Randomized Sampling-based Motion Planning Methods

Jan Faigl

Department of Computer Science

Faculty of Electrical Engineering Czech Technical University in Prague

Lecture 05

B4M36UIR – Artificial Intelligence in Robotics

Overview of the Lecture

Part 1 – Randomized Sampling-based Motion Planning Methods

- Sampling-Based Methods
- Probabilistic Road Map (PRM)
- Characteristics
- Rapidly Exploring Random Tree (RRT)
- Part 2 Optimal Sampling-based Motion Planning Methods
 - Optimal Motion Planners
 - Rapidly-exploring Random Graph (RRG)

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Part I

Part 1 – Sampling-based Motion Planning

Jan Faigl, 2018

B4M36UIR - Lecture 05: Sampling-based Motion Planning

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Outline

- Sampling-Based Methods
- Probabilistic Road Map (PRM)
- Characteristics
- Rapidly Exploring Random Tree (RRT)

Jan Faigl, 2018

(Randomized) Sampling-based Motion Planning

- It uses an explicit representation of the obstacles in *C-space*
 - A "black-box" function is used to evaluate a configuration *q* is a collision-free, e.g.,
 - Based on geometrical models and testing collisions of the models
 - In 2D or 3D shape of the robot and environment can be represented as sets of triangles, i.e., tesselated models

E.g., using RAPID library http://gamma.cs.unc.edu/OBB/

- Creates a discrete representation of C_{free}
- Configurations in C_{free} are sampled randomly and connected to a roadmap (probabilistic roadmap)
- Rather than full completeness they provide probabilistic completeness or resolution completeness

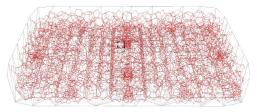
Probabilistic complete algorithms: with increasing number of samples an admissible solution would be found (if exists)

Probabilistic Roadmaps

A discrete representation of the continuous $\mathcal{C}\text{-space}$ generated by randomly sampled configurations in $\mathcal{C}_{\textit{free}}$ that are connected into a graph

- Nodes of the graph represent admissible configuration of the robot
- Edges represent a feasible path (trajectory) between the particular configurations

Probabilistic complete algorithms: with increasing number of samples an admissible solution would be found (if exists)



Having the graph, the final path (trajectory) is found by a graph search technique

Incremental Sampling and Searching

- Single query sampling-based algorithms incrementally create a search graph (roadmap)
 - 1. Initialization G(V, E) an undirected search graph, V may contain q_{start} , q_{goal} and/or other points in C_{free}
 - 2. Vertex selection method choose a vertex $q_{cur} \in V$ for expansion
 - 3. Local planning method for some $q_{new} \in C_{free}$, attempt to construct a path $\tau : [0,1] \rightarrow C_{free}$ such that $\tau(0) = q_{cur}$ and $\tau(1) = q_{new}$, τ must be checked to ensure it is collision free
 - If τ is not a collision-free, go to Step 2
 - 4. Insert an edge in the graph Insert τ into E as an edge from q_{cur} to q_{new} and insert q_{new} to V if $q_{new} \notin V$
 - 5. Check for a solution Determine if *G* encodes a solution, e.g., single search tree or graph search
 - 6. Repeat to Step 2 iterate unless a solution has been found or a termination condition is satisfied

LaValle, S. M.: Planning Algorithms (2006), Chapter 5.4

Probabilistic Roadmap Strategies

Multi-Query – roadmap based

- Generate a single roadmap that is then used for planning queries several times.
- An representative technique is Probabilistic RoadMap (PRM) Kavraki, L., Svestka, P., Latombe, J.-C., Overmars, M. H.B (1996): Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces. T-RO.

Single-Query – incremental

- For each planning problem constructs a new roadmap to characterize the subspace of C-space that is relevant to the problem.
 - Rapidly-exploring Random Tree RRT
 - Expansive-Space Tree EST
 - Sampling-based Roadmap of Trees SRT

(combination of multiple–query and single–query approaches) Plaku et al., 2005

LaValle. 1998

Hsu et al., 1997

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Outline

- Sampling-Based Methods
- Probabilistic Road Map (PRM)
- Characteristics
- Rapidly Exploring Random Tree (RRT)

Jan Faigl, 2018

Multi-Query Strategy

Build a roadmap (graph) representing the environment

- 1. Learning phase
 - 1.1 Sample *n* points in C_{free}
 - $1.2\,$ Connect the random configurations using a local planner
- 2. Query phase
 - 2.1 Connect start and goal configurations with the PRM

