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Overview of the Lecture

� Part 1 – Randomized Sampling-based Motion Planning Methods

Sampling-Based Methods

Probabilistic Road Map (PRM)

Characteristics

Rapidly Exploring Random Tree (RRT)

� Part 2 – Optimal Sampling-based Motion Planning Methods

Optimal Motion Planners

Rapidly-exploring Random Graph (RRG)
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Part I

Part 1 – Sampling-based Motion Planning
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(Randomized) Sampling-based Motion Planning
� It uses an explicit representation of the obstacles in C-space.

� A “black-box” function is used to evaluate
if a configuration q is a collision-free, e.g.,

� Based on geometrical models and testing
collisions of the models.

� 2D or 3D shapes of the robot and environ-
ment can be represented as sets of trian-
gles, i.e., tesselated models.

� Collision test is then a test of for the in-
tersection of the triangles.

E.g., using RAPID library http://gamma.cs.unc.edu/OBB/

� Creates a discrete representation of Cfree .
� Configurations in Cfree are sampled randomly and connected to a
roadmap (probabilistic roadmap).

� Rather than the full completeness they provide probabilistic com-
pleteness or resolution completeness.

Probabilistic complete algorithms: with increasing number of samples
an admissible solution would be found (if exists).
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Probabilistic Roadmaps

A discrete representation of the continuous C-space generated by ran-
domly sampled configurations in Cfree that are connected into a graph.
� Nodes of the graph represent admissible configurations of the robot.
� Edges represent a feasible path (trajectory) between the particular
configurations.

Probabilistic complete algorithms: with increasing number of samples
an admissible solution would be found (if exists).

Having the graph, the final path (trajectory) can be found by a graph
search technique.
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Incremental Sampling and Searching
� Single query sampling-based algorithms incrementally create a
search graph (roadmap).
1. Initialization – G (V ,E ) an undirected search graph, V may contain

qstart , qgoal and/or other points in Cfree .
2. Vertex selection method – choose a vertex qcur ∈ V for the ex-

pansion.
3. Local planning method – for some qnew ∈ Cfree , attempt to con-

struct a path τ : [0, 1] → Cfree such that τ(0) = qcur and τ(1) =
qnew , τ must be checked to ensure it is collision free.

� If τ is not a collision-free, go to Step 2.

4. Insert an edge in the graph – Insert τ into E as an edge from
qcur to qnew and insert qnew to V if qnew /∈ V . How to test qnew is in V?

5. Check for a solution – Determine if G encodes a solution, e.g.,
using a single search tree or graph search technique.

6. Repeat Step 2 – iterate unless a solution has been found or a
termination condition is satisfied.

LaValle, S. M.: Planning Algorithms (2006), Chapter 5.4
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Probabilistic Roadmap Strategies

Multi-Query strategy is roadmap based.
� Generate a single roadmap that is then used for repeated planning
queries.

� An representative technique is Probabilistic RoadMap (PRM).
Kavraki, L., Svestka, P., Latombe, J.-C., Overmars, M. H.B (1996): Probabilistic
Roadmaps for Path Planning in High Dimensional Configuration Spaces. T-RO.

Single-Query strategy is an incremental approach.
� For each planning problem, it constructs a new roadmap to char-
acterize the subspace of C-space that is relevant to the problem.

� Rapidly-exploring Random Tree – RRT; LaValle, 1998
� Expansive-Space Tree – EST; Hsu et al., 1997
� Sampling-based Roadmap of Trees – SRT.

A combination of multiple–query and single–query approaches.
Plaku et al., 2005
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Multi-Query Strategy

Build a roadmap (graph) representing the environment.
1. Learning phase

1.1 Sample n points in Cfree .
1.2 Connect the random configurations using a local planner.

2. Query phase
2.1 Connect start and goal configurations with the PRM.

E.g., using a local planner.
2.2 Use the graph search to find the path.

Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces
Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H. Overmars,
IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

First planner that demonstrates ability to solve general planning prob-
lems in more than 4-5 dimensions.
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PRM Construction
Given problem domain:
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PRM Construction
Random configuration
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PRM Construction
Connecting random samples:

Local planner
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PRM Construction
Connected roadmap:
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PRM Construction
Query configurations:
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PRM Construction
Final found path:
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Practical PRM

� Incremental construction.
� Connect nodes in a radius ρ.
� Local planner tests collisions up
to selected resolution δ.

� Path can be found by Dijkstra’s
algorithm.
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C

What are the properties of the PRM algorithm?

