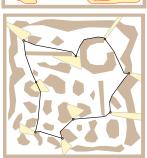
OPN

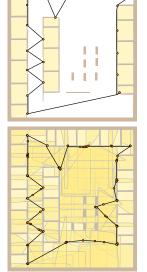
Motivation

TSPN

Example of Unsupervised Learning for the TSPN



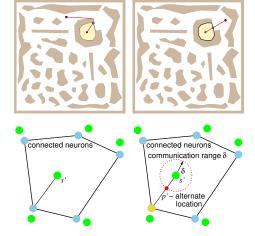




It also provides solutions for non-convex regions, overlapping regions, and coverage problems.

Unsupervised Learning for the TSPN

- In the unsupervised learning for the TSP, we can sample suitable sensing locations during winner selection
- We can use the centroid of the region for the shortest path computation from ν to the region *r* presented to the network
- Then, an intersection point of the path with the region can be used as an alternate location
- For the Euclidean TSPN with disk-shaped δ neighborhoods, we can compute the alternate location directly from the Euclidean distance



Faigl, J. et al. (2013): Visiting convex regions in a polygonal map. Robotics and Autonomous Systems.

Solving the TSPN as the TPP - Iterative Refinement

Let the sequence of *n* polygon regions be $R = (r_1, \ldots, r_n)$ Li, F., Klette, R.: Approximate algorithms for touring a sequence of polygons. 2008

1. Sampling the polygons into a discrete set of points and determine all shortest paths between each sampled points in the sequence of the regions visits E.g., using visibility graph

2. Initialization: Construct an initial touring polygons path using a sampled point of each region Let the path be defined by $P = (p_1, p_2, \dots, p_n)$, where $p_i \in$ r_i and L(P) be the length of the shortest path induced by P

3. Refinement: For $i = 1, 2, \ldots, n$

- Find $p_i^* \in r_i$ minimizing the length of the path $d(p_{i-1}, p_i^*) + d(p_i^*, p_{i+1})$, where $d(p_k, p_l)$ is the path length from p_k to p_l , $p_0 = p_n$, and $p_{n+1} = p_1$
- If the total length of the current path over point p_i^* is shorter than over p_i , replace the point p_i by p_i^*
- 4. Compute path length L_{new} using the refined points
- 5. Termination condition: If $L_{new} L < \epsilon$ Stop the refinement. Otherwise $L \leftarrow L_{new}$ and go to Step 3
- 6. Final path construction: use the last points and construct the path using the shortest paths among obstacles between two consecutive points

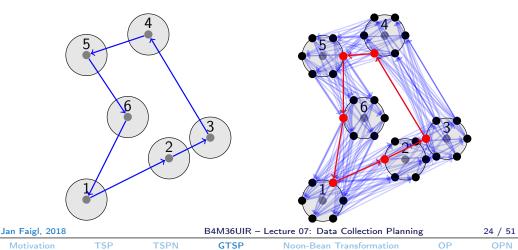


Motivation TSP TSPN GTSP Noon-Bean Transformation OP OPN Motivation TSP TSPN GTSP Noon-Bean Transformation OP OP

Sampling-based Decoupled Solution of the TSPN

- Sample each neighborhood with, e.g., k = 6 samples
- Determine sequence of visits, e.g., by a solution of the ETSP for the centroids of the regions
- Finding the shortest tour takes in a forward search graph $O(nk^3)$ for nk^2 edges in the sequence

 Trying each of the k possible starting locations



Generalized Traveling Salesman Problem (GTSP)

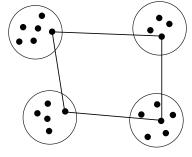
- For sampled neighborhoods into discrete sets of locations, we can formulate the problem as the Generalized Traveling Salesman Problem (GTSP)

