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Instruction level parallelism (ILP)

• Parallelism on the lowest level – bit-level parallelism (word width; 
addition of 64-bit numbers on 32-bit microprocessor., buses, 
SIMD… )

• Instruction level parallelism
• Pipelining   – temporal parallelism (squential instructions flow)
• Superscalar execution  (in a broader sense) – spatial parallelism

Pipelining:
• Suppose that instruction execution can be divided to 5 stages

IF – Instruction Fetch, ID – Instr. decode (and Operand Fetch), 
MEM – Memory Access, EX – Execute, WB – Write Back

let   = max { i }ki=1,   where i is propagation delay of i-the pipeline stage.

IF ID EX MEM WB



3B4M35PAP Advanced Computer Architectures

Instruction level parallelism – pipelining

• Execution time of  n instructions k-stages pipeline:

                                  Tk = k. + (n – 1) 
 Assumption: ideally balance pipeline

• Speedup:

IF I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

ID I1 I2 I3 I4 I5 I6 I7 I8 I9

EX I1 I2 I3 I4 I5 I6 I7 I8
MEM I1 I2 I3 I4 I5 I6 I7

ST I1 I2 I3 I4 I5 I6

1 2 3 4 5 6 7 8 9 10
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Instruction level parallelism – pipelining

• Does not reduce execution time of single instruction, it is 
usually longer due to interstage registers, etc. in path

• Hazards:
Structural hazards (solved by duplication), 
Data hazards (the consequence of data dependencies) 
Control hazards (instructions modifying PC)...

• There are situations when it is necessary to stall or flush 
pipeline to resolve some hazards which cannot be solved by 
forwarding or other non-blocking solution.

• Notice: Deeper pipeline (more stages) results in less gates in 
each stage which allows to increase clock frequency. But more 
stages means more complex control and forwarding circuitry 
and higher cost of pipeline flush (instructions has to be better 
(re)ordered to utilize theoretical speedup)
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Pipelined superscalar execution: N-ways/wide pipeline

• Sequential instructions flow
• Data dependencies are dynamically identified by hardware (versus by 

software during compilation → static: WLIV)

Instruction level parallelism – pipelining + superscalar

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB
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Instruction level parallelism

Techniques used to achieve and utilize higher degree of  
instruction level parallelism:

• Propagation results within the pipeline (forwarding)
• Instructions out-of-order execution
• Register renaming
• Speculative execution
• Branch prediction
• VLIW (Very Long Instruction Word) and EPIC – 

MIMD on the lowest level
• Details in lectures from 02 until 06…
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Thread level parallelism (TLP)

• Multithreading (MT) – more threads of execution share functional 
units of processor (cores) – attempt to utilize that units which are 
not fully loaded by multiprocessing

• Incerases throughput of whole system, not of individual thread
• Processor (core) is required to maintain state of each thread in 

group – context switching (copies of working registers - RF, GPR, 
PC, …)

• Virtual memory support 
• Ability to switch threads much faster than classincal process 

switching/scheduling
• Multithreading:

• temporal (or interleaved multithreading)
• fine-grain
• coarse-grain

• simultaneous (or hyperthreading – Intel) – always fine-grain
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Thread level parallelism
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Thread level parallelism

• Superscalar only – limited by resources for ILP, long 
latencies to fetch instructions, resolve branch miss-
prediction and waiting for data read from memory 
(instruction L2 cache miss, data cache miss, etc.)

• Coarse MT – long delays are eliminated by thread; but still 
empty cycles (start-up period) and low utilization of 
resources (execution units); 

• Finegrain MT – thread switch in each cycle; but still not all 
resources utilized; blocked threads are ignored; 

• Simultaneous MT – switch/schedule in each cycle; 
simultaneously executes more than one thread; use of all 
resources depends on threads demand (consider as ideal 
combination thread computing FP and thread moving data)
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Task level parallelism (TLP)

• Task-level parallelism (TLP) – also function parallelism or 
control parallelism – software/OS level/controlled

• multiprocessing taken as support for TLP – software 
(multitasking) and hardware view (symmetric / asymmetric; 
tightly / loosely coupled,..)  - HW resources are assigned to 
threads by SW, possibly combined with SMT(processor Intel 
Core i7-980X: 6 cores, 2 threads/core simultaneously, Sparc 
T3 8 therads/core, POWER8 and 9 8 threads/core)

• TLP:  SPMD program:
if CPU_ID == 0

      then do task "A" 
else if CPU_ID == 1 
     then do task "B" 
end if

Each processor (core, SMT 
virtual core) has own ID. 
Program recognizes on which 
processor runs and executes 
only part of program assigned 
to given processor
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Task level parallelism

