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Selected Sampling-based Motion Planners

Part I

Part 1 – Improved Sampling-based Motion
Planning
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Selected Sampling-based Motion Planners

Improved Sampling-based Motion Planners

Although asymptotically optimal sampling-based motion planners
such as RRT* or RRG may provide high-quality or even optimal
solutions of the complex problem, their performance in simple, e.g.,
2D scenarios, is relatively poor

In a comparison to the ordinary approaches (e.g., visibility graph)

They are computationally demanding and performance can be im-
proved similarly as for the RRT, e.g.,

Goal biasing, supporting sampling in narrow passages, multi-tree
growing (Bidirectional RRT)

The general idea of improvements is based on informing the sam-
pling process
Many modifications of the algorithms exists, selected representative
modifications are

Informed RRT*
Batch Informed Trees (BIT*)
Regionally Accelerated BIT* (RABIT*)
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Informed RRT∗

Focused RRT* search to increase the
convergence rate
Use Euclidean distance as an admissible
heuristic
Ellipsoidal informed subset – the current
best solution cbest

Xf̂ = {x ∈ X |||xstart − x||2 + ||x− xgoal ||2 ≤ cbest}

Directly Based on the RRT*

Having a feasible solution

Sampling inside the ellipse

Gammell, J. B., Srinivasa, S. S., Barfoot, T. D. (2014): Informed RRT*: Opti-
mal Sampling-based Path Planning Focused via Direct Sampling of an Admissible
Ellipsoidal Heuristic. IROS.
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Informed RRT* – Demo

https://www.youtube.com/watch?v=d7dX5MvDYTc

Gammell, J. B., Srinivasa, S. S., Barfoot, T. D. (2014): Informed RRT*: Opti-
mal Sampling-based Path Planning Focused via Direct Sampling of an Admissible
Ellipsoidal Heuristic. IROS.
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Batch Informed Trees (BIT*)
Combining RGG (Random Geometric Graph) with the heuristic in
incremental graph search technique, e.g., Lifelong Planning A* (LPA*)

The properties of the RGG are used in the RRG and RRT*
Batches of samples – a new batch starts with denser implicit RGG
The search tree is updated using LPA* like incremental search to reuse
existing information

Gammell, J. B., Srinivasa, S. S., Barfoot, T. D. (2015): Batch Informed Trees (BIT*):
Sampling-based optimal planning via the heuristically guided search of implicit ran-
dom geometric graphs. ICRA.
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Batch Informed Trees (BIT*) – Demo

https://www.youtube.com/watch?v=TQIoCC48gp4

Gammell, J. B., Srinivasa, S. S., Barfoot, T. D. (2015): Batch Informed Trees (BIT*):
Sampling-based optimal planning via the heuristically guided search of implicit ran-
dom geometric graphs. ICRA.
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Regionally Accelerated BIT* (RABIT*)

Use local optimizer with the BIT* to improve the convergence speed
Local search Covariant Hamiltonian Optimization for Motion Planning
(CHOMP) is utilized to connect edges in the search graphs using local
information about the obstacles

Choudhury, S., Gammell, J. D., Barfoot, T. D., Srinivasa, S. S., Scherer, S. (2016):
Regionally Accelerated Batch Informed Trees (RABIT*): A Framework to Integrate
Local Information into Optimal Path Planning. ICRA.
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Regionally Accelerated BIT* (RABIT*) – Demo

https://www.youtube.com/watch?v=mgq-DW36jSo

Choudhury, S., Gammell, J. D., Barfoot, T. D., Srinivasa, S. S., Scherer, S. (2016):
Regionally Accelerated Batch Informed Trees (RABIT*): A Framework to Integrate
Local Information into Optimal Path Planning. ICRA.
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Overview of Improved Algorithm
Optimal path/motion planning is an active research field

Noreen, I., Khan, A., Habib, Z. (2016): Optimal path planning using RRT* based
approaches: a survey and future directions. IJACSA.
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Motion Planning for Dynamic Environments – RRTx

Refinement and repair of the search graph during the navigation (quick
rewiring of the shortest path)

RRTX – Robot in 2D

https://www.youtube.com/watch?v=S9pguCPUo3M

RRTX – Robot in 2D

https://www.youtube.com/watch?v=KxFivNgTV4o

Otte, M., & Frazzoli, E. (2016). RRTX: Asymptotically optimal single-query
sampling-based motion planning with quick replanning. The International Journal
of Robotics Research, 35(7), 797-–822.
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Part II

Part 2 – Multi-Goal Planning and Robotic
Information Gathering
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Multi-Goal Planning
Having a set of locations to be visited, determine the cost-efficient path
to visit them and return to a starting location.

