Randomized Sampling-based Motion Planning Methods

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

Lecture 05

B4M36UIR - Artificial Intelligence in Robotics

Overview of the Lecture

- Part 1 Randomized Sampling-based Motion Planning Methods
 - Sampling-Based Methods
 - Probabilistic Road Map (PRM)
 - Characteristics
 - Rapidly Exploring Random Tree (RRT)
- Part 2 Optimal Sampling-based Motion Planning Methods
 - Optimal Motion Planners
 - Rapidly-exploring Random Graph (RRG)

Part I

Part 1 – Sampling-based Motion Planning

(Randomized) Sampling-based Motion Planning

- It uses an explicit representation of the obstacles in C-space.
 - A "black-box" function is used to evaluate if a configuration q is a collision-free, e.g.,
 - Based on geometrical models and testing collisions of the models.
 - 2D or 3D shapes of the robot and environment can be represented as sets of triangles, i.e., tesselated models.
 - Collision test is then a test of for the intersection of the triangles.

E.g., using RAPID library http://gamma.cs.unc.edu/OBB/

- Creates a discrete representation of C_{free} .
- Configurations in C_{free} are sampled randomly and connected to a roadmap (probabilistic roadmap).
- Rather than the full completeness they provide probabilistic completeness or resolution completeness.

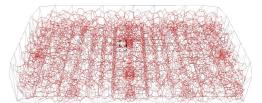
Probabilistic complete algorithms: with increasing number of samples an admissible solution would be found (if exists).

Probabilistic Roadmaps

A discrete representation of the continuous C-space generated by randomly sampled configurations in C_{free} that are connected into a graph.

- Nodes of the graph represent admissible configurations of the robot.
- Edges represent a feasible path (trajectory) between the particular configurations.

Probabilistic complete algorithms: with increasing number of samples an admissible solution would be found (if exists).



Having the graph, the final path (trajectory) can be found by a graph search technique.

Incremental Sampling and Searching

- Single query sampling-based algorithms incrementally create a search graph (roadmap).
 - 1. Initialization G(V, E) an undirected search graph, V may contain q_{start} , q_{goal} and/or other points in C_{free} .
 - 2. **Vertex selection method** choose a vertex $q_{cur} \in V$ for the expansion.
 - 3. Local planning method for some $q_{new} \in \mathcal{C}_{free}$, attempt to construct a path $\tau: [0,1] \to \mathcal{C}_{free}$ such that $\tau(0) = q_{cur}$ and $\tau(1) = q_{new}$, τ must be checked to ensure it is collision free.
 - If τ is not a collision-free, go to Step 2.
 - 4. Insert an edge in the graph Insert τ into E as an edge from q_{cur} to q_{new} and insert q_{new} to V if $q_{new} \notin V$. How to test q_{new} is in V?
 - 5. **Check for a solution** Determine if *G* encodes a solution, e.g., using a single search tree or graph search technique.
 - Repeat Step 2 iterate unless a solution has been found or a termination condition is satisfied.

LaValle, S. M.: Planning Algorithms (2006), Chapter 5.4

Probabilistic Roadmap Strategies

Multi-Query strategy is roadmap based.

- Generate a single roadmap that is then used for repeated planning queries.
- An representative technique is Probabilistic RoadMap (PRM).
 Kavraki, L., Svestka, P., Latombe, J.-C., Overmars, M. H.B (1996): Probabilistic

Roadmaps for Path Planning in High Dimensional Configuration Spaces. T-RO.

Single-Query strategy is an incremental approach.

- For each planning problem, it constructs a new roadmap to characterize the subspace of C-space that is relevant to the problem.
 - Rapidly-exploring Random Tree RRT;

LaValle, 1998

Expansive-Space Tree – EST;

Hsu et al., 1997

■ Sampling-based Roadmap of Trees – SRT.

A combination of multiple-query and single-query approaches.

Plaku et al., 2005

Multi-Query Strategy

Build a roadmap (graph) representing the environment.