• TLP  MPMD program: program is divided to modules (which 
communicate together!) – demanding demanding scientific 
applications, but also client-server applications; 

• Key components:
• Communication between nodes (from HW point of view) or 

between processes/threads (from SW point of view)
• Mutual synchronization

• According to the communication demans are HPC 
programs executed on:
• tightly-coupled multiprocessor systems (MPP)

• loosely-coupled multiprocessor systems (Cluster, Grid)

• Execution of independent programs
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Data-level parallelism

• identical operations executed on data set/vector (SIMD)  
on hardware level

• distribute chunks of data to individual nodes (processes):
     
for  i  from lower_limit to upper_limit
     do  a[i] = b[i] + c[i]

• parallelism – explicitly programmed (OpenMP), implicit 
(on compilators level)

• support of programming languages for parallel computing

Each processor 
(core) uses different 
lower and upper limit 
→ works with 
different data
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Dependencies in programs

• Prerequisite for parallel execution of prrogram segments – 
independence on other segments (at least for 
some/fundamental part of algorithm)

• Expression of dependency relations – graph theory
• Nodes – operations (segments)
• Edges (always oriented) – relations between nodes
Graph analysis – finding the existence of parallelism

Three types of dependencies:
• Data – defines succession relationships between 

commands
• Resources – resources of given system (conflict of shared 

resources – registers, memory, ALU, FPU, processors…)
• Control – order of operations execution cannot be 

determined before program is started (condtional 
branches, iterations, achieving required precision, …)
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Data dependencies

• Data dependency:
• Flow dependency (true dependency)
• Anti-dependency (name/store dependency)
• Output dependency
• Input-output dependency
• Unknown dependency

• Flow dependency (Read-after-Write: RAW)  S1  S2:
S2 flow dependent on S1 if  execution path from S1 to S2 and at least 
one output of S1 is routed to S2. Symbolically: O(S1) ∩ I(S2) , S1-> S2

• (Flow) Anti-dependency (Write-After-Read: WAR)  S1   S2:
 I(S1) ∩ O(S2) , S1-> S2

• Output dependency (Write-after-Write: WAW)   S1   S2: 
 O(S1) ∩ O(S2), S1->S2    (produce the same output variable)

On 
instruction 
level when 
pipeline is 
realized

When parallel 
program is 
developed
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Data dependencies

• Input output dependency S1   S2
when both I/O commands (read, write) are referencing the same file 
(not variable)

• Unknown dependency – dependence relation cannot be 
determined 
• Index of variable is indexed
• Variable appears more than once with indexes which have multiply loop 

variable by different coefficients 
• Index defined by loop variable is nonlinear
• Etc.

I/O
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Data dependency

P1:   C = D*E

P2:   M = G+C

P3:   A = B+C

P4:   M = A+M

P5:   F = G/E

Solid line – data dependency

Dashed line – resource dependency 

×

+

+

+
÷

P1

P2

P3

P4

P5

Alternatively, it is possible to write 
types (WAW, RAW, WAR, I/O) to 
arrows instead of the symbols
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Data dependency

P1:   C = D*E

P2:   M = G+C

P3:   A = B+C

P4:   M = A+M

P5:   F = G/E

Solid line – data dependency

Dashed line – resource dependency 

×

+

+

+
÷

P1

P2

P3

P4

P5

?

Remember, this need 
not to be single 
operation only... Use 
generalized way

Alternatively, it is possible to write 
types (WAW, RAW, WAR, I/O) to 
arrows instead of the symbols
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Bernstein's conditions of parallelism

• They determine when two processes can be performed in 
parallel in terms of spatial parallelism
(process – software entity corresponding to program fragment abstraction on 
different levels of processing, instruction, source lines, matrix operations, …)

• I – input set of process ( variables required to execute process)
• O – output set of process (variables generated by process)

• Processes P
i
 and P

j 
can be executed in parallel (P

i 
 P

j
) if:

[I(P
i
) ∩ O(P

j
)]  [O(P∪

i
) ∩ I(P

j
)]  [O(P∪

i
) ∩ O(P

j
)] = Ø

• P
1
  P

2
  …  P

k
  if and only if P

i 
 P

j 
for i ≠ j

• Commutativity applies (P
i 
 P

j  
= P

j 
 P

i
)

• Transitivity doe not apply (P
i 
 P

j  
  P

j 
 P

k   
does not imply P

i 
 P

k
)

• Associativity applies ([P
i 
 P

j
]  P

k 
= P

i 
 [P

j 
P

k
])



19B4M35PAP Advanced Computer Architectures

Bernstein's conditions of parallelism

Program fragment

P1:   C = D*E

P2:   M = G+C

P3:   A = B+C

P4:   M = A+M

P5:   F = G/E

All pairs

P1  P4, P1  P5

P2  P3, P2  P5

P3  P5

P4  P5

x

All triplets

P1  P4  P5

P2  P3  P5

x

x

x

Bernstein's conditions are necessary conditions of parallelization, but not sufficient …
All source (even indirect) dependencies P

i 
(i<j) of P

j 
have to be  executed!