Locations where a robotic arm or mobile robot performs some task
The problem is called robotic task sequencing problem within the con-
text of robotic manipulators

Alatartsev, S., Stellmacher, S., Ortmeier, F. (2015): Robotic Task Sequencing Prob-
lem: A Survey. Journal of Intelligent & Robotic Systems.

It is also called Multi-Goal Path Planning (MTP) problem
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Multi-Goal Path Planning (MTP)
Multi-goal path planning problem is a problem to determine how to visit
the given set of locations
It consists of point-to-point planning problems how to reach one location
from another
The main “added” challenge to the path planning is a determination of
the optimal sequence of the visits to the locations (with respect to the
cost-efficient solution to visit all the given locations)

Determining the sequence of visits is a combinatorial optimization
problem that can be formulated as the Traveling Salesman Problem
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Traveling Salesman Problem (TSP)
Given a set of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city exactly once
and returns to the origin city.

The TSP can be formulated for a graph G (V ,E ), where V denotes
a set of locations (cities) and E represents edges connecting two
cities with the associated travel cost c (distance), i.e., for each
vi , vj ∈ V there is an edge eij ∈ E , eij = (vi , vj) with the cost cij .

If the associated cost of the edge (vi , vj) is the Euclidean distance
cij = |(vi , vj)|, the problem is called the Euclidean TSP (ETSP).

In our case, v ∈ V represents a point in R2 and solution of the ETSP
is a path in the plane.

It is known, the TSP is NP-hard (its decision variant) and several
algorithms can be found in literature.

William J. Cook (2012) – In Pursuit of the Traveling Salesman: Math-
ematics at the Limits of Computation
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Existing Approaches to the TSP

Efficient heuristics from the Operational
Research have been proposed
LKH – K. Helsgaun efficient implementa-
tion of the Lin-Kernighan heuristic (1998)

http://www.akira.ruc.dk/~keld/research/LKH/

Concorde – Solver with several heuristics
and also optimal solver
http://www.math.uwaterloo.ca/tsp/concorde.html

Problem Berlin52 from the
TSPLIB

Beside the heuristic and approximations algorithms (such as Christofides
3/2-approximation algorithm), other („soft-computing”) approaches have
been proposed, e.g., based on genetic algorithms, and memetic approaches,
ant colony optimization (ACO), and neural networks.
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Multi-Goal Path Planning (MTP) Problem

Given a map of the environment W, mobile robot R, and a set
of locations, what is the shortest possible collision free path that
visits each location exactly once and returns to the origin location.

MTP problem is a robotic variant of the
TSP with the edge costs as the length of the
shortest path connecting the locations
For n locations, we need to compute up to n2

shortest paths (solve n2 motion planning prob-
lems)
The paths can be found as the shortest path in
a graph (roadmap), from which the G (V ,E )
for the TSP can be constructed
Visibility graph as the roadmap for a point robot provides a straight forward solution,
but such a shortest path may not be necessarily feasible for more complex robots
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Multi-Goal Motion Planning

In the previous cases, we consider existing roadmap or relatively
“simple” collision free (shortest) paths in the polygonal domain
However, determination of the collision-free path in high dimen-
sional configuration space (C-space) can be a challenging problem
itself
Therefore, we can generalize the MTP to multi-goal motion plan-
ning (MGMP) considering motion planners using the notion of C-
space for avoiding collisions.