 Also known as the Set TSP or Covering Salesman Problem, etc.
- For a set of n sets $S = \{S_1, \ldots, S_n\}$, each with particular set of locations (nodes) $S_i = \{s_1^i, \ldots, s_n^i\}$
- The problem is to determine the shortest tour visiting each set S_i , i.e., determining the order Σ of visits to S and a particular locations $s^i \in S_i$ for each $S_i \in S$

minimize
$$\Sigma$$

$$L = \left(\sum_{i=1}^{n-1} c(s^{\sigma_i}, s^{\sigma_{i+1}})\right) + c(s^{\sigma_n}, s^{\sigma_1})$$
subject to
$$\Sigma = (\sigma_1, \dots, \sigma_n), 1 \le \sigma_i \le n, \sigma_i \ne \sigma_j \text{ for } i \ne j$$

$$s^{\sigma_i} \in S_{\sigma_i}, S_{\sigma_i} = \{s_1^{\sigma_i}, \dots, s_{\sigma_n}^{\sigma_i}\}, S_{\sigma_i} \in S$$



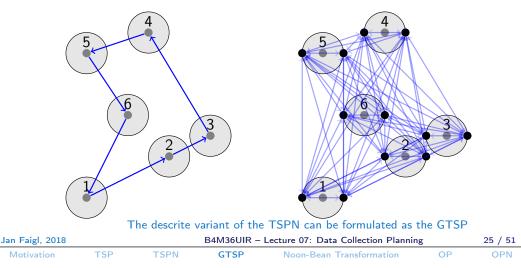
■ In addition to exact, e.g., ILP-based, solution, a heuristic algorithm GLNS is available (besides other heuristics)

Smith, S. L., Imeson, F. (2017), GLNS: An effective large neighborhood search heuristic for the Generalized Traveling Salesman Problem. Computers and Operations Research.

Implementation in Julia - https://ece.uwaterloo.ca/~sl2smith/GLNS

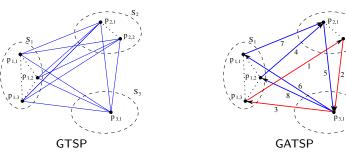
Sampling-based Solution of the TSPN

- For an unknown sequence of the visits to the regions, there are $\mathcal{O}(n^2k^2)$ possible edges
- Finding the shortest path is NP-hard, we need to determine the sequence of visits, which is the solution of the TSP



Transformation of the GTSP to the Asymmetric TSP

■ The Generalized TSP can be transformed into the Asymmetric TSP that can be then solved, e.g., by LKH or exactly using Concorde with further transformation of the problem to the TSP



■ A transformation of the GTSP to the ATSP has been proposed by Noon and Bean in 1993, and it is called as the Noon-Bean Transformation

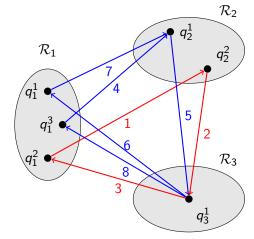
Noon, C.E., Bean, J.C. (1993), An efficient transformation of the generalized traveling salesman problem. INFOR: Information Systems and Operational Research.

Ben-Arieg, et al. (2003), Transformations of generalized ATSP into ATSP. Operations Research

Noon-Bean Transformation

Noon-Bean transformation to transfer GTSP to ATSP

- Modify weight of the edges (arcs) such that the optimal ATSP tour visits all vertices of the same cluster before moving to the next cluster
 - Adding a large a constant M to the weights of arcs connecting the clusters, e.g., a sum of the n heaviest edges
 - Ensure visiting all vertices of the cluster in prescribed order, i.e., creating zero-length cycles within each cluster
- The transformed ATSP can be further transformed to the TSP
 - For each vertex of the ATSP created 3 vertices in the TSP, i.e., it increases the size of the problem three times



Noon, C.E., Bean, J.C. (1993), An efficient transformation of the generalized traveling salesman problem. INFOR: Information Systems and Operational Research.