We need a couple of more formalisms.
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Path Planning Problem Formulation

� Path planning problem is defined by a triplet
P = (Cfree , qinit ,Qgoal), where

� Cfree = cl(C \ Cobs), C = (0, 1)d , for d ∈ N, d ≥ 2; (scaling)

� qinit ∈ Cfree is the initial configuration (condition);
� Qgoal is the goal region defined as an open subspace of Cfree .

� Function π : [0, 1]→ Rd of bounded variation is called:
� path if it is continuous;
� collision-free path if it is a path and π(τ) ∈ Cfree for τ ∈ [0, 1];
� feasible if it is a collision-free path, and π(0) = qinit and π(1) ∈

cl(Qgoal).

� A function π with the total variation TV(π) <∞ is said to have bounded
variation, where TV(π) is the total variation

TV(π) = sup{n∈N,0=τ0<τ1<...<τn=s}
∑n

i=1 |π(τi )− π(τi−1)|.
� The total variation TV(π) is de facto a path length.
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Path Planning Problem

� Feasible path planning
For a path planning problem (Cfree , qinit ,Qgoal):

� Find a feasible path π : [0, 1] → Cfree such that π(0) = qinit and
π(1) ∈ cl(Qgoal), if such path exists;

� Report failure if no such path exists.

� Optimal path planning
The optimality problem asks for a feasible path with the minimum cost.

For (Cfree , qinit ,Qgoal) and a cost function c : Σ→ R≥0:
� Find a feasible path π∗ such that c(π∗) = min{c(π) : π is feasible};
� Report failure if no such path exists.

The cost function is assumed to be monotonic and bounded,
i.e., there exists kc such that c(π) ≤ kc TV(π)
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Probabilistic Completeness 1/2

First, we need robustly feasible path planning problem (Cfree , qinit ,Qgoal).

� q ∈ Cfree is δ-interior state of Cfree if
the closed ball of radius δ centered at q
lies entirely inside Cfree .

δ

q

−interior state

int  (        )

obs

Cfree
δ

C

� δ-interior of Cfree is intδ(Cfree) = {q ∈ Cfree |B/,δ ⊆ Cfree}.
A collection of all δ-interior states.

� A collision free path π has strong δ-clearance, if π lies entirely
inside intδ(Cfree).

� (Cfree , qinit ,Qgoal) is robustly feasible if a solution exists and it is a
feasible path with strong δ-clearance, for δ>0.

Jan Faigl, 2018 B4M36UIR – Lecture 05: Sampling-based Motion Planning 16 / 52



Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Probabilistic Completeness 2/2

An algorithmALG is probabilistically complete if, for any robustly
feasible path planning problem P = (Cfree , qinit ,Qgoal),

lim
n→∞

Pr(ALG returns a solution to P) = 1.

� It is a “relaxed” notion of the completeness.
� Applicable only to problems with a robust solution.

C

C

obs

freeint  (        )
δ

init

Cobs

Cfree
δ

int  (        )

q

We need some space, where random configurations can be sampled.
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Asymptotic Optimality 1/4
Homotopy

Asymptotic optimality relies on a notion of weak δ-clearance.
Notice, we use strong δ-clearance for probabilistic completeness.

� We need to describe possibly improving paths (during the planning).
� Function ψ : [0, 1] → Cfree is called homotopy, if ψ(0) = π1 and
ψ(1) = π2 and ψ(τ) is collision-free path for all τ ∈ [0, 1].

� A collision-free path π1 is homotopic to π2 if there exists homotopy
function ψ.

A path homotopic to π can be continuously trans-
formed to π through Cfree .
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Asymptotic Optimality 2/4
Weak δ-clearance

� A collision-free path π : [0, s] → Cfree has weak δ-clearance if
there exists a path π′ that has strong δ-clearance and homotopy
ψ with ψ(0) = π, ψ(1) = π′, and for all α ∈ (0, 1] there exists
δα > 0 such that ψ(α) has strong δ-clearance.

Weak δ-clearance does not require points along a
path to be at least a distance δ away from obstacles.

π

π’
init

obs

Cfree
δ

int  (        )

q

C � A path π with a weak δ-clearance.
� π′ lies in intδ(Cfree) and it is the

same homotopy class as π.
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Asymptotic Optimality 3/4
Robust Optimal Solution

� It is applicable with a robust optimal solution that can be obtained
as a limit of robust (non-optimal) solutions.

� A collision-free path π∗ is robustly optimal solution if it has weak
δ-clearance and for any sequence of collision free paths {πn}n∈N,
πn ∈ Cfree such that limn→∞ πn = π∗,

lim
n→∞

c(πn) = c(π∗).