An example of MGMP can be

Plan a cost efficient trajectory for
hexapod walking robot to visit a
set of target locations.
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Problem Statement – MGMP Problem

The working environment W ⊂ R3 is represented as a set of ob-
stacles O ⊂ W and the robot configuration space C describes all
possible configurations of the robot in W
For q ∈ C, the robot body A(q) at q is collision free if A(q)∩O = ∅
and all collision free configurations are denoted as Cfree
Set of n goal locations is G = (g1, . . . , gn), gi ∈ Cfree
Collision free path from qstart to qgoal is κ : [0, 1] → Cfree with
κ(0) = qstart and d(κ(1), qend) < ε, for an admissible distance ε
Multi–goal path τ is admissible if τ : [0, 1] → Cfree , τ(0) = τ(1)
and there are n points such that 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn,
d(τ(ti ), vi ) < ε, and

⋃
1<i≤n vi = G

The problem is to find the path τ∗ for a cost function c such
that c(τ∗) = min{c(τ) | τ is admissible multi–goal path}
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MGMP – Existing Approches
Determination of all paths connecting any two locations gi , gj ∈ G is
usually very computationally demanding
Several approaches can be found in literature, e.g.,

Considering Euclidean distance as an approximation in the solution of the TSP as
the Minimum Spanning Tree (MST) – Edges in the MST are iteratively refined
using optimal motion planner until all edges represent a feasible solution

Saha, M., Roughgarden, T., Latombe, J.-C., Sánchez-Ante, G. (2006): Planning
Tours of Robotic Arms among Partitioned Goals. IJRR.

Synergistic Combination of Layers of Planning (SyCLoP) – A combination
of route and trajectory planning

Plaku, E., Kavraki, L.E., Vardi, M.Y. (2010): Motion Planning With Dynamics by a
Synergistic Combination of Layers of Planning. T-RO.

Steering RRG roadmap expansion by unsupervised learning for the TSP

Faigl (2016), WSOM
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Robotic Information Gathering

Create a model of phenomena by autonomous mobile robots per-
forming measurements in a dynamic unknown environment.
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Challenges in Robotic Information Gathering

Where to take new measurements?
To improve the phenomena model

What locations visit first?
On–line decision–making

How to efficiently utilize more
robots?

To divide the task between the robots

How to navigate robots to the se-
lected locations?

Improve Localization vs Model

uncertainty
Planning

adaptivity

uncertainty
Sensing

Learning

Robotic Information
Gathering
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Robotic Information Gathering and Multi-Goal Planning
Robotic information gathering aims to determine an optimal solution to
collect the most relevant data (measurements) in a cost-efficient way.

It builds on a simple path and trajectory planning – point-to-point planning
It may consist of determining locations to be visited and a combinatorial optimization
problem to determine the sequence to visit the locations

It can be considered as a general problem for various tasks and missions which
may include online decision-making

Informative path/motion planning and persistent monitoring
Robotic exploration – create a map of the environment as quickly as possible

and determining a plan according to the particular assumptions and con-
straints; a plan that is then executed by the robots

Inspection planning - Find a shortest tour to inspect the given environment
Surveillance planning - Find the shortest (a cost efficient) tour to periodically mon-
itor/capture the given objects/regions of interest
Data collection planning – Determine a cost efficient path to collect data from the
sensor stations (locations)

In both cases, multi-goal path planning allows solving (or improving the
performance) of the particular missions
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Informative Motion Planning
Robotic information gathering can be considered as the informative mo-
tion planning problem to a determine trajectory P∗ such that

P∗ = argmaxP∈Ψ I (P), such that c(P) ≤ B, where

Ψ is the space of all possible robot trajectories,
I (P) is the information gathered along the trajectory P
c(P) is the cost of P and B is the allowed budget

Searching the space of all possible trajectories
is complex and demanding problem

A discretized problem can be solved by
combinatorial optimization techniques

Usually scale poorly with the size of the problem

A trajectory is from a continuous domain

Sampling-based motion planning techniques can be employed
for finding maximally informative trajectories
Hollinger, G., Sukhatme, G. (2014): Sampling-based robotic information gathering algorithms. IJRR.
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Persistent Monitoring of Spatiotemporal Phenomena
Persistent environment monitoring is an exam-
ple of the robotic information gathering mission

It stands to determine suitable locations to col-
lect data about the studied phenomenon

Determine cost efficent path to visit the loca-
tions, e.g., considering limited travel budget

Orienteering Problem

Collect data and update the phenomenon model

Search for the next locations and path to further
improve model
Robotic information gathering combines several challenges

Determining locations to be visited regarding the particular mission objective
Optimal sampling design

