
B4M36UIR - Lecture 06: Multi-Goal Planning

8 / 63

B4M36UIR - Lecture 06: Multi-Goal Planning

Selected Sampling-based Motion Plan

Regionally Accelerated BIT* (RABIT*) - Demo

ematics at the Limits of Computation

B4M36UIR - Lecture 06: Multi-Goal Planning

Selected Sampling-based Motion Planner

Overview of Improved Algorithm

Optimal path/motion planning is an active research field

Approaches	Constraints	Planning Mode	Kinematic Model	Sampling Strategy	Metric
l. RRT* [7]	Holonomic	Offline	Point	Uniform	Euclidean
 Anytime RRT* [4] 	Non-holonomic	Online	Dubin Car	Uniform	Euclidean + Velocity
 B-RRT* [58] 	Holonomic	Offline	Rigid Body	Local bias	Goal biased
4. RRT*FN [33]	Holonomic	Offline	Robotic Arm	Uniform	Cumulative Euclidean
5. RRT*-Smart [35]	Holonomic	Offline	Point	Intelligent	Euclidean
5. Optimal B-RRT* [36	5]Holonomic	Offline	Point	Uniform	Euclidean
^{7.} RRT# [50]	Holonomic	Offline	Point	Uniform	Euclidean
Adapted RRT* [64], [49]	Non-holonomic	Offline	Car-like and UAV	Uniform	A* Heuristic
SRRT* [44]	Non-holonomic	Offline	UAV	Uniform	Geometric + dynamic constrain
 Informed RRT* [34] 	Holonomic	Offline	Point	Direct Sampling	Euclidean
11. IB-RRT* [37]	Holonomic	Offline	Point	Intelligent	Greedy + Euclidean
12. DT-RRT [39]	Non-holonomic	Offline	Car-like	Hybrid	Angular + Euclidean
^{13.} RRT*i [3]	Non-holonomic	Online	UAV	Local Sampling	A* Heuristic
14. RTR+CS* [43]	Non-holonomic	Offline	Car-like	Uniform + Local Planning	Angular + Euclidean
 Mitsubishi RRT* [2] 	Non-holonomic	Online	Autonomous Car	Two-stage sampling	Weighted Euclidean
16. CARRT* [65]	Non-holonomic	Online	Humanoid	Uniform	MW Energy Cost
17. PRRT* [48]	Non-holonomic	Offline	P3-DX	Uniform	Euclidean

Noreen, I., Khan, A., Habib, Z. (2016): Optimal path planning using RRT* based approaches: a survey and future directions. IJACSA.

on Gathering Exploration Inspection

Locations where a robotic arm or mobile robot performs some task

Multiple IK

Partial order Always after 1 2 31 1 3

lem: A Survey. Journal of Intelligent & Robotic Systems

Alatartsev, S., Stellmacher, S., Ortmeier, F. (2015): Robotic Task Sequencing Prot

B4M36UIR - Lecture 06: Multi-Goal Planning

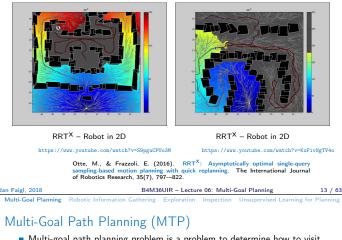
to visit them and return to a starting location.

text of robotic manipulators

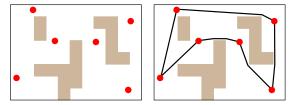
Robotic Task

Sequencing Problem

B4M36UIR - Lecture 06: Multi-Goal Planning


Obstacle avoidance

Task specification


ected Sampling-based Motion Plar

Motion Planning for Dynamic Environments – RRT^x

Refinement and repair of the search graph during the navigation (quick rewiring of the shortest path)

- Multi-goal path planning problem is a problem to determine how to visit the given set of locations
- It consists of point-to-point planning problems how to reach one location from another
- The main "added" challenge to the path planning is a determination of the optimal sequence of the visits to the locations (with respect to the cost-efficient solution to visit all the given locations)

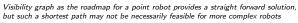
Determining the sequence of visits is a combinatorial optimization problem that can be formulated as the Traveling Salesman Problem

B4M36UIR - Lecture 06: Multi-Goal Planning

William J. Cook (2012) - In Pursuit of the Traveling Salesman: Math-

Jan Faigl, 2018

Existing Approaches to the TSP


- Efficient heuristics from the Operational Research have been proposed
- LKH K. Helsgaun efficient implementation of the Lin-Kernighan heuristic (1998) http://www.akira.ruc.dk/~keld/research/LKH/
- Concorde Solver with several heuristics and also optimal solver http://www.math.uwaterloo.ca/tsp/concorde.html

Beside the heuristic and approximations algorithms (such as Christofides 3/2-approximation algorithm), other ("soft-computing") approaches have been proposed, e.g., based on genetic algorithms, and memetic approaches, ant colony optimization (ACO), and neural networks.