Jan Faigl, 2018 B4M36UIR - Lecture 07: Data Collection Planning

> TSP **TSPN** Noon-Bean Transformation

OPN

30 / 51

Motivation

TSP

Noon-Bean Transformation

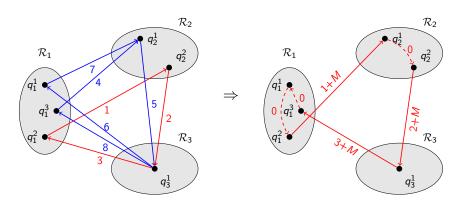
OPN

31 / 51

Example – Noon-Bean transformation (GATSP to ATSP)

- 1. Create a zero-length cycle in each set and set all other arcs to ∞ (or 2M) To ensure all vertices of the cluster are visited before leaving the cluster
- 2. For each edge (q_i^m, q_i^n) create an edge (q_i^m, q_i^{n+1}) with a value increased by sufficiently large M

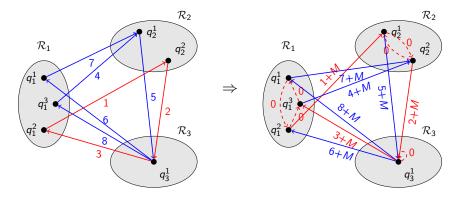
To ensure visit of all vertices in a cluster before the next cluster



Example – Noon-Bean transformation (GATSP to ATSP)

- 1. Create a zero-length cycle in each set and set all other arcs to ∞ (or 2M) To ensure all vertices of the cluster are visited before leaving the cluster
- 2. For each edge (q_i^m, q_i^n) create an edge (q_i^m, q_i^{n+1}) with a value increased by sufficiently large M

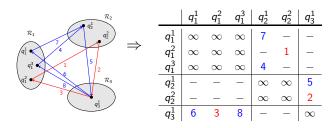
To ensure visit of all vertices in a cluster before the next cluster



Jan Faigl, 2018 B4M36UIR - Lecture 07: Data Collection Planning

Noon-Bean transformation – Matrix Notation

■ 1. Create a zero-length cycle in each set; and 2. for each edge (q_i^m, q_i^n) create an edge (q_i^m, q_i^{n+1}) with a value increased by sufficiently large M



 ∞ represents there are not edges inside the same set; and '-' denotes unused edge

Original GATSP

	q_1^1	q_1^2	q_1^3		q_2^2	q_3^1
q_1^1	∞	∞	∞	7	_	_
q_1^2	∞ ∞	∞	∞	_	1	_
q_1^3	∞	∞	∞	4	_	
q_2^1	_	_	_	∞	∞	5
q_2^2	_	_	_	∞	∞	2
q_3^1	6	3	8	-	_	∞

Transformed ATSP

	q_1^1	q_1^2	q_1^3	q_2^1	q_2^2	q_3^1
q_1^1	∞	0	∞	_	7+ <i>M</i>	_
$q_1^2 = q_1^3$	∞	∞	0	1+ <i>M</i>	-	_
q_{1}^{3}	0	∞	∞	_	4+M	_
q_2^1	_	_	_	∞	0	5+ <i>M</i>
q_2^2	_	_	_	0	∞	2+ <i>M</i>
q_3^1	8+ <i>M</i>	6+ <i>M</i>	3+ <i>M</i>	_	_	0

Motivation

Jan Faigl, 2018

Noon-Bean Transformation – Summary

- It transforms the GATSP into the ATSP which can be further
 - Solved by existing solvers, e.g., the Lin-Kernighan heuristic algorithm (LKH) http://www.akira.ruc.dk/~keld/research/LKH
 - the ATSP can be further transformed into the TSP and solve it optimaly, e.g., by the Concorde solver $_{\tt http://www.tsp.gatech.edu/concorde.html}$
- It runs in $\mathcal{O}(k^2n^2)$ time and uses $\mathcal{O}(k^2n^2)$ memory, where n is the number of sets (regions) each with up to k samples
- The transformed ATSP problem contains *kn* vertices

Noon, C.E., Bean, J.C. (1993), An efficient transformation of the generalized traveling salesman problem. INFOR: Information Systems and Operational Research.