- Learning phase
 - 1.1 Sample *n* points in C_{free} .
 - 1.2 Connect the random configurations using a local planner.
- 2. Query phase
 - 2.1 Connect start and goal configurations with the PRM.

E.g., using a local planner.

2.2 Use the graph search to find the path.

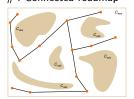
Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H. Overmars, IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

First planner that demonstrates ability to solve general planning prob-

PRM Construction

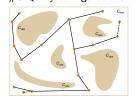
#1 Given problem domain

#4 Connected roadmap

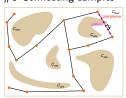


#2 Random configuration

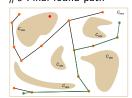
#5 Query configurations



#3 Connecting samples

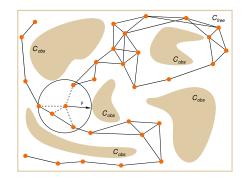


#6 Final found path



Practical PRM

- Incremental construction.
- **Connect nodes in a radius** ρ .
- Local planner tests collisions up to selected resolution δ .
- Path can be found by Dijkstra's algorithm.



What are the properties of the PRM algorithm?

We need a couple of more formalisms.

Path Planning Problem Formulation

Path planning problem is defined by a triplet

$$\mathcal{P} = (\mathcal{C}_{\mathit{free}}, q_{\mathit{init}}, \mathcal{Q}_{\mathit{goal}}),$$
 where

- $lacksymbol{arphi}$ $\mathcal{C}_{\mathit{free}} = \mathsf{cl}(\mathcal{C} \setminus \mathcal{C}_{\mathit{obs}}), \ \mathcal{C} = (0,1)^d, \ \mathsf{for} \ d \in \mathbb{N}, \ d \geq 2;$ (scaling)
- $q_{init} \in C_{free}$ is the initial configuration (condition);
- lacksquare $\mathcal{Q}_{\textit{goal}}$ is the goal region defined as an open subspace of $\mathcal{C}_{\textit{free}}.$
- Function $\pi: [0,1] \to \mathbb{R}^d$ of bounded variation is called:
 - path if it is continuous;
 - **collision-free path** if it is a path and $\pi(\tau) \in \mathcal{C}_{free}$ for $\tau \in [0,1]$;
 - **feasible** if it is a collision-free path, and $\pi(0) = q_{init}$ and $\pi(1) \in cl(\mathcal{Q}_{goal})$.
- A function π with the total variation $\mathsf{TV}(\pi) < \infty$ is said to have bounded variation, where $\mathsf{TV}(\pi)$ is the total variation

$$\mathsf{TV}(\pi) = \sup_{\{n \in \mathbb{N}, 0 = \tau_0 < \tau_1 < \dots < \tau_n = s\}} \sum_{i=1}^n |\pi(\tau_i) - \pi(\tau_{i-1})|.$$

■ The total variation $TV(\pi)$ is de facto a path length.

Path Planning Problem

Feasible path planning

For a path planning problem (C_{free} , q_{init} , Q_{goal}):

- Find a feasible path $\pi:[0,1]\to \mathcal{C}_{free}$ such that $\pi(0)=q_{init}$ and $\pi(1)\in \mathsf{cl}(\mathcal{Q}_{goal})$, if such path exists;
- Report failure if no such path exists.

Optimal path planning

The optimality problem asks for a feasible path with the minimum cost.

For $(C_{free}, q_{init}, \mathcal{Q}_{goal})$ and a cost function $c : \Sigma \to \mathbb{R}_{\geq 0}$:

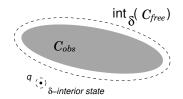
- Find a feasible path π^* such that $c(\pi^*) = \min\{c(\pi) : \pi \text{ is feasible}\};$
- Report failure if no such path exists.

The cost function is assumed to be monotonic and bounded, i.e., there exists k_c such that $c(\pi) \le k_c \operatorname{TV}(\pi)$

Probabilistic Completeness 1/2

First, we need robustly feasible path planning problem (C_{free} , q_{init} , Q_{goal}).