Multi-Goal Path Planning (MTP) Problem

Given a map of the environment \mathcal{W} , mobile robot \mathcal{R} , and a set of locations, what is the shortest possible collision free path that visits each location exactly once and returns to the origin location.

- MTP problem is a robotic variant of the TSP with the edge costs as the length of the shortest path connecting the locations
- For *n* locations, we need to compute up to n^2 shortest paths (solve n^2 motion planning problems)
- The paths can be found as the shortest path in a graph (roadmap), from which the G(V, E)for the TSP can be constructed

18 / 63 Jan Faigl, 2018

B4M36UIR - Lecture 06: Multi-Goal Planning

Problem Berlin52 from the

TSPLIB

19 / 63 Jan Faigl, 2018

12 / 63

an Eaigl, 2018

Multi-Goal Planning Robotic Inform

16 / 63

Robot base layout

Objective

Multi-Goal Motion Planning

- In the previous cases, we consider existing roadmap or relatively "simple" collision free (shortest) paths in the polygonal domain
- Below However, determination of the collision-free path in high dimensional configuration space (C-space) can be a challenging problem itself
- Therefore, we can generalize the MTP to multi-goal motion planning (MGMP) considering motion planners using the notion of Cspace for avoiding collisions.
- An example of MGMP can be

Plan a cost efficient trajectory for hexapod walking robot to visit a set of target locations.

Problem Statement – MGMP Problem

- The working environment $\mathcal{W} \subset \mathbb{R}^3$ is represented as a set of obstacles $\mathcal{O} \subset \mathcal{W}$ and the robot configuration space \mathcal{C} describes all possible configurations of the robot in $\mathcal W$
- For $q \in C$, the robot body $\mathcal{A}(q)$ at q is collision free if $\mathcal{A}(q) \cap \mathcal{O} = \emptyset$ and all collision free configurations are denoted as C_{free}
- Set of *n* goal locations is $\mathcal{G} = (g_1, \ldots, g_n), g_i \in \mathcal{C}_{free}$

Robotic Information Gathering Exploration

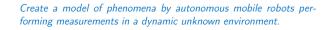
Challenges in Robotic Information Gathering

- Collision free path from q_{start} to q_{goal} is $\kappa : [0,1] \rightarrow C_{free}$ with $\kappa(0) = q_{start}$ and $d(\kappa(1), q_{end}) < \epsilon$, for an admissible distance ϵ
- Multi-goal path τ is admissible if $\tau : [0,1] \to C_{free}, \tau(0) = \tau(1)$ and there are *n* points such that $0 \leq t_1 \leq t_2 \leq \ldots \leq t_n$, $d(\tau(t_i), v_i) < \epsilon$, and $\bigcup_{1 \le i \le n} v_i = \mathcal{G}$
- The problem is to find the path τ^* for a cost function c such that $c(\tau^*) = \min\{c(\tau) \mid \tau \text{ is admissible multi-goal path}\}$

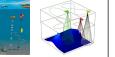
MGMP – Existing Approches

- Determination of all paths connecting any two locations $g_i, g_i \in \mathcal{G}$ is usually very computationally demanding
- Several approaches can be found in literature, e.g.,
 - Considering Euclidean distance as an approximation in the solution of the TSP as the Minimum Spanning Tree (MST) - Edges in the MST are iteratively refined using optimal motion planner until all edges represent a feasible solution Saha, M., Roughgarden, T., Latombe, J.-C., Sánchez-Ante, G. (2006): Planning Tours of Robotic Arms among Partitioned Goals. IJRR
 - Synergistic Combination of Layers of Planning (SyCLoP) A combination of route and trajectory planning

Plaku, E., Kavraki, L.E., Vardi, M.Y. (2010): Motion Planning With Dynamics by a Synergistic Combination of Layers of Planning, T-RO. Steering RRG roadmap expansion by unsupervised learning for the TSP