E.g., using a local planner

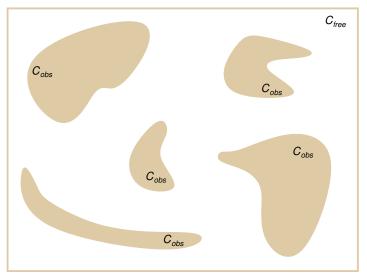
2.2 Use the graph search to find the path

Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H. Overmars,

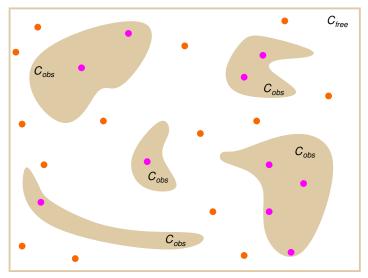
IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996.

First planner that demonstrates ability to solve general planning problems in more than 4-5 dimensions.

Given problem domain

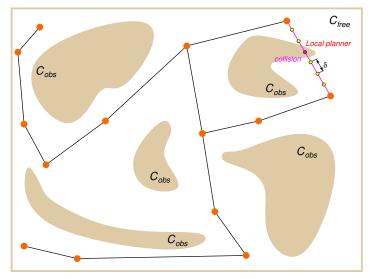


Random configuration



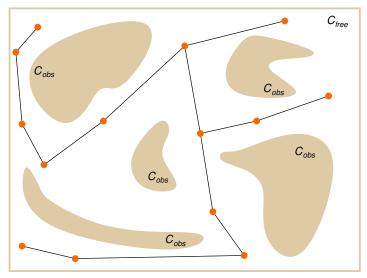
<u>AR</u>

Connecting random samples



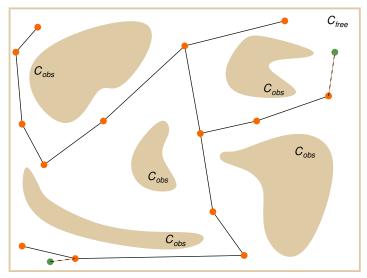
B4M36UIR - Lecture 05: Sampling-based Motion Planning

Connected roadmap



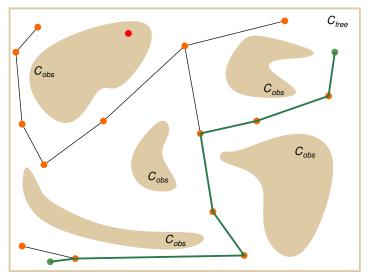
B4M36UIR - Lecture 05: Sampling-based Motion Planning

Query configurations



B4M36UIR - Lecture 05: Sampling-based Motion Planning

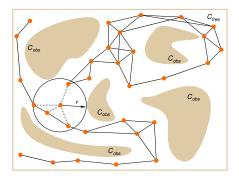
Final found path



B4M36UIR - Lecture 05: Sampling-based Motion Planning

Practical PRM

- Incremental construction
- Connect nodes in a radius ρ
- Local planner tests collisions up to selected resolution δ
- Path can be found by Dijkstra's algorithm

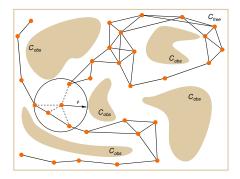


What are the properties of the PRM algorithm?

We need a couple of more formalisms.

Practical PRM

- Incremental construction
- Connect nodes in a radius ρ
- Local planner tests collisions up to selected resolution δ
- Path can be found by Dijkstra's algorithm

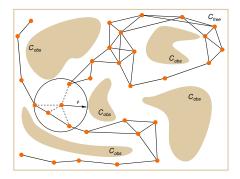


What are the properties of the PRM algorithm?

We need a couple of more formalisms.

Practical PRM

- Incremental construction
- Connect nodes in a radius ρ
- Local planner tests collisions up to selected resolution δ
- Path can be found by Dijkstra's algorithm



What are the properties of the PRM algorithm?

We need a couple of more formalisms.