• $q \in \mathcal{C}_{free}$ is δ -interior state of \mathcal{C}_{free} if the closed ball of radius δ centered at q lies entirely inside \mathcal{C}_{free} .



- δ -interior of \mathcal{C}_{free} is $\operatorname{int}_{\delta}(\mathcal{C}_{free}) = \{q \in \mathcal{C}_{free} | \mathcal{B}_{/,\delta} \subseteq \mathcal{C}_{free}\}$.

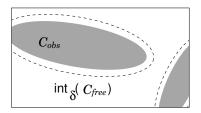
 A collection of all δ -interior states.
- A collision free path π has strong δ -clearance, if π lies entirely inside int $_{\delta}(\mathcal{C}_{free})$.
- (C_{free} , q_{init} , Q_{goal}) is *robustly feasible* if a solution exists and it is a feasible path with *strong* δ -clearance, for δ >0.

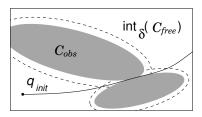
Probabilistic Completeness 2/2

An algorithm \mathcal{ALG} is probabilistically complete if, for any robustly feasible path planning problem $\mathcal{P} = (\mathcal{C}_{free}, q_{init}, \mathcal{Q}_{goal})$,

$$\lim_{n\to\infty} \Pr\big(\mathcal{ALG} \text{ returns a solution to } \mathcal{P}\big) = 1.$$

- It is a "relaxed" notion of the completeness.
- Applicable only to problems with a robust solution.





We need some space, where random configurations can be sampled.

Asymptotic Optimality 1/4 Homotopy

Asymptotic optimality relies on a notion of weak δ -clearance.

Notice, we use strong δ -clearance for probabilistic completeness.

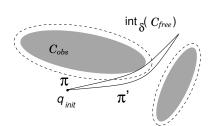
- We need to describe possibly improving paths (during the planning).
- Function ψ : $[0,1] \to \mathcal{C}_{free}$ is called **homotopy**, if $\psi(0) = \pi_1$ and $\psi(1) = \pi_2$ and $\psi(\tau)$ is collision-free path for all $\tau \in [0,1]$.
- A collision-free path π_1 is **homotopic** to π_2 if there exists homotopy function ψ .

A path homotopic to π can be continuously transformed to π through \mathcal{C}_{free} .

Asymptotic Optimality 2/4 Weak δ -clearance

A collision-free path $\pi:[0,s]\to \mathcal{C}_{free}$ has weak δ -clearance if there exists a path π' that has strong δ -clearance and homotopy ψ with $\psi(0)=\pi,\ \psi(1)=\pi'$, and for all $\alpha\in(0,1]$ there exists $\delta_{\alpha}>0$ such that $\psi(\alpha)$ has strong δ -clearance.

Weak δ -clearance does not require points along a path to be at least a distance δ away from obstacles.



- A path π with a weak δ -clearance.
- π' lies in $\operatorname{int}_{\delta}(\mathcal{C}_{free})$ and it is the same homotopy class as π .

Asymptotic Optimality 3/4 Robust Optimal Solution

- It is applicable with a robust optimal solution that can be obtained as a limit of robust (non-optimal) solutions.
- A collision-free path π^* is **robustly optimal solution** if it has *weak* δ -clearance and for any sequence of collision free paths $\{\pi_n\}_{n\in\mathbb{N}}$, $\pi_n\in\mathcal{C}_{free}$ such that $\lim_{n\to\infty}\pi_n=\pi^*$,

$$\lim_{n\to\infty}c(\pi_n)=c(\pi^*).$$

There exists a path with strong δ -clearance, and π^* is homotopic to such path and π^* is of the lower cost.

• Weak δ -clearance implies robustly feasible solution problem.

Thus, it implies the probabilistic completeness.