If   P
i 
 P

j
    can be executed simultaneously or arbitrarily ordered

This is allowed:
1. P1

2. P2  P3

3. P4  P5

This also:
1. P1

2. P2  P3  P5

3. P4

This as well:
1. P1  P5

2. P2  P3

3. P4

Next sequnce 
cannot be executed:

1. P1  P4  P5 

2. P2  P3
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Bernstein's conditions of parallelism

×

 +

 +

÷

 +

P1

P2

P3

P4

P5

DE

G

B

M

G
E M

F M A F

×

 +  +

÷

 +

D E

G

M

G

P1

 P2  P3

P4

 P5

E

čas
sequential: 5 steps parallel: 3 steps

Two adders required

Program fragment

P1:   C = D*E

P2:   M = G+C

P3:   A = B+C

P4:   M = A+M

P5:   F = G/E



21B4M35PAP Advanced Computer Architectures

Multiprocessor illustrative example No 1

1. a = 1
2. b = 2
3. c = 3
4. d = 4
5. e = 5
6. f = a*b
7. g = c*d
8. h = b–c 
9. i = a+h
10. b = g+e
11. c =b*i
12. j = a*i

Implement a program on a two-processor 
system that includes two-way processors 
capable of execute one memory access 
instruction and one arithmetic operation per 
cycle. Latency of the communication between 
the processors let is L = 2 cycles. 
Communication is non-blocking.
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Multiprocessor illustrative example No 1

1. a = 1
2. b = 2
3. c = 3
4. d = 4
5. e = 5
6. f = a*b
7. g = c*d
8. h = b–c 
9. i = a+h
10. b = g+e
11. c =b*i
12. j = a*i

V;d

Node label
delay

The node weight measures of the amount of work 
assigned to that node. The simplest measure is 
the number of instructions (or the execution time 
of the node - the number of cycles).

1;1 2;1 3;1 4;1

6;1 8;1 7;1

5;1

9;1 10;1

11;112;1
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Multiprocessor illustrative example No 1

1. a = 1
2. b = 2
3. c = 3
4. d = 4
5. e = 5
6. f = a*b
7. g = c*d
8. h = b–c 
9. i = a+h
10. b = g+e
11. c =b*i
12. j = a*i

1;1 2;1 3;1 4;1

6;1 8;1 7;1

5;1

9;1 10;1

11;112;1

P1 P2

M C S R M C S R

3 4

2 3 5 3

1 8 3 3

9 7

12 9 10 9

6 9 9

11Processor 1 Processor 2

L

L

M – memory
C – compute
S – send
R – receive
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Multiprocessor illustrative example No 1

1. a = 1
2. b = 2
3. c = 3
4. d = 4
5. e = 5
6. f = a*b
7. g = c*d
8. h = b–c 
9. i = a+h
10. b = g+e
11. c =b*i
12. j = a*i

1;1 2;1 3;1 4;1

6;1 8;1 7;1

5;1

9;1 10;1

11;112;1

3’;1

P1 P2

M C S R M C S R

3 4

2 3

1 8 5 7

9 10

12 9 9

6 9 9

11

Significant speedup can 
be achieved by node 
duplication

Processor 1 Processor 2
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Multiprocessor illustrative example No 1

1. a = 1
2. b = 2
3. c = 3
4. d = 4
5. e = 5
6. f = a*b
7. g = c*d
8. h = b–c 
9. i = a+h
10. b = g+e
11. c =b*i
12. j = a*i

1;1 2;1 3;1 4;1

6;1 8;1 7;1

5;1

9;1 10;1

11;112;1

3’;1

P1 P2

M C S R M C S R

3 4

2 3

1 8 5 7

9 10

12 9 9

6 9 9

11Processor 1 Processor 2

A B

C

D

E

F

G

H
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1. a = 1
2. b = 2
3. c = 3
4. d = 4
5. e = 5
6. f = a*b
7. g = c*d
8. h = b–c 
9. i = a+h
10. b = g+e
11. c =b*i
12. j = a*i

Multiprocessor illustrative example No 1

7;1

D;1

A;1

B;2

C;2

E;2

F;2

G;1

H;1

P1 P2

C S R C S R

B E

B E

A G

C F

C F

D C C

C C

H

Grain packing can provide 
a significant simplification 
of scheduling while 
maintaining same 
speedup.