Finding optimal paths/trajectories
Trajectory planning – Path/motion planning

Determining the optimal sequence of visits to the locations
Multi-goal path/motion planning

Moreover, solutions have to respect particular constraints
Kinematic and kinodynamic constraints of the vehicle, collision-free paths, lim-
ited travel budget

In general, the problem is very challenging, and therefore, we consider the most imporant
and relevant constraints, i.e., we address the problem under particular assumptions.
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Robotic Exploration of Unknown Environment

Robotic exploration is a fundamental problem of robotic information gathering
The problem is:
How to efficiently utilize a group of mo-
bile robots to autonomously create a
map of an unknown environment

Performance indicators vs constraints
Time, energy, map quality vs robots, communication

Performance in a real mission depends on
the on-line decision-making

It includes challlenges such a
Map building and localization
Determination of the navigational waypoints

Where to go next?
Path planning and navigation to the waypoints
Coordination of the actions (multi-robot team)

Courtesy of M. Kulich
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Mobile Robot Exploration

Create a map of the environment
Frontier-based approach

Yamauchi (1997)

Occupancy grid map
Moravec and Elfes (1985)

Laser scanner sensor
Next-best-view approach

Select the next robot goal

Performance metric:
Time to create a map of the whole environment

search and rescue mission
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Environment Representation – Mapping and Occupancy Grid

The robot uses its sensors to build a map of the environment
The robot should be localized to integrate new sensor measurements
into a globally consistent map

SLAM – Simultaneous Localization and Mapping
The robot uses the map being built to localize itself
The map is primarily to help to localize the robot
The map is a “side product” of SLAM

Grid map – discretized world representation
A cell is occupied (an obstacle) or free

Occupancy grid map
Each cell is a binary random variable modeling
the occupancy of the cell
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Occupancy Grid

Assumptions
The area of a cell is either completely free or occupied
Cells (random variables) are indepedent of each other
The state is static

A cell is a binary random variable modeling the
occupancy of the cell

Cell mi is occupied p(mi ) = 1
Cell mi is not occupied p(mi ) = 0
Unknown p(mi ) = 0.5

occupied space

free space

p(mi)=1

p(mi) = 0

Probability distribution of the map m

p(m) = Πip(mi )

Estimation of map from sensor data z1:t and robot poses x1:t

p(m|z1:t , x1:t) = Πip(mi |z1:t , x1:t)

Binary Bayes filter – Bayes rule and Markov process assumption
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Binary Bayes Filter
Sensor data z1:t and robot poses x1:t

Binary random variables are indepedent and states are static

p(mi |z1:t , x1:t)
Bayes rule

=
p(zt |mi , z1:t−1, x1:t)p(mi |z1:t−1, x1:t)

p(zt |z1:t−1, x1:t)

Markov
=

p(zt |mi , xt)p(mi |z1:t−1, x1:t−1)

p(zt |z1:t−1, x1:t)

p(zt |mi , xt) =
p(mi , zt , xt)p(zt , xt)

p(mi |xt)

p(mi , z1:t , x1:t)
Bayes rule

=
p(mi |zt , xt)p(zt |xt)p(mi |z1:t−1, x1:t−1)

p(mi |xt)p(zt |z1:t−1, x1:t)

Markov
=

p(mi |zt , xt)p(zt |xt)p(mi |z1:t−1, x1:t−1)

p(mi )p(zt |z1:t−1, x1:t)

Probability a cell is occupied

p(mi |z1:t , x1:t ) =
p(mi |zt , xt )p(zt |xt )p(mi |z1:t−1, x1:t−1)

p(mi )p(zt |z1:t−1, x1:t )

Probability a cell is not occupied

p(¬mi |z1:t , x1:t ) =
p(¬mi |zt , xt )p(zt |xt )p(¬mi |z1:t−1, x1:t−1)

p(¬mi )p(zt |z1:t−1, x1:t )

Ratio of the probabilities
p(mi |z1:t , x1:t )

p(¬mi |z1:t , x1:t )
=

p(mi |zt , xt )p(mi |z1:t−1, x1:t−1)p(¬mi )

p(¬mi |zt , xt )p(¬mi |z1:t−1, x1:t−1)p(mi )

=
p(mi |zt , xt )

1− p(mi |zt , xt )

p(mi , z1:t−1, x1:t−1)