Jan Faigl, 2018

B4M36UIR - Lecture 07: Data Collection Planning **TSPN** Noon-Bean Transformation

34 / 51 Jan Faigl, 2018 Motivation

Noon-Bean Transformation

B4M36UIR - Lecture 07: Data Collection Planning

36 / 51

Motivation TSP OPN

TSP

Travel budget $T_{max} = 50$,

Collected rewards R = 190

The Orienteering Problem (OP)

■ The problem is to collect as many rewards as possible within the given travel budget (T_{max}) , which is especially suitable for robotic vehicles

■ The starting and termination locations are prescribed and can be different

such as multi-rotor Unmanned Aerial Vehicles (UAVs)

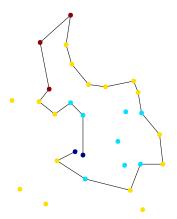
Travel budget $T_{max} = 75$,

Collected rewards R = 270

The solution may not be a closed tour as in the TSP

Orienteering Problem - Specification

- Let the given set of n sensors be located in \mathbb{R}^2 with the locations $S = \{s_1, \dots, s_n\}, s_i \in \mathbb{R}^2$
- **Each** sensor s_i has an associated score ζ_i characterizing the reward if data from s_i are collected
- The vehicle is operating in \mathbb{R}^2 , and the travel cost is the Euclidean distance
- Starting and final locations are prescribed
- We aim to determine a subset of k locations $S_k \subseteq S$ that maximizes the sum of the collected rewards while the travel cost to visit them is below T_{max}



The Orienteering Problem (OP) combines two NP-hard problems:

- Knapsack problem in determining the most valuable locations $S_k \subseteq S$
- Travel Salesman Problem (TSP) in determining the shortest tour

Orienteering Problem – Optimization Criterion

- Let $\Sigma = (\sigma_1, \dots, \sigma_k)$ be a permutation of k sensor labels, $1 \le \sigma_i \le$ *n* and $\sigma_i \neq \sigma_i$ for $i \neq j$
- lacksquare Σ defines a tour $T=(s_{\sigma_1},\ldots,s_{\sigma_k})$ visiting the selected sensors S_k
- Let the start and end points of the tour be $\sigma_1 = 1$ and $\sigma_k = n$
- The Orienteering problem (OP) is to determine the number of sensors k, the subset of sensors S_k , and their sequence Σ such that

maximize_{k,S_k,\Sigma}
$$R = \sum_{i=1}^{k} \zeta_{\sigma_i}$$

subject to $\sum_{i=2}^{k} |(s_{\sigma_{i-1}}, s_{\sigma_i})| \le T_{max}$ and $s_{\sigma_1} = s_1, s_{\sigma_k} = s_n.$ (4)

The OP combines the problem of determining the most valuable locations S_k with finding the shortest tour T visiting the locations S_k . It is NP-hard, since for $s_1 = s_n$ and particular S_k it becomes the TSP.

Existing Heuristic Approaches for the OP

■ The Orienteering Problem has been addressed by several approaches, e.g.,

RB 4-phase heuristic algorithm proposed in [3]

PLResults for the method proposed by Pillai in [2]

CGW Heuristic algorithm proposed in [1]

GLS Guided local search algorithm proposed in [4]

- [1] I.-M. Chao, B. L. Golden, and E. A. Wasil. A fast and effective heuristic for the orienteering problem. European Journal of Operational Research, 88(3):475-489, 1996.
- [2] R. S. Pillai. The traveling salesman subset-tour problem with one additional constraint Ph.D. thesis, The University of Tennessee, Knoxville, TN, 1992.
- [3] R. Ramesh and K. M. Brown. An efficient four-phase heuristic for the generalized orienteering problem. Computers & Operations Research, 18(2):151–165, 1991.
- [4] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. V. Oudheusden. A guided local search metaheuristic for the team orienteering problem. European Journal of Operational Research, 196(1):118–127, 2009.