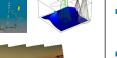


Robotic Information Gathering Exploration Inspe


B4M36UIR - Lecture 06: Multi-Goal Planning 23 / 63

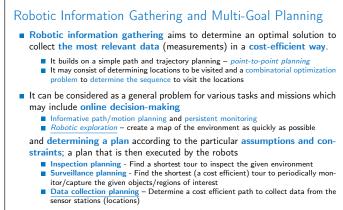
Multi-Goal Planning Robotic Information Gathering Explore Robotic Information Gathering

Jan Faigl, 2018



B4M36UIR - Lecture 06: Multi-Goal Planning

21 / 63


an Faigl, 2018

- Where to take new measurements?
 - To improve the phenomena model
 - What locations visit first? On-line decision-making
 - How to efficiently utilize more robots?

To divide the task between the robots

How to navigate robots to the selected locations?

Improve Localization vs Model

In both cases, multi-goal path planning allows solving (or improving the performance) of the particular missions

Exploration

B4M36UIR - Lecture 06: Multi-Goal Planning

B4M36UIR - Lecture 06: Multi-Goal Planning 25 / 63 an Faigl, 2018 B4M36UIR - Lecture 06: Multi-Goal Planning lan Faigl, 2018 26 / 63 Robotic Information Gathering Explor Robotic Information Gathering

Informative Motion Planning

Robotic information gathering can be considered as the informative motion planning problem to a determine trajectory \mathcal{P}^* such that

 $\mathcal{P}^* = \operatorname{argmax}_{\mathcal{P} \subseteq \mathcal{W}} I(\mathcal{P})$, such that $c(\mathcal{P}) \leq B$, where

- Ψ is the space of all possible robot trajectories,
- I(\mathcal{P}) is the information gathered along the trajectory \mathcal{P}
- $c(\mathcal{P})$ is the cost of \mathcal{P} and B is the allowed budget
- Searching the space of all possible trajectories is complex and demanding problem
- A discretized problem can be solved by combinatorial optimization techniques Usually scale poorly with the size of the problem
- A trajectory is from a continuous domain
- Sampling-based motion planning techniques can be employed for finding maximally informative trajectories Hollinger, G., Sukhatme, G. (2014): Sampling-based robotic information gathering algorithms. IJRR

B4M36UIR - Lecture 06: Multi-Goal Planning

Persistent Monitoring of Spatiotemporal Phenomena


- Persistent environment monitoring is an example of the robotic information gathering mission
- It stands to determine suitable locations to collect data about the studied phenomenon
- Determine cost efficent path to visit the locations, e.g., considering limited travel budget Orienteering Problen
- Collect data and update the phenomenon model
- Search for the next locations and path to further improve model
- Robotic information gathering combines several challenges Determining locations to be visited regarding the particular mission objective Optimal sampling design
 - Finding optimal paths/trajectories

Trajectory planning - Path/motion planning Determining the optimal sequence of visits to the locations

Multi-goal path/motion planning

- Moreover, solutions have to respect particular constraints Kinematic and kinodynamic constraints of the vehicle, collision-free paths, lim ited travel budget
 - In general, the problem is very challenging, and therefore, we consider the most imporant and relevant constraints, i.e., we address the problem under particular assumptions.