Path Planning Problem Formulation

Path planning problem is defined by a triplet

 $\mathcal{P} = (\mathcal{C}_{\textit{free}}, q_{\textit{init}}, \mathcal{Q}_{\textit{goal}}),$

•
$$\mathcal{C}_{\textit{free}} = \mathsf{cl}(\mathcal{C} \setminus \mathcal{C}_{\textit{obs}}), \ \mathcal{C} = (0,1)^d$$
, for $d \in \mathbb{N}, \ d \geq 2$

- $q_{init} \in C_{free}$ is the initial configuration (condition)
- \mathcal{Q}_{goal} is the goal region defined as an open subspace of \mathcal{C}_{free}
- Function $\pi : [0,1] \to \mathbb{R}^d$ of *bounded variation* is called:
 - **path** if it is continuous;
 - collision-free path if it is path and $\pi(\tau) \in C_{free}$ for $\tau \in [0, 1]$;
 - **feasible** if it is collision-free path, and $\pi(0) = q_{init}$ and $\pi(1) \in cl(\mathcal{Q}_{goal})$.
- A function π with the total variation $TV(\pi) < \infty$ is said to have bounded variation, where $TV(\pi)$ is the total variation

 $\mathsf{TV}(\pi) = \sup_{\{n \in \mathbb{N}, \mathbf{0} = \tau_{\mathbf{0}} < \tau_{\mathbf{1}} < \ldots < \tau_{n} = s\}} \sum_{i=1}^{n} |\pi(\tau_{i}) - \pi(\tau_{i-1})|$

• The total variation $TV(\pi)$ is de facto a path length

Path Planning Problem Formulation

Path planning problem is defined by a triplet

 $\mathcal{P} = (\mathcal{C}_{\textit{free}}, q_{\textit{init}}, \mathcal{Q}_{\textit{goal}}),$

•
$$\mathcal{C}_{\textit{free}} = \mathsf{cl}(\mathcal{C} \setminus \mathcal{C}_{\textit{obs}}), \ \mathcal{C} = (0,1)^d$$
, for $d \in \mathbb{N}, \ d \geq 2$

- $q_{\textit{init}} \in \mathcal{C}_{\textit{free}}$ is the initial configuration (condition)
- \mathcal{Q}_{goal} is the goal region defined as an open subspace of \mathcal{C}_{free}
- Function $\pi : [0,1] \to \mathbb{R}^d$ of *bounded variation* is called:
 - path if it is continuous;
 - collision-free path if it is path and $\pi(\tau) \in C_{free}$ for $\tau \in [0, 1]$;
 - **feasible** if it is collision-free path, and $\pi(0) = q_{init}$ and $\pi(1) \in cl(\mathcal{Q}_{goal})$.
- A function π with the total variation $TV(\pi) < \infty$ is said to have bounded variation, where $TV(\pi)$ is the total variation

$$\mathsf{TV}(\pi) = \sup_{\{n \in \mathbb{N}, 0 = \tau_0 < \tau_1 < ... < \tau_n = s\}} \sum_{i=1}^n |\pi(\tau_i) - \pi(\tau_{i-1})|$$

• The total variation $\mathsf{TV}(\pi)$ is de facto a path length

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Outline

- Sampling-Based Methods
- Probabilistic Road Map (PRM)
- Characteristics
- Rapidly Exploring Random Tree (RRT)

Jan Faigl, 2018

Path Planning Problem

• Feasible path planning:

For a path planning problem $(C_{free}, q_{init}, Q_{goal})$

- Find a feasible path $\pi : [0,1] \to C_{free}$ such that $\pi(0) = q_{init}$ and $\pi(1) \in cl(\mathcal{Q}_{goal})$, if such path exists
- Report failure if no such path exists

Optimal path planning:

The optimality problem asks for a feasible path with the minimum cost for $(C_{free}, q_{init}, \mathcal{Q}_{goal})$ and a cost function $c : \Sigma \to \mathbb{R}_{\geq 0}$

- Find a feasible path π^* such that $c(\pi^*) = \min\{c(\pi) : \pi \text{ is feasible}\}\$
- Report failure if no such path exists

The cost function is assumed to be monotonic and bounded, i.e., there exists k_c such that $c(\pi) \leq k_c \operatorname{TV}(\pi)$

Path Planning Problem

• Feasible path planning:

For a path planning problem ($C_{free}, q_{init}, Q_{goal}$)

- Find a feasible path $\pi : [0,1] \to C_{free}$ such that $\pi(0) = q_{init}$ and $\pi(1) \in cl(\mathcal{Q}_{goal})$, if such path exists
- Report failure if no such path exists

Optimal path planning:

The optimality problem asks for a feasible path with the minimum cost For $(C_{free}, q_{init}, Q_{goal})$ and a cost function $c : \Sigma \to \mathbb{R}_{\geq 0}$

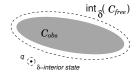
- Find a feasible path π^* such that $c(\pi^*) = \min\{c(\pi) : \pi \text{ is feasible}\}$
- Report failure if no such path exists

The cost function is assumed to be monotonic and bounded, i.e., there exists k_c such that $c(\pi) \leq k_c \operatorname{TV}(\pi)$

Probabilistic Completeness 1/2

First, we need robustly feasible path planning problem $(C_{free}, q_{init}, Q_{goal})$

 q ∈ C_{free} is δ-interior state of C_{free} if the closed ball of radius δ centered at q lies entirely inside C_{free}



16 / 51

• δ -interior of C_{free} is $int_{\delta}(C_{free}) = \{q \in C_{free} | \mathcal{B}_{/,\delta} \subseteq C_{free}\}$

- A collision free path π has strong δ-clearance, if π lies entirely inside int_δ(C_{free})
- (C_{free}, q_{init}, Q_{goal}) is robustly feasible if a solution exists and it is a feasible path with strong δ-clearance, for δ>0

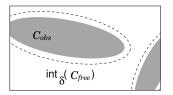
A collection of all δ -interior states

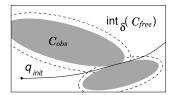
Probabilistic Completeness 2/2

An algorithm \mathcal{ALG} is probabilistically complete if, for any robustly feasible path planning problem $\mathcal{P} = (C_{free}, q_{init}, Q_{goal})$

 $\lim_{n \to \infty} \Pr(\mathcal{ALG} \text{ returns a solution to } \mathcal{P}) = 1.$

- It is a "relaxed" notion of completeness
- Applicable only to problems with a robust solution





We need some space, where random configurations can be sampled

Asymptotic Optimality 1/4

Asymptotic optimality relies on a notion of weak δ -clearance Notice, we use strong δ -clearance for probabilistic completeness

- Function $\psi : [0,1] \to C_{free}$ is called **homotopy**, if $\psi(0) = \pi_1$ and $\psi(1) = \pi_2$ and $\psi(\tau)$ is collision-free path for all $\tau \in [0,1]$
- A collision-free path π_1 is **homotopic** to π_2 if there exists homotopy function ψ

A path homotopic to π can be continuously transformed to π through $\mathcal{C}_{\text{free}}$

Asymptotic Optimality 1/4

Asymptotic optimality relies on a notion of weak δ -clearance

Notice, we use strong $\delta\text{-clearance}$ for probabilistic completeness

- Function $\psi : [0,1] \to C_{free}$ is called **homotopy**, if $\psi(0) = \pi_1$ and $\psi(1) = \pi_2$ and $\psi(\tau)$ is collision-free path for all $\tau \in [0,1]$
- A collision-free path π_1 is **homotopic** to π_2 if there exists homotopy function ψ

A path homotopic to π can be continuously transformed to π through $\mathcal{C}_{\rm free}$

Asymptotic Optimality 1/4

Asymptotic optimality relies on a notion of weak δ -clearance

Notice, we use strong δ -clearance for probabilistic completeness

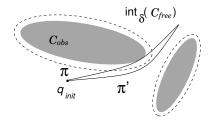
- Function $\psi : [0,1] \to C_{free}$ is called **homotopy**, if $\psi(0) = \pi_1$ and $\psi(1) = \pi_2$ and $\psi(\tau)$ is collision-free path for all $\tau \in [0,1]$
- A collision-free path π_1 is **homotopic** to π_2 if there exists homotopy function ψ

A path homotopic to π can be continuously transformed to π through $\mathcal{C}_{\text{free}}$

Asymptotic Optimality 2/4

A collision-free path π : [0, s] → C_{free} has weak δ-clearance if there exists a path π' that has strong δ-clearance and homotopy ψ with ψ(0) = π, ψ(1) = π', and for all α ∈ (0, 1] there exists δ_α > 0 such that ψ(α) has strong δ-clearance

Weak δ -clearance does not require points along a path to be at least a distance δ away from obstacles



A path π with a weak δ-clearance
 π' lies in int_δ(C_{free}) and it is the same homotopy class as π

Asymptotic Optimality 3/4

- It is applicable with a robust optimal solution that can be obtained as a limit of robust (non-optimal) solutions
- A collision-free path π^* is robustly optimal solution if it has weak δ -clearance and for any sequence of collision free paths $\{\pi_n\}_{n \in \mathbb{N}}, \pi_n \in \mathcal{C}_{free}$ such that $\lim_{n \to \infty} \pi_n = \pi^*$,

$$\lim_{n\to\infty}c(\pi_n)=c(\pi^*)$$

There exists a path with strong δ -clearance, and π^* is homotopic to such path and π^* is of the lower cost.