1− p(mi |z1:t−1, x1:t−1)

1− p(mi )

p(mi )

sensor model zt , recursive term, prior

Log odds ratio is defined as l(x) = log p(x)
1−p(x)

and the probability p(x) is p(x) = 1− 1
1−e l(x)

The product modeling the cell mi based on z1:t and x1:t

l(mi |z1:t , x1:t) = l(mi |zt , xt)︸ ︷︷ ︸
inverse sensor model

+ l(mi , |z1:t−1, x1:t−1)︸ ︷︷ ︸
recursive term

− l(mi )︸ ︷︷ ︸
prior
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Occupancy Mapping Algorithm

Algorithm 1: OccupancyGridMapping({lt−1,i},xt , zt)
foreach mi of the map m do

if mi in the perceptual field of zt then
lt,i := lt−1,i + inv_sensor_model(mi , xt , zt)− l0;

else
lt,i := lt−1,i ;

return {lt,i}

Occupancy grid mapping developed by Moravec and Elfes in mid
80’ies for noisy sonars

Inverse sensor model for
sonars range sensors

Field of view of the sonar
range sensor

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

measured distance

free

Occupancy probability

prior
z

Occupancy value depending on
the measured distance
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Laser Sensor Model

The model is “sharp” with a precise
detection of the obstacle
For the range measurement di , up-
date the grid cells along a sensor
beam

Algorithm 2: Update map for L = (d1, . . . , dn)

foreach di ∈ L do
foreach cell mi raycasted towards min(di , range) do

p := grid(mi )pfree ;
grid(mi ) := p/(2p − pfree − grid(mi ) + 1);

md := cell at di ;
if obstacle detected at md then

p := grid(md)pocc ;
grid(mi ) := p/(2p − pocc − grid(mi ) + 1)

else
p := grid(md)pfree ;
grid(mi ) := p/(2p − pfree − grid(mi ) + 1)

pfree

Occupancy probability

prior
pocc

pprior

measured distance

z

Max Range

Robot

Max Range

Robot

Sensor

Beam

Sensor

Beam
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Frontier-based Exploration

The basic idea of the frontier based exploration is navigation of
the mobile robot towards unknown regions

Yamauchi (1997)

Frontier – a border of the known and unknown regions of the
environment
Based on the probability of individual cells in the occupancy grid,
cells are classified into:

FREESPACE – p(mi ) < 0.5
OBSTACLE – p(mi ) > 0.5
UNKNOWN – p(mi ) = 0.5

Frontier cell is a FREESPACE cell
that is incident with an UNKNOWN cell
Frontier cells as the navigation way-
points have to be reachable, e.g., af-
ter obstacle growing

FREESPACE

OBSTACLE

FRONTIER

Robot

Use grid-based path planning
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Frontier-based Exploration Strategy

Algorithm 3: Frontier-based Exploration
map := init(robot, scan);
while there are some reachable frontiers do

Update occupancy map using new sensor data and
Bayes rule;
M := Created grid map from map using thresholding;
M := Grow obstacle according to the dimension of the
robot;
F := Determnine frontier cells fromM;
F := Filter out unreachable frontiers from F ;
f := Select the closest frontier from F , e.g. using
shortest path;
path := Plan a path from the current robot position to
f ;
Navigate robot towards f along path (for a while);
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Improvements of the basic Frontier-based Exploration

Several improvements have been proposed in the literature
Introducing utility as computation of expected
covered area from a frontier

González-Baños, Latombe (2002)

Map segmentation for identification of rooms and
exploration of the whole room by a single robot

Holz, Basilico, Amigoni, Behnke (2010)

Consider longer planning horizon (as a solution of
the Traveling Salesman Problem (TSP))

Zlot, Stentz (2006), Kulich, Faigl (2011, 2012)

Representatives of free edges
Faigl, Kulich (2015)
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Variants of the Distance Cost
Simple robot-goal distance – next-best view

Evaluate all goals using the robot–goal distance
A length of the path from the robot position to the
goal candidate.