Motivation TSP

Jan Faigl, 2018

39 / 51 B4M36UIR - Lecture 07: Data Collection Planning Noon-Bean Transformation

OPN

Jan Faigl, 2018

Motivation

TSP

Noon-Bean Transformation

B4M36UIR - Lecture 07: Data Collection Planning

40 / 51 OPN

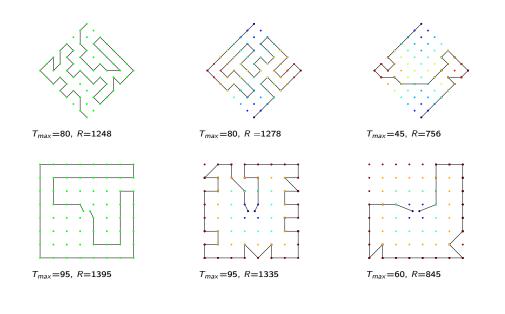
Unsupervised Learning for the OP 1/2

- A solution of the OP is similar to the solution of the PC-TSP and TSP
- We need to satisfy the limited travel budget T_{max} , which needs the final tour over the sensing locations
- During the unsupervised learning, the winners are associated with the particular sensing locations, which can be utilized to determine the tour as a solution of the OP represented by the network:

Learning epoch 55 Learning epoch 87 Final solution Learning epoch 7

■ This is utilized in the **conditional adaptation** of the network towards the sensing location and the adaptation is performed only if the tour represented by the network after the adaptation would satisfy T_{max}

OP Benchmarks - Example of Solutions

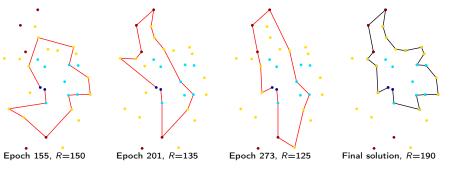


Unsupervised Learning for the OP 2/2

- The winner selection for $s' \in S$ is conditioned according to T_{max}
 - The network is adapted only if the tour T_{win} represented by the current winners would be shorter or equal than T_{max}

$$\mathcal{L}(T_{win}) - |(s_{
u_p}, s_{
u_n})| + |(s_{
u_p}, s')| + |(s', s_{
u_n})| \le T_{max}$$

■ The unsupervised learning performs a stochastic search steered by the rewards and the length of the tour to be below T_{max}



Comparison with Existing Algorithms for the OP

- Standard benchmark problems for the Orienteering Problem represent various scenarios with several values of T_{max}
- The results (rewards) found by different OP approaches presented as the average ratios (and standard deviations) to the best-known solution

Instances of the Tsiligirides problems

Problem Set	RB	PL	CGW	Unsupervised Learning
Set 1, $5 \le T_{max} \le 85$	0.99/0.01	1.00/0.01	1.00/0.01	1.00/0.01
Set 2, $15 \le T_{max} \le 45$	1.00/0.02	0.99/0.02	0.99/0.02	0.99/0.02
Set 3, $15 \le T_{max} \le 110$	1.00/0.00	1.00/0.00	1.00/0.00	1.00/0.00

Diamond-shaped (Set 64) and Square-shaped (Set 66) test problems

Prob	lem Set	RB [†]	PL	CGW	Unsupervised Learning
	54, $5 \le T_{max} \le 80$	0.97/0.02	1.00/0.01	0.99/0.01	0.97/0.03
	56, $15 \le T_{max} \le 130$	0.97/0.02	1.00/0.01	0.99/0.04	0.97/0.02

Required computational time is up to units of seconds, but for small problems tens or hundreds of milliseconds

Jan Faigl, 2018 B4M36UIR - Lecture 07: Data Collection Planning 43 / 51

OPN Motivation **TSPN**

Orienteering Problem with Neighborhoods

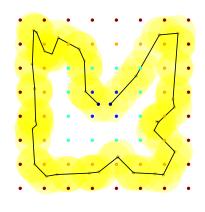
- Data collection using wireless data transfer allows to reliably retrieve data within some communication radius δ
 - \blacksquare Disk-shaped δ -neighborhood
- We need to determine the most suitable locations P_k such that