Asymptotic Optimality 4/4 Asymptotically optimal algorithm

An algorithm \mathcal{ALG} is asymptotically optimal if, for any path planning problem $\mathcal{P} = (\mathcal{C}_{free}, q_{init}, \mathcal{Q}_{goal})$ and cost function c that admit a robust optimal solution with the finite cost c^*

$$Pr\left(\left\{\lim_{i\to\infty}Y_i^{\mathcal{ALG}}=c^*
ight\}
ight)=1.$$

• $Y_i^{\mathcal{ALG}}$ is the extended random variable corresponding to the minimum-cost solution included in the graph returned by \mathcal{ALG} at the end of the iteration i.

Properties of the PRM Algorithm

- Completeness for the standard PRM has not been provided when it was introduced.
- A simplified version of the PRM (called sPRM) has been mostly studied.
- sPRM is probabilistically complete.

What are the differences between PRM and sPRM?

Algorithm 1: PRM

```
Vstup: q_{init}, number of samples n, radius \rho
Výstup: PRM – G = (V, E)
V \leftarrow \emptyset : E \leftarrow \emptyset :
for i = 0, \ldots, n do
      q_{rand} \leftarrow \mathsf{SampleFree};
      U \leftarrow \text{Near}(G = (V, E), q_{rand}, \rho);
      V \leftarrow V \cup \{q_{rand}\};
     foreach u \in U, with increasing
     ||u-q_r|| do
            if qrand and u are not in the
            same connected component of
            G = (V, E) then
                  if CollisionFree(q_{rand}, u)
                  then
                        E \leftarrow E \cup
                     = \{(q_{rand}, u), (u, q_{rand})\};
```

Algorithm 2: sPRM

```
Vstup: q_{init}, number of samples n,
          radius \rho
Výstup: PRM – G = (V, E)
V \leftarrow \{q_{init}\} \cup
\{SampleFree_i\}_{i=1,...,n-1}; E \leftarrow \emptyset;
foreach v \in V do
      U \leftarrow \text{Near}(G = (V, E), v, \rho) \setminus \{v\};
      foreach u \in U do
            if CollisionFree(v, u) then
                  E \leftarrow E \cup \{(v, u), (u, v)\};
```

```
return G = (V, E);
```

There are several ways for the set U of vertices to connect them:

- k-nearest neighbors to v;
- variable connection radius ρ as a function of n

return G = (V, E);

PRM – Properties

- sPRM (simplified PRM):
 - Probabilistically complete and asymptotically optimal.
 - Processing complexity can be bounded by $O(n^2)$.
 - Query complexity can be bounded by $O(n^2)$.
 - Space complexity can be bounded by $O(n^2)$.
- Heuristics practically used are usually not probabilistic complete.
 - *k*-nearest sPRM is not probabilistically complete.
 - Variable radius sPRM is not probabilistically complete.

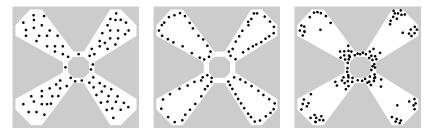
Based on analysis of Karaman and Frazzoli

PRM algorithm

- + It has very simple implementation.
- + It provides completeness (for sPRM).
- Differential constraints (car-like vehicles) are not straightforward.

Comments about Random Sampling 1/2

Different sampling strategies (distributions) may be applied.



- Notice, one of the main issue of the randomized sampling-based approaches is the narrow passage.
- Several modifications of sampling based strategies have been proposed in the last decades.

Comments about Random Sampling 2/2

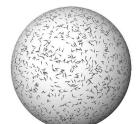
A solution can be found using only a few samples.

Do you know the Oraculum? (from Alice in Wonderland)

- Sampling strategies are important:
 - Near obstacles;
 - Narrow passages;
 - Grid-based:
 - Uniform sampling must be carefully considered.

James J. Kuffner (2004): Effective Sampling and Distance Metrics for 3D Rigid Body Path Planning. ICRA.

Naïve sampling



Uniform sampling of SO(3) using Euler angles

Rapidly Exploring Random Tree (RRT)

Single-Query algorithm

It incrementally builds a graph (tree) towards the goal area.

It does not guarantee precise path to the goal configuration.

- 1. Start with the initial configuration q_0 , which is a root of the constructed graph (tree).
- 2. Generate a new random configuration q_{new} in C_{free} .
- 3. Find the closest node q_{near} to q_{new} in the tree.