There exists a path with strong δ-clearance, and π∗ is
homotopic to such path and π∗ is of the lower cost.

� Weak δ-clearance implies robustly feasible solution problem.
Thus, it implies the probabilistic completeness.
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Asymptotic Optimality 4/4
Asymptotically optimal algorithm

An algorithm ALG is asymptotically optimal if, for any path plan-
ning problem P = (Cfree , qinit ,Qgoal) and cost function c that admit
a robust optimal solution with the finite cost c∗

Pr

({
lim
i→∞

YALGi = c∗
})

= 1.

� YALGi is the extended random variable corresponding to the minimum-
cost solution included in the graph returned by ALG at the end of
the iteration i .
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Properties of the PRM Algorithm

� Completeness for the standard PRM has not been provided when it
was introduced.

� A simplified version of the PRM (called sPRM) has been mostly
studied.

� sPRM is probabilistically complete.

What are the differences between PRM and sPRM?
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PRM vs simplified PRM (sPRM)

Algorithm 1: PRM
Input: qinit , number of samples n, radius ρ
Output: PRM – G = (V ,E)

V ← ∅;E ← ∅;
for i = 0, . . . , n do

qrand ← SampleFree;
U ← Near(G = (V ,E), qrand , ρ);
V ← V ∪ {qrand};
foreach u ∈ U, with increasing
||u − qr || do

if qrand and u are not in the
same connected component of
G = (V ,E) then

if CollisionFree(qrand , u)
then

E ← E ∪
{(qrand , u), (u, qrand )};

return G = (V ,E);

Algorithm 2: sPRM
Input: qinit , number of samples n,

radius ρ
Output: PRM – G = (V ,E)

V ← {qinit} ∪
{SampleFreei}i=1,...,n−1;E ← ∅;
foreach v ∈ V do

U ←Near(G = (V ,E), v , ρ) \ {v};
foreach u ∈ U do

if CollisionFree(v , u) then
E ← E ∪{(v , u), (u, v)};

return G = (V ,E);

There are several ways for the set U of
vertices to connect them:

� k-nearest neighbors to v ;
� variable connection radius ρ as a

function of n.
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PRM – Properties

� sPRM (simplified PRM):
� Probabilistically complete and asymptotically optimal.
� Processing complexity can be bounded by O(n2).
� Query complexity can be bounded by O(n2).
� Space complexity can be bounded by O(n2).

� Heuristics practically used are usually not probabilistic complete.
� k-nearest sPRM is not probabilistically complete.
� Variable radius sPRM is not probabilistically complete.

Based on analysis of Karaman and Frazzoli

PRM algorithm
+ It has very simple implementation.
+ It provides completeness (for sPRM).
− Differential constraints (car-like vehicles) are not straightforward.
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Comments about Random Sampling 1/2

� Different sampling strategies (distributions) may be applied.

� Notice, one of the main issue of the randomized sampling-based
approaches is the narrow passage.

� Several modifications of sampling based strategies have been pro-
posed in the last decades.

Jan Faigl, 2018 B4M36UIR – Lecture 05: Sampling-based Motion Planning 25 / 52



Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Comments about Random Sampling 2/2
� A solution can be found using only a few samples.

Do you know the Oraculum? (from Alice in Wonderland)
� Sampling strategies are important:

� Near obstacles;
� Narrow passages;
� Grid-based;
� Uniform sampling must be carefully considered.

James J. Kuffner (2004): Effective Sampling and Dis-
tance Metrics for 3D Rigid Body Path Planning. ICRA.

Naïve sampling Uniform sampling of SO(3) using Euler angles
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Rapidly Exploring Random Tree (RRT)

Single–Query algorithm
� It incrementally builds a graph (tree) towards the goal area.

It does not guarantee precise path to the goal configuration.

1. Start with the initial configuration q0, which is a root of the con-
structed graph (tree).

2. Generate a new random configuration qnew in Cfree .
3. Find the closest node qnear to qnew in the tree.

E.g., using KD-tree implementation like ANN or FLANN libraries.

4. Extend qnear towards qnew .
Extend the tree by a small step, but often a direct control
u ∈ U that will move robot the position closest to qnew is
selected (applied for δt).