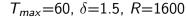
$$\begin{aligned} \textit{maximize}_{k,P_k,\Sigma} & R = \sum_{i=1}^k \zeta_{\sigma_i} \\ \textit{subject to} & \sum_{i=2}^k |(p_{\sigma_{i-1}},p_{\sigma_i})| \leq T_{\textit{max}}, \\ |(p_{\sigma_i},s_{\sigma_i})| \leq \delta, \quad p_{\sigma_i} \in \mathbb{R}^2, \\ p_{\sigma_1} = s_1, p_{\sigma_k} = s_n. \end{aligned}$$

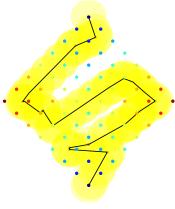
■ More rewards can be collected than for the OP formulation with the same travel budget T_{max}

Orienteering Problem with Neighborhoods

■ Similarly to the TSP with Neighborhoods and PC-TSPN we can formulate the Orienteering Problem with Neighborhoods.







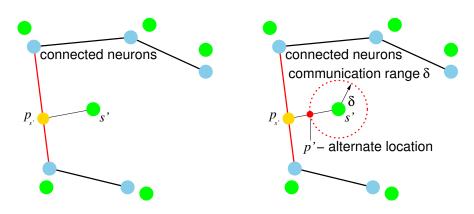
 T_{max} =45, δ =1.5, R=1344

Jan Faigl, 2018 B4M36UIR - Lecture 07: Data Collection Planning

Motivation **TSP**

Generalization of the Unsupervised Learning to the Orienteering Problem with Neighborhoods

■ The same idea of the alternate location as in the TSPN



■ The location p' for retrieving data from s' is determined as the alternate goal location during the conditioned winner selection

45 / 51

OPN

Influence of the δ -Sensing Distance

Influence of increasing communication range to the sum of the collected rewards

Problem	Solution R_{best}	of the OP R_{SOM}	Tsiligirides Set 3, T _{max} =50 Diamond-shaped Set 64, T _{max} =45
Set 3, T_{max} =50 Set 64, T_{max} =45 Set 66, T_{max} =60	520 860 915		- 트립티
 Allowing to dathe communication significantly in lected rewards, budget under 1 	ation rango ncreases t while kee	g within δ may the col-	0.0 0.2 0.5 0.7 1.0 1.2 1.5 1.7 2.0

48 / 51 Jan Faigl, 2018 B4M36UIR - Lecture 07: Data Collection Planning

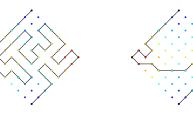
Communication range - δ

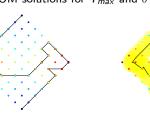
Topics Discussed

Summary of the Lecture

OP with Neighborhoods (OPN) – Example of Solutions

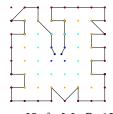
■ Diamond-shaped problem Set 64 – SOM solutions for T_{max} and δ

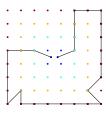




 T_{max} =80, δ =0.0, R=1278 T_{max} =45, δ =0.0, R=756 T_{max} =45, δ =1.5, R=1344

■ Square-shaped problem Set 66 – SOM solutions for T_{max} and δ





 T_{max} =60, δ =0.0, R=845 T_{max} =60, δ =1.5, R=1600

In addition to unsupervised learning, Variable Neighborhood Search (VNS) for the OP has been generalized to the OPN

Jan Faigl, 2018

B4M36UIR - Lecture 07: Data Collection Planning

49 / 51

Topics Discussed

Topics Discussed

- Data Collection Planning motivational problem and solution
 - Prize-Collecting Traveling Salesman Problem with Neighborhoods (PC-TSPN)
- Traveling Salesman Problem (TSP)
 - Approximation and heuristic approaches
- Traveling Salesman Problem with Neighborhoods (TSPN)
 - Sampling-based and decoupled approaches
 - Unsupervised learning
- Generalized Traveling Salesman Problem (GTSP)
 - Heuristic and transformation (GTSP→ATSP) approaches
- Orienteering problem (OP)
 - Heuristic and unsupervised learning based approaches
- Orienteering problem with Neighborhoods (OPN)
 - Unsupervised learning based approach
- Next: Data-collection planning with curvature-constrained vehicles