E.g., using KD-tree implementation like ANN or FLANN libraries.

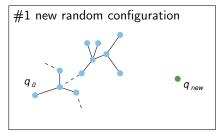
4. Extend q_{near} towards q_{new} .

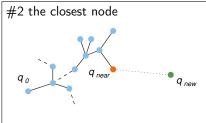
Extend the tree by a small step, but often a direct control $u \in \mathcal{U}$ that will move robot the position closest to q_{new} is selected (applied for δt).

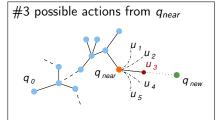
5. Go to Step 2, until the tree is within a sufficient distance from the goal configuration.

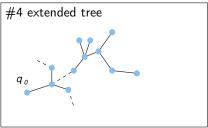
Or terminates after dedicated running time.

RRT Construction









RRT Algorithm

- Motivation is a single query and control-based path finding
- It incrementally builds a graph (tree) towards the goal area

Algorithm 3: Rapidly Exploring Random Tree (RRT)

Extend the tree by a small step, but often a direct control $u \in \mathcal{U}$ that will move robot to the position closest to q_{new} is selected (applied for dt)

Rapidly-exploring random trees: A new tool for path planning S. M. LaValle,

Technical Report 98-11, Computer Science Dept., Iowa State University, 1998.

Properties of RRT Algorithms

■ The RRT algorithm rapidly explores the space.

 q_{new} will more likely be generated in large not yet covered parts.

- Allows considering kinodynamic/dynamic constraints (during the expansion).
- Can provide trajectory or a sequence of direct control commands for robot controllers.
- A collision detection test is usually used as a "black-box".

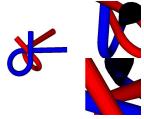
E.g., RAPID, Bullet libraries.

- Similarly to PRM, RRT algorithms have poor performance in narrow passage problems.
- RRT algorithms provides feasible paths.

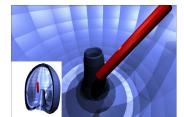
It can be relatively far from optimal solution, e.g., according to the length of the path.

Many variants of RRT have been proposed.

RRT – Examples 1/2

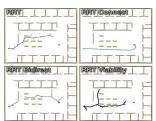


Alpha puzzle benchmark



Bugtrap benchmark

Apply rotations to reach the goal

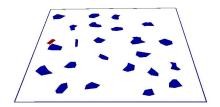


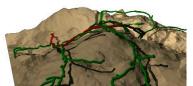
Variants of RRT algorithms

Courtesy of V. Vonásek and P. Vaněk

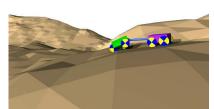
RRT – Examples 2/2

■ Planning for a car-like robot





Planning on a 3D surface



Planning with dynamics (friction forces)

Courtesy of V. Vonásek and P. Vaněk.

Car-Like Robot

Configuration

$$\overrightarrow{x} = \begin{pmatrix} x \\ y \\ \phi \end{pmatrix}$$

position and orientation.

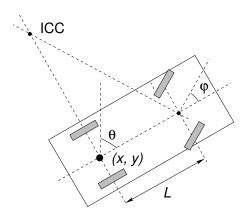
Controls

$$\overrightarrow{\boldsymbol{u}} = \begin{pmatrix} v \\ \varphi \end{pmatrix}$$

forward velocity, steering angle.

System equation

$$\dot{x} = v \cos \phi$$
 $\dot{y} = v \sin \phi$
 $\dot{\varphi} = \frac{v}{\tau} \tan \varphi$



Kinematic constraints $\dim(\overrightarrow{u}) < \dim(\overrightarrow{x})$.