Learning

adaptivity

Robotic Information

Gathering

Sensing Planning

uncertainty

uncertaint

22 / 63

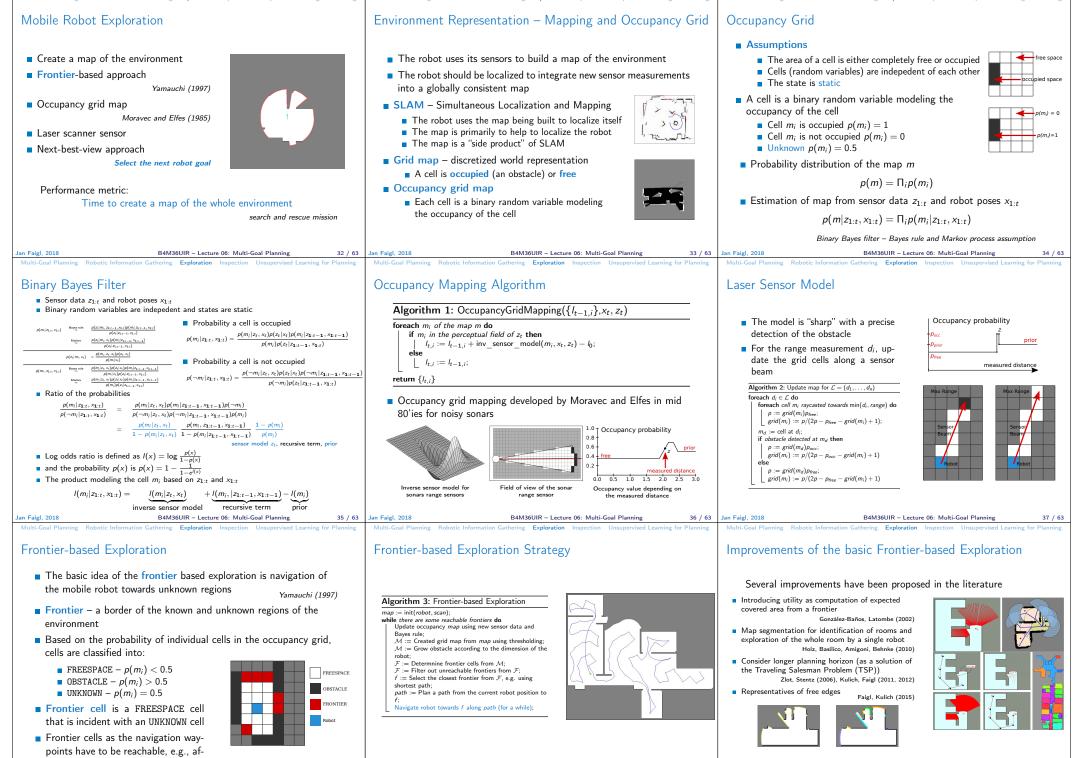
an Faigl, 201

Robotic exploration is a fundamental problem of robotic information gathering

Robotic Exploration of Unknown Environment

- The problem is: How to efficiently utilize a group of mobile robots to autonomously create a map of an unknown environment
- Performance indicators vs constraints Time, energy, map quality vs robots, communicatio
- Performance in a real mission depends on the on-line decision-making
- It includes challlenges such a Map building and localization
 - Determination of the navigational waypoints
- Where to go nex
- Path planning and navigation to the waypoints
 - Coordination of the actions (multi-robot team)