 \blacksquare Weak $\delta\text{-clearance}$ implies robustly feasible solution problem

(thus, probabilistic completeness)

Asymptotic Optimality 4/4

An algorithm \mathcal{ALG} is asymptotically optimal if, for any path planning problem $\mathcal{P} = (\mathcal{C}_{free}, q_{init}, \mathcal{Q}_{goal})$ and cost function c that admit a robust optimal solution with the finite cost c^*

$$Pr\left(\left\{\lim_{i\to\infty}Y_i^{\mathcal{ALG}}=c^*\right\}\right)=1$$

• Y_i^{ALG} is the extended random variable corresponding to the minimumcost solution included in the graph returned by ALG at the end of iteration *i*

Properties of the PRM Algorithm

- Completeness for the standard PRM has not been provided when it was introduced
- A simplified version of the PRM (called sPRM) has been mostly studied
- sPRM is probabilistically complete

What are the differences between PRM and sPRM?

PRM vs simplified PRM (sPRM)

Algorithm 1: PRM

Input: q_{init} , number of samples *n*, radius ρ **Output**: PRM – G = (V, E)

$$V \leftarrow \emptyset; E \leftarrow \emptyset;$$

for $i = 0, ..., n$ do

$$q_{rand} \leftarrow \text{SampleFree};$$

$$U \leftarrow \text{Near}(G = (V, E), q_{rand}, \rho);$$

$$V \leftarrow V \cup \{q_{rand}\};$$

foreach $u \in U$, with increasing

$$||u - q_r|| \text{ do}$$

if q_{rand} and u are not in the
same connected component of

$$G = (V, E) \text{ then}$$

if CollisionFree (q_{rand}, u)
then

$$E \leftarrow E \cup$$

$$\{(q_{rand}, u), (u, q_{rand})\};$$

return G = (V, E);

Algorithm 2: sPRM

Input: q_{init} , number of samples n, radius ρ Output: PRM – G = (V, E) $V \leftarrow \{q_{init}\} \cup$ {SampleFree_i} $_{i=1,...,n-1}$; $E \leftarrow \emptyset$; foreach $v \in V$ do $U \leftarrow \text{Near}(G = (V, E), v, \rho) \setminus \{v\}$; foreach $u \in U$ do if CollisionFree(v, u) then $E \leftarrow E \cup \{(v, u), (u, v)\}$;

return G = (V, E);

There are several ways for the set ${\boldsymbol{U}}$ of vertices to connect them

- k-nearest neighbors to v
- variable connection radius ρ as a function of n

PRM – Properties

- sPRM (simplified PRM)
 - Probabilistically complete and asymptotically optimal
 - Processing complexity O(n²)
 - Query complexity O(n²)
 - Space complexity $O(n^2)$
- Heuristics practically used are usually not probabilistic complete
 - k-nearest sPRM is not probabilistically complete
 - variable radius sPRM is not probabilistically complete

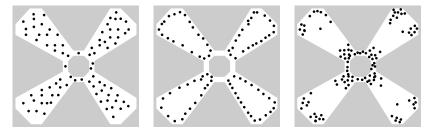
Based on analysis of Karaman and Frazzoli

PRM algorithm:

- + Has very simple implementation
- + Completeness (for sPRM)
- Differential constraints (car-like vehicles) are not straightforward

Comments about Random Sampling 1/2

Different sampling strategies (distributions) may be applied



- Notice, one of the main issue of the randomized sampling-based approaches is the narrow passage
- Several modifications of sampling based strategies have been proposed in the last decades

Comments about Random Sampling 2/2

• A solution can be found using only a few samples.

Do you know the Oraculum? (from Alice in Wonderland)

- Sampling strategies are important
 - Near obstacles
 - Narrow passages
 - Grid-based
 - Uniform sampling must be carefully considered

James J. Kuffner (2004): Effective Sampling and Distance Metrics for 3D Rigid Body Path Planning. ICRA.