5. Go to Step 2, until the tree is within a sufficient distance from the
goal configuration.

Or terminates after dedicated running time.
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RRT Construction

#1 new random configuration

0 q new
q

#2 the closest node

0

q near
q new

q

#3 possible actions from qnear

new

u 3

u 5

u 4

u 2

u 1

q near
q0q

#4 extended tree

q 0
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RRT Algorithm
� Motivation is a single query and control-based path finding
� It incrementally builds a graph (tree) towards the goal area

Algorithm 3: Rapidly Exploring Random Tree (RRT)
Input: qinit , number of samples n
Output: Roadmap G = (V ,E)

V ← {qinit};E ← ∅;
for i = 1, . . . , n do

qrand ← SampleFree;
qnearest ← Nearest(G = (V ,E), qrand );
qnew ← Steer(qnearest , qrand );
if CollisionFree(qnearest , qnew ) then

V ← V ∪ {xnew}; E ← E ∪ {(xnearest , xnew )};

return G = (V ,E);

Extend the tree by a small step, but often a direct control u ∈ U that will
move robot to the position closest to qnew is selected (applied for dt)

Rapidly-exploring random trees: A new tool for path planning
S. M. LaValle,
Technical Report 98-11, Computer Science Dept., Iowa State University, 1998.
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Properties of RRT Algorithms

� The RRT algorithm rapidly explores the space.
qnew will more likely be generated in large not yet covered parts.

� Allows considering kinodynamic/dynamic constraints (during the
expansion).

� Can provide trajectory or a sequence of direct control commands
for robot controllers.

� A collision detection test is usually used as a “black-box”.
E.g., RAPID, Bullet libraries.

� Similarly to PRM, RRT algorithms have poor performance in narrow
passage problems.

� RRT algorithms provides feasible paths.
It can be relatively far from optimal solution, e.g.,
according to the length of the path.

� Many variants of RRT have been proposed.
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Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

RRT – Examples 1/2

Alpha puzzle benchmark Apply rotations to reach the goal

Bugtrap benchmark Variants of RRT algorithms

Courtesy of V. Vonásek and P. Vaněk
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Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

RRT – Examples 2/2

� Planning for a car-like robot

Planning on a 3D surface Planning with dynamics (friction forces)
Courtesy of V. Vonásek and P. Vaněk.
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Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Car-Like Robot
� Configuration

−→x =

 x
y
φ


position and orientation.

� Controls
−→u =

(
v
ϕ

)
forward velocity, steering angle.

� System equation
ẋ = v cosφ
ẏ = v sinφ

ϕ̇ =
v

L
tanϕ

.

(x, y)

L

θ

ϕ

ICC

Kinematic constraints dim(−→u ) < dim(−→x ).

Differential constraints on possible q̇:

ẋ sin(φ)− ẏ cos(φ) = 0.
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Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Control-Based Sampling

� Select a configuration q from the tree T of the current configura-
tions.

� Pick a control input −→u = (v , ϕ) and
the integrate system (motion) equation
over a short period ∆t: ∆x

∆y
∆ϕ

 =

∫
t+∆t

t

 v cosφ
v sinφ
v
L tanϕ

 dt.

� If the motion is collision-free, add the endpoint to the tree.

E.g., considering k configurations for kδt = dt.
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

Part II

Part 2 – Optimal Sampling-based Motion
Planning Methods
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

Outline

Optimal Motion Planners

Rapidly-exploring Random Graph (RRG)
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

Sampling-Based Motion Planning
� PRM and RRT are theoretically probabilistic complete.
� They provide a feasible solution without quality guarantee.

Despite that, they are successfully used in many practical ap-
plications.

� In 2011, a systematical study of the asymptotic behavior of ran-
domized sampling-based planners has been published.

It shows, that in some cases, they converge to a non-optimal
value with a probability 1.

� Based on the study, new algorithms have been proposed: RRG and
optimal RRT (RRT∗).

Karaman, S., Frazzoli, E. (2011):Sampling-based algorithms for optimal motion planning. IJRR.

http://sertac.scripts.mit.edu/rrtstar
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

RRT and Quality of Solution 1/2

� Let Y RRT
i be the cost of the best path in the RRT at the end of

the iteration i .
� Y RRT

i converges to a random variable

lim
i→∞

Y RRT
i = Y RRT

∞ .

� The random variable Y RRT
∞ is sampled from a distribution with zero

mass at the optimum, and

Pr [Y RRT
∞ > c∗] = 1.

Karaman and Frazzoli, 2011

� The best path in the RRT converges to a sub-optimal solution al-
most surely.
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

RRT and Quality of Solution 2/2

� RRT does not satisfy a necessary condition for the asymptotic op-
timality.

� For 0 < R < infq∈Qgoal
||q− qinit ||, the event {limn→∞ Y RTT

n = c∗}
occurs only if the k-th branch of the RRT contains vertices outside
the R-ball centered at qinit for infinitely many k .

See Appendix B in Karaman and Frazzoli, 2011

� It is required the root node will have infinitely many subtrees that
extend at least a distance ε away from qinit .