Greedy goal selection – the closest one
Using frontier representatives improves the per-
formance a bit

TSP distance cost – Non-myopic next-best view

Consider visitations of all goals
Solve the associated traveling salesman problem (TSP)

A length of the tour visiting all goals
Use frontier representatives
the TSP distance cost improves performance
about 10-30% without any further heuristics, e.g.,
expected coverage (utility)

Kulich, M., Faigl, J, Přeučil, L. (2011): On Distance Utility in the Exploration Task. ICRA.
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Multi-Robot Exploration – Overview
We need to assign navigation waypoint
to each robot, which can be formulated
as the task-allocation problem
Exploration can be considered as an it-
erative procedure
1. Initialize the occupancy grid Occ

2. M← create_navigation_grid(Occ)
cells ofM have values {freespace, obstacle, unknown}

3. F ← detect_frontiers(M)

4. Goal candidates G ← generate(F )

5. Assign next goals to each robot r ∈ R,
(〈r1, gr1〉, . . . , 〈rm, grm〉) = assign(R,G ,M)

6. Create a plan Pi for each pair 〈ri , gri 〉
consisting of simple operations

7. Perform each plan up to smax operations
At each step, update Occ using new sensor measurements

8. If |G | == 0 exploration finished, otherwise go to
Step 2

There are several parts of
the exploration procedure
where important decisions
are made regarding the ex-
ploration performance, e.g.
How to determined goal
candidates from the the frontiers?
How to plan a paths and assign
the goals to the robots?
How to navigate the robots
towards the goal?
When to replan?
etc.
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Exploration Procedure – Decision-Making Parts
1. Initialize – set plans for m robots, P = (P1, . . . ,Pm), Pi = ∅.
2. Repeat
2.1 Navigate robots using the plans P;
2.2 Collect new measurements;
2.3 Update the navigation mapM;

Until replanning condition is met.

3. Determine goal candidates G fromM.

4. If |G | > 0 assign goals to the robots
(〈r1, gr1〉, . . . , 〈rm, grm〉)=assign(R,G ,M),
ri ∈ R, gri ∈ G ;
Plan paths to the assigned goals
P = plan(〈r1, gr1〉, . . . , 〈rm, grm〉,M);
Go to Step 2.

5. Stop all robots or navigate them to the depot
All reachable parts of the environment are explored.
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Goal Assignment Strategies – Task Allocation Algorithms

Exploration strategy can be formulated as the task-allocation problem
(〈r1, gr1〉, . . . , 〈rm, grm〉) = assign(R,G (t),M),

whereM is the current map

1. Greedy Assignment
Randomized greedy selection of the closest goal candidate

Yamauchi B, Robotics and Autonomous Systems 29, 1999

2. Iterative Assignment
Centralized variant of the broadcast of local eligibility algorithm (BLE)

Werger B, Mataric M, Distributed Autonomous Robotic Systems 4, 2001

3. Hungarian Assignment
Optimal solution of the task-allocation problem for assignment of n goals and
m robots in O(n3)

Stachniss C, C implementation of the Hungarian method, 2004

4. Multiple Traveling Salesman Problem – MTSP Assignment
〈cluster–first, route–second〉, the TSP distance cost

Faigl et al. 2012
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MTSP-based Task-Allocation Approach

Consider the task-allocation problem as the Multiple Traveling
Salesman Problem (MTSP)
MTSP heuristic 〈cluster–first, route–second 〉
1. Cluster the goal candidates G to m clusters

C = {C1, . . . ,Cm},Ci ⊆ G
using K-means

2. For each robot ri ∈ R, i ∈ {1, . . .m} select the next goal gi from
Ci using the TSP distance cost

Kulich et at., ICRA (2011)

Solve the TSP on the set Ci ∪ {ri}
the tour starts at ri

The next robot goal gi is the first goal of the found TSP tour

Faigl, J., Kulich, M., Přeučil, L. (2012): Goal Assignment using Distance Cost in Multi-Robot Exploration. IROS.
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Performance of the MTSP vs Hungarian Algorithm

Replanning as quickly as possible; m = 3, ρ = 3 m

The MTSP assignment provides better performance

Jan Faigl, 2018 B4M36UIR – Lecture 06: Multi-Goal Planning 46 / 63

Multi-Goal Planning Robotic Information Gathering Exploration Inspection Unsupervised Learning for Planning

Gathering Information in Inspection of Vessel’s Propeller

The planning problem is to determine a shortest inspection path for
Autonomous Underwater Vehicle (AUV) to inspect a propeller of
the vessel.