Naïve sampling

Uniform sampling of SO(3) using Euler angles

B4M36UIR - Lecture 05: Sampling-based Motion Planning

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Outline

- Sampling-Based Methods
- Probabilistic Road Map (PRM)
- Characteristics
- Rapidly Exploring Random Tree (RRT)

Jan Faigl, 2018

Rapidly Exploring Random Tree (RRT)

Single–Query algorithm

- It incrementally builds a graph (tree) towards the goal area.
 It does not guarantee precise path to the goal configuration.
- 1. Start with the initial configuration q_0 , which is a root of the constructed graph (tree)
- 2. Generate a new random configuration q_{new} in C_{free}
- 3. Find the closest node q_{near} to q_{new} in the tree

E.g., using KD-tree implementation like ANN or FLANN libraries

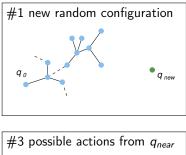
4. Extend q_{near} towards q_{new}

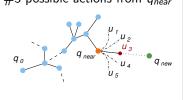
Extend the tree by a small step, but often a direct control $u \in U$ that will move robot the position closest to q_{new} is selected (applied for δt)

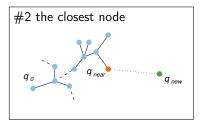
5. Go to Step 2, until the tree is within a sufficient distance from the goal configuration

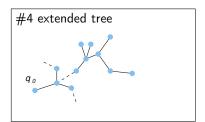
Or terminates after dedicated running time

RRT Construction









RRT Algorithm

- Motivation is a single query and *control-based* path finding
- It incrementally builds a graph (tree) towards the goal area

Algorithm 3: Rapidly Exploring Random Tree (RRT)

Input:
$$q_{init}$$
, number of samples n

 Output: Roadmap $G = (V, E)$
 $V \leftarrow \{q_{init}\}; E \leftarrow \emptyset;$

 for $i = 1, \dots, n$ do

 $q_{rand} \leftarrow$ SampleFree;

 $q_{nearest} \leftarrow \text{Nearest}(G = (V, E), q_{rand});$
 $q_{new} \leftarrow$ Steer($q_{nearest}, q_{rand}$);

 if CollisionFree($q_{nearest}, q_{new}$) then

 $V \leftarrow V \cup \{x_{new}\}; E \leftarrow E \cup \{(x_{nearest}, x_{new})\};$

return G = (V, E);

Extend the tree by a small step, but often a direct control $u \in U$ that will move robot to the position closest to q_{new} is selected (applied for dt)

Properties of RRT Algorithms

Rapidly explores the space

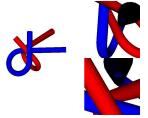
 q_{new} will more likely be generated in large not yet covered parts

- Allows considering kinodynamic/dynamic constraints (during the expansion)
- Can provide trajectory or a sequence of direct control commands for robot controllers
- A collision detection test is usually used as a "black-box"

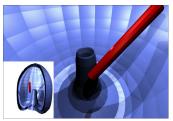
E.g., RAPID, Bullet libraries

- Similarly to PRM, RRT algorithms have poor performance in narrow passage problems
- RRT algorithms provides feasible paths *It can be relatively far from optimal solution, e.g., according to the length of the path*
- Many variants of RRT have been proposed

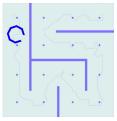
RRT – Examples 1/2



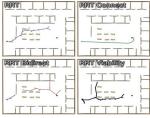
Alpha puzzle benchmark



Bugtrap benchmark



Apply rotations to reach the goal



Variants of RRT algorithms

Courtesy of V. Vonásek and P. Vaněk

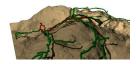
RRT – Examples 2/2

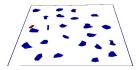
Planning for a car-like robot

Planning on a 3D surface

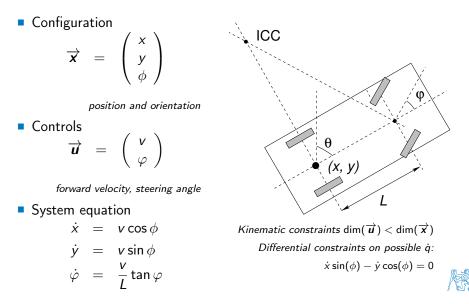
Planning with dynamics

(friction forces)