The sub-optimality is caused by disallowing new better paths
to be discovered.
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

Outline

Optimal Motion Planners

Rapidly-exploring Random Graph (RRG)
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

Rapidly-exploring Random Graph (RRG)

Algorithm 4: Rapidly-exploring Random Graph (RRG)
Input: qinit , number of samples n
Output: G = (V ,E )

V ← ∅;E ← ∅;
for i = 0, . . . , n do

qrand ← SampleFree;
qnearest ← Nearest(G = (V ,E ), qrand);
qnew ← Steer(qnearest , qrand);
if CollisionFree(qnearest , qnew ) then
Qnear ← Near(G =
(V ,E ), qnew ,min{γRRG (log(card(V ))/ card(V ))1/d , η});
V ← V ∪ {qnew};
E ← E ∪ {(qnearest , qnew ), (qnew , qnearest)};
foreach qnear ∈ Qnear do

if CollisionFree(qnear , qnew ) then
E ← E ∪ {(qrand , u), (u, qrand)};

return G = (V ,E );

Proposed by Karaman and Frazzoli (2011). Theoretical results are related to properties of Random
Geometric Graphs (RGG) introduced by Gilbert (1961) and further studied by Penrose (1999).

Jan Faigl, 2018 B4M36UIR – Lecture 05: Sampling-based Motion Planning 42 / 52



Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

RRG Expansions

� At each iteration, RRG tries to connect new sample to all vertices
in the rn ball centered at it.

� The ball of radius

r(card(V )) = min

{
γRRG

(
log (card(V ))

card(V )

)1/d

, η

}
,

where
� η is the constant of the local steering function;
� γRRG > γ∗RRG = 2(1 + 1/d)1/d(µ(Cfree)/ξd)1/d ;

- d – dimension of the space;
- µ(Cfree) – Lebesgue measure of the obstacle–free space;
- ξd – volume of the unit ball in d-dimensional Euclidean space.

� The connection radius decreases with n.
� The rate of decay ≈ the average number of connections attempted
is proportional to log(n).
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

RRG Properties

� Probabilistically complete;
� Asymptotically optimal;
� Complexity is O(log n).

(per one sample)

� Computational efficiency and optimality:
� It attempts a connection to Θ(log n) nodes at each iteration;

in average
� Reduce volume of the “connection” ball as log(n)/n;
� Increase the number of connections as log(n).
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

Other Variants of the Optimal Motion Planning

� PRM* follows the standard PRM algorithm where connections are
attempted between roadmap vertices that are the within connection
radius r as the function of n

r(n) = γPRM(log(n)/n)1/d .

� RRT* is a modification of the RRG, where cycles are avoided.
It is a tree version of the RRG.

� A tree roadmap allows to consider non-holonomic dynamics and
kinodynamic constraints.

� It is basically the RRG with “rerouting” the tree when a better path
is discovered.
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

Example of Solution 1/3

RRT, n=250

RRT*, n=250

RRT, n=500

RRT*, n=500

RRT, n=2500

RRT*, n=2500

RRT, n=10000

RRT*, n=10000
Karaman & Frazzoli, 2011
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

Example of Solution 2/3

RRT, n=20000 RRT*, n=20000
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

Example of Solution 3/3

https://www.youtube.com/watch?v=YKiQTJpPFkA
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

Overview of Randomized Sampling-based Algorithms

Algorithm
Probabilistic Asymptotic
Completeness Optimality

sPRM 4 8

k-nearest sPRM 8 8

RRT 4 8

RRG 4 4

PRM* 4 4

RRT* 4 4

Notice, k-nearest variants of RRG, PRM*, and RRT* are complete
and optimal as well.
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Topics Discussed

Summary of the Lecture
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Topics Discussed

Summary

Properties of the sampling-based motion planning algorithms
� Single and multi-query approaches
� Path, collision-free path, feasible path
� Feasible path planning and optimal path planning
� Probabilistic completeness, strong δ-clearance, robustly fea-
sible path planning problem

� Asymptotic optimality, homotopy, weak δ-clearance, robust
optimal solution

� PRM, RRT, RRG, PRM*, RRT*
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Topics Discussed

Topics Discussed

� Randomized Sampling-based Methods
� Probabilistic Road Map (PRM)
� Characteristics of path planning problems
� Random sampling
� Rapidly Exploring Random Tree (RRT)
� Optimal sampling-based motion planning
� Rapidly-exploring Random Graph (RRG)

� Next: Improved Sampling-based Motion Planning
� Next: Multi-Goal Motion Planning and Multi-Goal Path Planning
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