https://www.youtube.com/watch?v=8azP_9VnMtM
Englot, B., Hover, F.S. (2013): Three-dimensional coverage planning for an underwa-
ter inspection robot. Robotics and Autonomous Systems.
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Inspection Planning
Motivations (examples)

Periodically visit particular locations of the environment to check,
e.g., for intruders, and return to the starting locations
Based on available plans, provide a guideline how to search a
building to find possible victims as quickly as possible (search
and rescue scenario)
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Inspection Planning – Decoupled Approach
1. Determine sensing locations such that the whole environment would be

inspected (seen) by visiting them A solution of the Art Gallery Problem

Convex Partitioning (Kazazakis
and Argyros, 2002)

current bestvisibility region of  p

not covered regions
found sensing locations

polygonal map of environment

at border

random
point  p

in visibility region of  p

random point  v

visibility region of

point 

 v

Randomized Dual Sampling
(González-Baños et al., 1998)

inside internal region

found sensing locations at boundary cover

new sensing location

found sensing location

internal regions

Boundary Placement (Faigl et
al., 2006)

The problem is related to the sensor placement or sampling design

2. Create a roadmap connecting the sensing location
E.g., using visibility graph or randomized sampling based approaches

3. Find the inspection path visiting all the sensing locations as a solution
of the multi-goal path planning (a solution of the robotic TSP)

Inspection planning can also be called as coverage path planning in
the literature
Galceran, E., Carreras, M. (2013): A survey on coverage path planning for robotics.
Robotics and Autonomous Systems.
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Planning to Capture Areas of Interest using UAV
Determine a cost-efficient path from which a given set of target
regions is covered
For each target region a subspace S ⊂ R3 from which the target
can be covered is determined S represents the neighbourhood

We search for the best sequence of visits to the regions
Combinatorial optimization

The PRM is utilized to construct the planning roadmap (a graph)
The problem is formulated as the Traveling Salesman Problem
with Neighborhoods, as it is not necessary to visit exactly a single
location to capture the area of interest

Janoušek and Faigl, (2013) ICRA
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Inspection Planning – “Continuous Sensing ”

If we do not prescribe a discrete set of sensing locations, we can
formulate the problem as the Watchman route problem

Given a map of the environment W determine the shortest, closed,
and collision-free path, from which the whole environment is covered
by an omnidirectional sensor with the radius ρ

Faigl, J. (2010): Approximate Solution of the Multiple Watchman Routes Problem
with Restricted Visibility Range. IEEE Transactions on Neural Networks.
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Unsupervised Learning based Solution of the TSP
Kohonen’s type of unsupervised two-layered neural network (Self-Organizing Map)

Neurons’ weights represent nodes
N = {ν1, . . . ,νm}) in a plane

Nodes are organized into a ring

Sensing locations S = {s1, . . . sn} are pre-
sented to the network in a random order

Nodes compete to be winner according to
their distance to the presented goal s

ν∗ = argminν∈N |D({ν, s)|

The winner and its neighbouring nodes are
adapted (moved) towards the city accord-
ing to the neighbouring function

ν′ ← µf (σ, d)(ν − s)

f (σ, d) =

{
e
− d2

σ2 for d < m/nf ,
0 otherwise,
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Best matching unit ν to the presented pro-
totype s is determined according to the dis-
tance function |D(ν, s)|
For the Euclidean TSP, D is the Euclidean
distance

However, for problems with obstacles, the
multi-goal path planning, D should corre-
spond to the length of the shortest, colli-
sion free path

Fort, J.C. (1988), Angéniol, B. et al. (1988), Somhom, S. et al. (1997), etc.
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Unsupervised Learning for the Multi-Goal Path Planning
Unsupervised learning procedure

Algorithm 4: SOM-based MTP solver
N ← initialization(ν1, . . . , νm);
repeat

error ← 0;
foreach g ∈ Π(S) do

ν∗ ← selectWinner argminν∈N |S(g , ν)|;
adapt(S(g , ν), µf (σ, l)|S(g , ν)|);
error ← max{error , |S(g , ν?)|};

σ ← (1− α)σ;
until error ≤ δ;

For multi-goal path planning – the selectWinner and adapt procedures
are based on the solution of the path planning problem