Car-Like Robot

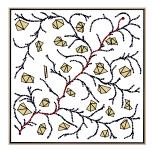


Jan Faigl, 2018

Control-Based Sampling

- Select a configuration q from the tree T of the current configurations
- Pick a control input *u* = (v, φ) and integrate system (motion) equation over a short period

$$\begin{pmatrix} \Delta x \\ \Delta y \\ \Delta \varphi \end{pmatrix} = \int_{t}^{t+\Delta t} \begin{pmatrix} v \cos \phi \\ v \sin \phi \\ \frac{v}{L} \tan \varphi \end{pmatrix} dt$$



If the motion is collision-free, add the endpoint to the tree

E.g., considering k configurations for $k\delta t = dt$

Part II

Part 2 – Optimal Sampling-based Motion Planning Methods

Jan Faigl, 2018

Outline

Optimal Motion Planners

Rapidly-exploring Random Graph (RRG)

37 / 51

Jan Faigl, 2018

Sampling-Based Motion Planning

- PRM and RRT are theoretically probabilistic complete
- They provide a feasible solution without quality guarantee Despite that, they are successfully used in many practical applications
- In 2011, a systematical study of the asymptotic behavior of randomized sampling-based planners has been published
 It shows, that in some cases, they converge to a non-optimal

It shows, that in some cases, they converge to a non-optimal value with a probability 1

 Based on the study, new algorithms have been proposed: RRG and optimal RRT (RRT*)

Karaman, S., Frazzoli, E. (2011):Sampling-based algorithms for optimal motion planning. IJRR.

http://sertac.scripts.mit.edu/rrtstar

B4M36UIR - Lecture 05: Sampling-based Motion Planning

RRT and Quality of Solution 1/2

- Let Y_i^{RRT} be the cost of the best path in the RRT at the end of iteration i
- Y_i^{RRT} converges to a random variable

İ

$$\lim_{i\to\infty}Y_i^{RRT}=Y_{\infty}^{RRT}$$

 \blacksquare The random variable Y_{∞}^{RRT} is sampled from a distribution with zero mass at the optimum, and

$$\Pr[Y_{\infty}^{RRT} > c^*] = 1$$

Karaman and Frazzoli, 2011

 The best path in the RRT converges to a sub-optimal solution almost surely

RRT and Quality of Solution 2/2

- RRT does not satisfy a necessary condition for the asymptotic optimality
 - For 0 < R < inf_{q∈Q_{goal} ||q q_{init}||, the event {lim_{n→∞} Y_n^{RTT} = c*} occurs only if the k-th branch of the RRT contains vertices outside the *R*-ball centered at q_{init} for infinitely many k}

See Appendix B in Karaman&Frazzoli, 2011

It is required the root node will have infinitely many subtrees that extend at least a distance ϵ away from q_{init}

The sub-optimality is caused by disallowing new better paths to be discovered

Outline

Optimal Motion Planners

Rapidly-exploring Random Graph (RRG)

41 / 51

Jan Faigl, 2018

Rapidly-exploring Random Graph (RRG)

Algorithm 4: Rapidly-exploring Random Graph (RRG)

Input:
$$q_{init}$$
, number of samples n
Output: $G = (V, E)$
 $V \leftarrow \emptyset; E \leftarrow \emptyset;$
for $i = 0, ..., n$ do
 $q_{rand} \leftarrow \text{SampleFree};$
 $q_{nearest} \leftarrow \text{Nearest}(G = (V, E), q_{rand});$
 $q_{new} \leftarrow \text{Steer}(q_{nearest}, q_{rand});$
if CollisionFree $(q_{nearest}, q_{new})$ then
 $Q_{near} \leftarrow \text{Near}(G = (V, E), q_{rand});$
 $V \leftarrow V \cup \{q_{new}, \min\{\gamma_{RRG}(\log(\text{card}(V))/(\text{card}(V))^{1/d}, \eta\});$
 $V \leftarrow V \cup \{q_{new}\};$
 $E \leftarrow E \cup \{(q_{nearest}, q_{new}), (q_{new}, q_{nearest})\};$
foreach $q_{near} \in Q_{near}$ do
 if CollisionFree (q_{near}, q_{new}) then
 $L \in K \cup \{(q_{rand}, u), (u, q_{rand})\};$
return $G = (V, E);$

Proposed by Karaman and Frazzoli (2011). Theoretical results are related to properties of Random Geometric Graphs (RGG) introduced by Gilbert (1961) and further studied by Penrose (1999).