Courtesy of M. Kulich

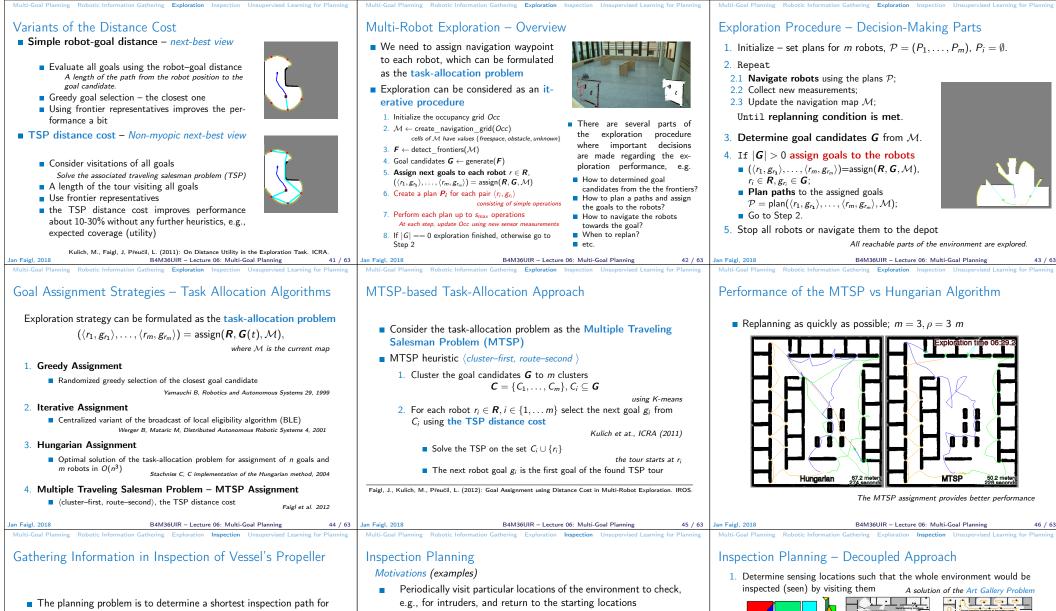

Jan Faigl, 2018

Jan Faigl, 2018

B4M36UIR - Lecture 06: Multi-Goal Planning 29 / 63

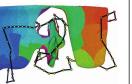
Use grid-based path planning

B4M36UIR – Lecture 06: Multi-Goal Planning 38 / 63 Jan Faigl, 2018

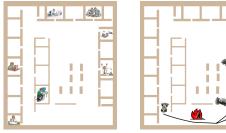

B4M36UIR – Lecture 06: Multi-Goal Planning

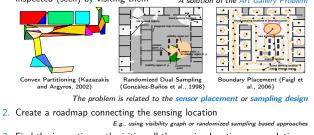
39 / 63 Jan Faigl, 2018

40 / 63


Jan Faigl, 2018

ter obstacle growing


Autonomous Underwater Vehicle (AUV) to inspect a propeller of the vessel.



https://www.youtube.com/watch?v=8azP Englot, B., Hover, F.S. (2013): Three-dimensional coverage planning for an ot. Robotics and Autonomous Systems

Based on available plans, provide a guideline how to search a building to find possible victims as quickly as possible (search and rescue scenario)

3. Find the inspection path visiting all the sensing locations as a solution of the multi-goal path planning (a solution of the robotic TSP)

Inspection planning can also be called as coverage path planning in

the literature Galceran, E., Carreras, M. (2013): A survey on coverage path planning for robotics. Robotics and Autonomous Systems. B4M36UIR - Lecture 06: Multi-Goal Planning

Jan Faigl, 201

B4M36UIR - Lecture 06: Multi-Goal Planning

48 / 63 Jan Faigl, 2018

B4M36UIR - Lecture 06: Multi-Goal Planning

49 / 63 Jan Faigl, 2018

- Determine a cost-efficient path from which a given set of target regions is covered
- For each target region a subspace $S \subset \mathbb{R}^3$ from which the target can be covered is determined S represents the neighbourhood
- We search for the best sequence of visits to the regions

Combinatorial optimization The PRM is utilized to construct the planning roadmap (a graph)

51 / 63

an Faigl, 2018

The problem is formulated as the Traveling Salesman Problem with Neighborhoods, as it is not necessary to visit exactly a single location to capture the area of interest

Inspection Planning - "Continuous Sensing"

If we do not prescribe a discrete set of sensing locations, we can formulate the problem as the Watchman route problem

Given a map of the environment \mathcal{W} determine the shortest, closed, and collision-free path, from which the whole environment is covered by an omnidirectional sensor with the radius ρ

SOM for the TSP in the Watchman Route Problem

Convex cover set of $\mathcal W$ created on top of a triangular mesh

adapt the network towards uncovered parts of W

walking in a triangular mesh technique

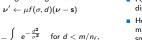
During the unsupervised learning, we can compute coverage of W

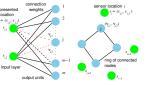
from the current ring (solution represented by the neurons) and

Incident convex polygons with a straight line segment are found by

Contraction of the second

B4M36UIR – Lecture 06: Multi-Goal Planning


Unsupervised Learning based Solution of the TSP


Kohonen's type of unsupervised two-layered neural network (Self-Organizing Map)

- Neurons' weights represent nodes $\mathcal{N} = \{\boldsymbol{\nu}_1, \dots, \boldsymbol{\nu}_m\}$ in a plane
- Nodes are organized into a ring
- Sensing locations $S = \{s_1, \dots, s_n\}$ are presented to the network in a random order
- Nodes compete to be winner according to their distance to the presented goal s

 $\nu^* = \operatorname{argmin}_{\nu \in \mathcal{N}} |\mathcal{D}(\{\nu, \mathbf{s})|$

The winner and its neighbouring nodes are adapted (moved) towards the city according to the neighbouring function

- Best matching unit v to the presented prototype s is determined according to the distance function $|\mathcal{D}(\nu, s)|$
- For the Euclidean TSP, *D* is the Euclidean distance
- However, for problems with obstacles, the multi-goal path planning, \mathcal{D} should correspond to the length of the shortest, collision free path