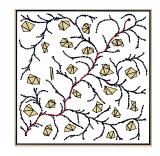
Differential constraints on possible q:

$$\dot{x}\sin(\phi) - \dot{y}\cos(\phi) = 0.$$

Control-Based Sampling

- Select a configuration q from the tree T of the current configurations.
- Pick a control input $\overrightarrow{u} = (v, \varphi)$ and the integrate system (motion) equation over a short period Δt :

$$\begin{pmatrix} \Delta x \\ \Delta y \\ \Delta \varphi \end{pmatrix} = \int_{t}^{t+\Delta t} \begin{pmatrix} v\cos\phi \\ v\sin\phi \\ \frac{v}{L}\tan\varphi \end{pmatrix} dt.$$



If the motion is collision-free, add the endpoint to the tree.

E.g., considering k configurations for $k\delta t = dt$.

Part II

Part 2 – Optimal Sampling-based Motion Planning Methods

Sampling-Based Motion Planning

- PRM and RRT are theoretically probabilistic complete.
- They provide a feasible solution without quality guarantee.

Despite that, they are successfully used in many practical applications.

In 2011, a systematical study of the asymptotic behavior of randomized sampling-based planners has been published.

> It shows, that in some cases, they converge to a non-optimal value with a probability 1.

Based on the study, new algorithms have been proposed: RRG and optimal RRT (RRT*).

Karaman, S., Frazzoli, E. (2011):Sampling-based algorithms for optimal motion planning. IJRR.

http://sertac.scripts.mit.edu/rrtstar

38 / 52

RRT and Quality of Solution 1/2

- Let Y_i^{RRT} be the cost of the best path in the RRT at the end of the iteration i.
- Y_i^{RRT} converges to a random variable

$$\lim_{i\to\infty}Y_i^{RRT}=Y_{\infty}^{RRT}.$$

■ The random variable Y_{∞}^{RRT} is sampled from a distribution with zero mass at the optimum, and

$$Pr[Y_{\infty}^{RRT} > c^*] = 1.$$

Karaman and Frazzoli, 2011

■ The best path in the RRT converges to a sub-optimal solution almost surely.

RRT and Quality of Solution 2/2

- RRT does not satisfy a necessary condition for the asymptotic optimality.
 - For $0 < R < \inf_{q \in \mathcal{Q}_{goal}} ||q q_{init}||$, the event $\{\lim_{n \to \infty} Y_n^{RTT} = c^*\}$ occurs only if the k-th branch of the RRT contains vertices outside the R-ball centered at q_{init} for infinitely many k.

See Appendix B in Karaman and Frazzoli, 2011

It is required the root node will have infinitely many subtrees that extend at least a distance ϵ away from q_{init} .

The sub-optimality is caused by disallowing new better paths to be discovered

Rapidly-exploring Random Graph (RRG)

```
Algorithm 4: Rapidly-exploring Random Graph (RRG)
Vstup: q<sub>init</sub>, number of samples n
Výstup: G = (V, E)
V \leftarrow \emptyset : E \leftarrow \emptyset :
for i = 0, \ldots, n do
    a_{rand} \leftarrow \mathsf{SampleFree}:
    q_{nearest} \leftarrow \text{Nearest}(G = (V, E), q_{rand});
    q_{new} \leftarrow \text{Steer}(q_{nearest}, q_{rand});
    if CollisionFree(q_{nearest}, q_{new}) then
          Q_{near} \leftarrow \text{Near}(G =
         (V, E), q_{new}, min\{\gamma_{RRG}(\log(\operatorname{card}(V)) / \operatorname{card}(V))^{1/d}, \eta\});
         V \leftarrow V \cup \{q_{new}\};
          E \leftarrow E \cup \{(q_{nearest}, q_{new}), (q_{new}, q_{nearest})\};
         foreach q_{near} \in \mathcal{Q}_{near} do
               if CollisionFree(q_{near}, q_{new}) then
               return G = (V, E);
```

Proposed by Karaman and Frazzoli (2011). Theoretical results are related to properties of Random Geometric Graphs (RGG) introduced by Gilbert (1961) and further studied by Penrose (1999).