RRG Expansions

- At each iteration, RRG tries to connect new sample to all vertices in the r_n ball centered at it.
- The ball of radius

$$r(\operatorname{card}(V)) = \min\left\{\gamma_{RRG}\left(\frac{\log\left(\operatorname{card}(V)\right)}{\operatorname{card}(V)}\right)^{1/d}, \eta\right\}$$

where

- η is the constant of the local steering function
- $\gamma_{RRG} > \gamma^*_{RRG} = 2(1+1/d)^{1/d} (\mu(\mathcal{C}_{free})/\xi_d)^{1/d}$
 - *d* dimension of the space;
 - $\mu(\mathcal{C}_{\text{free}})$ Lebesgue measure of the obstacle–free space;
 - ξ_d volume of the unit ball in *d*-dimensional Euclidean space.
- The connection radius decreases with n
- The rate of decay ≈ the average number of connections attempted is proportional to log(n)

RRG Properties

- Probabilistically complete
- Asymptotically optimal
- Complexity is O(log n)

(per one sample)

- Computational efficiency and optimality
 - Attempt connection to Θ(log n) nodes at each iteration;

in average

- Reduce volume of the "connection" ball as log(n)/n;
- Increase the number of connections as log(n)

Other Variants of the Optimal Motion Planning

 PRM* – it follows standard PRM algorithm where connections are attempted between roadmap vertices that are within connection radius r as a function of n

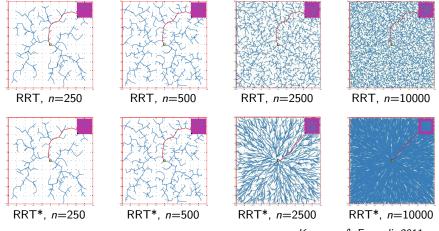
$$r(n) = \gamma_{PRM} (\log(n)/n)^{1/d}$$

RRT* – a modification of the RRG, where cycles are avoided

A tree version of the RRG

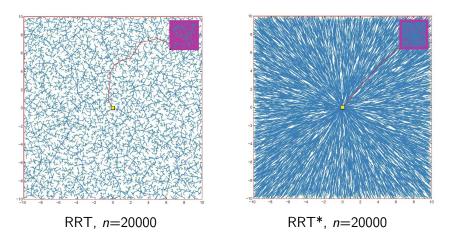
- A tree roadmap allows to consider non-holonomic dynamics and kinodynamic constraints
- It is basically RRG with "rerouting" the tree when a better path is discovered

Example of Solution 1/3

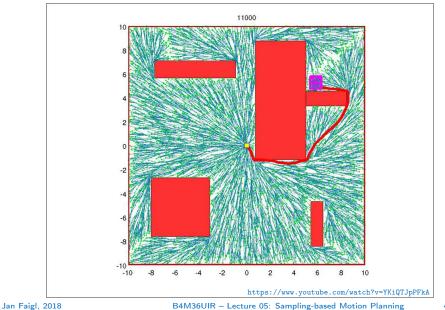


Karaman & Frazzoli, 2011

Example of Solution 2/3



Example of Solution 3/3



48 / 51

17S

Overview of Randomized Sampling-based Algorithms

Algorithm	Probabilistic Completeness	Asymptotic Optimality
sPRM	~	×
k-nearest sPRM	×	×
RRT	~	×
RRG	~	~
PRM*	~	✓
RRT*	~	✓

Notice, k-nearest variants of RRG, PRM*, and RRT* are complete and optimal as well

Summary of the Lecture

Jan Faigl, 2018

B4M36UIR – Lecture 05: Sampling-based Motion Planning

Topics Discussed

- Randomized Sampling-based Methods
- Probabilistic Road Map (PRM)
- Characteristics of path planning problems
- Random sampling
- Rapidly Exploring Random Tree (RRT)
- Optimal sampling-based motion planning
- Rapidly-exploring Random Graph (RRG)

Next: Multi-Goal Motion Planning and Multi-Goal Path Planning

Topics Discussed

- Randomized Sampling-based Methods
- Probabilistic Road Map (PRM)
- Characteristics of path planning problems
- Random sampling
- Rapidly Exploring Random Tree (RRT)
- Optimal sampling-based motion planning
- Rapidly-exploring Random Graph (RRG)
- Next: Multi-Goal Motion Planning and Multi-Goal Path Planning