Unsupervised Learning for Planning


Fort, J.C. (1988), Angéniol, B. et al. (1988), Somhom, S. et al. (1997), etc B4M36UIR - Lecture 06: Multi-Goal Planning

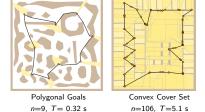
B4M36UIR - Lecture 06: Multi-Goal Planning Unsupervised Learning for Planning

Unsupervised Learning for the Multi-Goal Path Planning

Unsupervised learning procedure

Jan Faigl, 2018

Traveling Salesman Problem with Neighborhoods

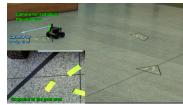

Given a set of n regions (neighbourhoods), what is the shortest closed path that visits each region.

The problem is NP-hard and APX-hard, it cannot be approximated to within factor $2 - \epsilon$, where $\epsilon > 0$

Safra and Schwartz (2006) - Computational Complexity

- Approximate algorithms exist for particular problem variants E.g., Disjoint unit disk neighborhoods
- Flexibility of the unsupervised learning for the TSP allows generalizing the unsupervised learning procedure to address the TSPN
- TSPN provides a suitable problem formulation for planning various inspection and data collection missions

SOM-based Solution of the Traveling Salesman Problem with Neighborhoods (TSPN)


Non-Convex Goals

n=5, T=0.1 s

Faigl, J. et al. (2013): Visiting Convex Regions in a Polygonal Map. Robotics and

Multi-Goal Path Planning with Goal Regions

It may be sufficient to visit a goal region instead of the particular point location E.g., to take a sample measurement at each goal

Not only a sequence of goals visit has to be determined, but also an appropriate sensing location for each goal need to be found

B4M36UIR - Lecture 06: Multi-Goal Planning

The problem with goal regions can be considered as a variant of the Traveling Salesman Problem with Neighborhoods (TSPN)

56 / 63

an Eaigl, 2018

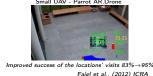
52 / 63

vised Learning for Planning

n Faigl, 2018

B4M36UIR - Lecture 06: Multi-Goal Plannie

Example – TSPN for Planning with Localization Uncertainty


- Selection of waypoints from the neighborhood of each location
- P3AT ground mobile robot in an outdoor environment

Real overall error at the goals decreased from 0.89 m \rightarrow 0.58 m (about 35%) Decrease localization error at the target locations (indoor)

Error decreased from 16.6 cm \rightarrow 12.8 cm

B4M36UIR – Lecture 06: Multi-Goal Planning

58 / 63

B4M36UIR - Lecture 06: Multi-Goal Planning

59 / 63 an Faigl, 201 B4M36UIR - Lecture 06: Multi-Goal Planning

Topics Discussed		Topics Discussed	Topics Discussed	
Topics Discussed	Summary of the Lecture	 Summary Improved randomized sampling-based methods Informed sampling – Informed RRT* Improving by batches of samples and reusing previous searches using Lifelong Planning A* (LPA*) Improving local search strategy to improve convergence speed Planning in dynamic environments Multi-goal planning and robotic information gathering Multi-goal planning (MTP) and multi-goal motion planning (MGMP) problems are robotic variants of the TSP Existing TSP solvers can be used, by further challenges of robotic systems have to be addressed TSP-like solutions can improve performance in the online decision-making by considering longer planning horizon (non-myopic approaches), e.g., in robotic exploration Inspection planning can be formulated as a robotic variant of the TSP TSP with Neighborhoods (TSPN) is a benefitial problem formulation to save unnecessary travel cost Unsupervised learning can be used as heuristic for various multi-goal path planning roblems (TSP and TSPN like) 	 Topics Discussed Improved sampling-based motion planners Multi-goal planning and robotic information gathering missions Multi-goal path planning (MTP) and multi-goal motion planning (MGMP) Traveling Salesman Problem (TSP) Robotic information gathering – informative path planning, Robotic exploration and multi-goal path planning Inspection planning Unsupervised learning for multi-goal path planning Traveling Salesman Problem with Neighborhoods (TSPN) Next: Data collection planning 	
Jan Faigl, 2018	B4M36UIR – Lecture 06: Multi-Goal Planning	51 / 63 Jan Faigl, 2018 B4M36UIR – Lecture 06: Multi-Goal Planning 62 /	63 Jan Faigl, 2018 B4M36UIR – Lecture 06: Multi-Goal Planning 63 / 63	