Faigl, J. et al. (2011): An Application of Self-Organizing Map in the non-Euclidean
Traveling Salesman Problem. Neurocomputing.
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SOM for the TSP in the Watchman Route Problem

During the unsupervised learning, we can compute coverage of W
from the current ring (solution represented by the neurons) and
adapt the network towards uncovered parts of W
Convex cover set of W created on top of a triangular mesh
Incident convex polygons with a straight line segment are found by
walking in a triangular mesh technique

Faigl, J. (2010), TNN
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Multi-Goal Path Planning with Goal Regions

It may be sufficient to visit a goal region instead of the particular
point location E.g., to take a sample measurement at each goal

Snapshot of the goal area

Camera for

navigation

Camera for

navigation

Snapshot of the goal areaSnapshot of the goal areaSnapshot of the goal area

Camera for sampling

the goal area

Camera for sampling

the goal area

Camera for sampling

the goal area

Camera for

navigation

Camera for

navigation

the goal area

Camera for sampling

Snapshot of the goal area

Camera for

navigation

Not only a sequence of goals visit has to be determined, but also an
appropriate sensing location for each goal need to be found

The problem with goal regions can be considered as a variant of the
Traveling Salesman Problem with Neighborhoods (TSPN)
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Traveling Salesman Problem with Neighborhoods

Given a set of n regions (neighbourhoods), what is the shortest
closed path that visits each region.

The problem is NP-hard and APX-hard, it cannot be approximated
to within factor 2− ε, where ε > 0

Safra and Schwartz (2006) – Computational Complexity

Approximate algorithms exist for particular problem variants
E.g., Disjoint unit disk neighborhoods

Flexibility of the unsupervised learning for the TSP allows general-
izing the unsupervised learning procedure to address the TSPN

TSPN provides a suitable problem formulation for planning
various inspection and data collection missions
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SOM-based Solution of the Traveling Salesman Problem
with Neighborhoods (TSPN)

Polygonal Goals
n=9, T= 0.32 s

Convex Cover Set
n=106, T=5.1 s

Non-Convex Goals
n=5, T=0.1 s

Faigl, J. et al. (2013): Visiting Convex Regions in a Polygonal Map. Robotics and
Autonomous Systems.
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Example – TSPN for Planning with Localization Uncertainty
Selection of waypoints from the neighborhood of each location
P3AT ground mobile robot in an outdoor environment

TSP: L=184 m,
Eavg=0.57 m

TSPN: L=202 m,
Eavg=0.35 m

Real overall error at the goals decreased from 0.89 m → 0.58 m (about 35%)

Decrease localization error at the target locations (indoor)
Small UGV - MMP5

Error decreased from 16.6 cm → 12.8 cm

Small UAV - Parrot AR.Drone

Improved success of the locations’ visits 83%→95%
Faigl et al., (2012) ICRA
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Topics Discussed

Summary

Improved randomized sampling-based methods
Informed sampling – Informed RRT*
Improving by batches of samples and reusing previous searches using Lifelong
Planning A* (LPA*)
Improving local search strategy to improve convergence speed
Planning in dynamic environments

Multi-goal planning and robotic information gathering
Multi-goal path planning (MTP) and multi-goal motion planning (MGMP) prob-
lems are robotic variants of the TSP
Existing TSP solvers can be used, by further challenges of robotic systems have
to be addressed
TSP-like solutions can improve performance in the online decision-making by
considering longer planning horizon (non-myopic approaches), e.g., in robotic
exploration
Inspection planning can be formulated as a robotic variant of the TSP
TSP with Neighborhoods (TSPN) is a benefitial problem formulation to save
unnecessary travel cost
Unsupervised learning can be used as heuristic for various multi-goal path plan-
ning problems (TSP and TSPN like)
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Topics Discussed

Improved sampling-based motion planners
Multi-goal planning and robotic information gathering missions

Multi-goal path planning (MTP) and multi-goal motion planning
(MGMP)
Traveling Salesman Problem (TSP)
Robotic information gathering – informative path planning,
Robotic exploration and multi-goal path planning
Inspection planning
Unsupervised learning for multi-goal path planning
Traveling Salesman Problem with Neighborhoods (TSPN)

Next: Data collection planning
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