RRG Expansions

- At each iteration, RRG tries to connect new sample to all vertices in the r_n ball centered at it.
- The ball of radius

$$r(\operatorname{card}(V)) = \min \left\{ \gamma_{RRG} \left(\frac{\log (\operatorname{card}(V))}{\operatorname{card}(V)} \right)^{1/d}, \eta \right\},$$

where

- $lack \eta$ is the constant of the local steering function;
- $\gamma_{RRG} > \gamma_{RRG}^* = 2(1+1/d)^{1/d} (\mu(\mathcal{C}_{free})/\xi_d)^{1/d};$
 - d dimension of the space;
 - $\mu(\mathcal{C}_{free})$ Lebesgue measure of the obstacle-free space;
 - ξ_d volume of the unit ball in d-dimensional Euclidean space.
- The connection radius decreases with n.
- The rate of decay \approx the average number of connections attempted is proportional to log(n).

RRG Properties

- Probabilistically complete;
- Asymptotically optimal;
- Complexity is $O(\log n)$.

(per one sample)

- Computational efficiency and optimality:
 - It attempts a connection to $\Theta(\log n)$ nodes at each iteration;

in average

- Reduce volume of the "connection" ball as $\log(n)/n$;
- Increase the number of connections as log(n).

Other Variants of the Optimal Motion Planning

PRM* follows the standard PRM algorithm where connections are attempted between roadmap vertices that are the within connection radius r as the function of n

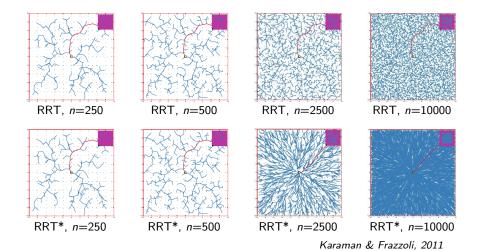
$$r(n) = \gamma_{PRM} (\log(n)/n)^{1/d}.$$

RRT* is a modification of the RRG, where cycles are avoided.

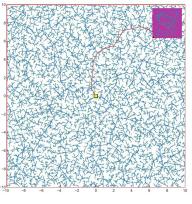
It is a tree version of the RRG.

- A tree roadmap allows to consider non-holonomic dynamics and kinodynamic constraints.
- It is basically the RRG with "rerouting" the tree when a better path is discovered.

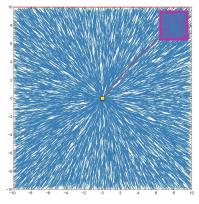
Example of Solution 1/3



Example of Solution 2/3

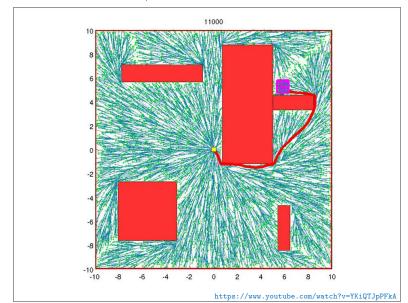


RRT, n=20000



RRT*, n=20000

Example of Solution 3/3



Overview of Randomized Sampling-based Algorithms

Algorithm	Probabilistic Completeness	•
sPRM	✓	×
k-nearest sPRM	×	×
RRT	✓	×
RRG	✓	~
PRM*	✓	~
RRT*	•	✓

Notice, k-nearest variants of RRG, PRM*, and RRT* are complete and optimal as well.

Summary of the Lecture

Summary

Properties of the sampling-based motion planning algorithms

- Single and multi-query approaches
- Path, collision-free path, feasible path
- Feasible path planning and optimal path planning
- Probabilistic completeness, strong δ -clearance, robustly feasible path planning problem
- Asymptotic optimality, homotopy, weak δ -clearance, robust optimal solution
- PRM, RRT, RRG, PRM*, RRT*

Topics Discussed

- Randomized Sampling-based Methods
- Probabilistic Road Map (PRM)
- Characteristics of path planning problems
- Random sampling
- Rapidly Exploring Random Tree (RRT)
- Optimal sampling-based motion planning
- Rapidly-exploring Random Graph (RRG)
- Next: Improved Sampling-based Motion Planning
- Next: Multi-Goal Motion Planning and Multi-Goal Path Planning