Processor 1 Processor 2
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Multiprocessor illustrative example No 2

Lets are three equivalent 
processors available.

Tbeg

Tend

T1
T2 T3

T4 T5

T6 T7
T8

How to divide 
individual tasks 

between them ???

T1 T2 T3 T4 T5 T6 T7 T8

3 5 7 3 6 8 7 5

T1,T4 T1,T5 T2,T6 T3,T7 T4,T8 T5,T8

2 6 2 5 3 1

Execution time of each task

Communication times (amount of data to 
deliver) if source and destination tasks 
are run on different processor 
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Multiprocessor illustrative example No 2

Tbeg

Tend

T1;3
T2;5 T3;7

T4;3 T5;6

T6;8 T7;7
T8;5

T1 T2 T3 T4 T5 T6 T7 T8

3 5 7 3 6 8 7 5

T1,T4 T1,T5 T2,T6 T3,T7 T4,T8 T5,T8

2 6 2 5 3 1

S

R

C T3 T7

S

R

C T2 T4 T6

S

R

C T1 T5 T8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S = 44 / 16 = 2,75

Gantt chart:

Lets are three equivalent 
processors available.

Resources/processors 
utilization
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Parallel computers' memory architectures

• Shared memory systems (SMS) – access to whole memory possible for 
each processor (global address space), memory resources are shared, 
complexity of memory-CPU communication geometrically increases when 
increasing CPU counts, same to maintain memory coherence…
• UMA (Uniform Memory Access) – same memory access time, SMP 

(Symetric Multiprocessor), CC-UMA (Cache Coherent UMA) 
• NUMA (Non-Uniform) – variable access time – depends on CPU and 

address; can be build as interconnection of multiple SMP – when SMP 
node can access into memory of other node; when Cache Coherency 
preserved then CC-NUMA

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPUUMA

NUMA, RMA (Remote 
Memory Access)

DSM (Distributed 
Shared Memory) – 
DGAS (D. Global 
Address Space)
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Parallel computers' memory architectures

• Distributed memory systems (DMS) – separated local address 
spaces, node local physical memory; communication and 
synchronization solved by programmer/SW; easier scalability when 
CPU count increases; NORMA (No Direct Remote Memory Access)

• Hybrid (distributed + shared)

CPU Memory CPU Memory CPU Memory

Interconnection network

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

Interconnection network
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Programming models

Abstraction of hardware and memory architecture;

Not necessarily tied to a particular architecture.
• Shared memory – Tasks share global address space, 

asynchronous read and write; locks, semaphores, ..; 
explicit communication is not needed when exchanging 
data; Where are stored the data that the processor works 
with?

• Threads - POSIX Threads (Pthreads) - very explicit 
parallelism – the program must be designed to run tasks 
"in parallel"; OpenMP – parallelization expressed in 
directives, more automatic with help of compiler.



32B4M35PAP Advanced Computer Architectures

Programming models

• Messages passing – dtata and events exchange by 
sending and receiving of messages; typical for DMS but  
usable/used on SMS as well; 
What is maximal communication latency to not degrade 
performance? 

• Data-parallel – focuses on the parallel execution of 
operations over data sets; suitable for both SMS and DMS; 
support in both languages (HPF – High Performance 
Fortran) and compiler directives (OpenMP),

• Hybrid – combination of already described models with 
use of SPMD (Single Program Multiple Data), or for 
complex systems MPMD (Multiple Programs Multiple 
Data).
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Parallel program development – scheduling is fundamental

Scheduling

Zdroj: http://shmu.sk
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Climate model

Parallel program development – scheduling is fundamental 

Scheduling
• Top down view (functional decomposition): The aim is to divide the 

program into a set of tasks which can be executed in parallel with 
respect to mutual communication; can be applied recurrently

Atmosphere 
model

Continental 
model

Hydrological 
model

Ocean model
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Parallel program development – scheduling is fundamental  

Scheduling
• Speculative decomposition

IF
Yes No

Condition
initial

computation

Branch  A Branch  B

time T1

time T2
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Parallel program development – scheduling is fundamental 

Scheduling
• Speculative decomposition

Condition
initial

computation

Branch  A Branch  B

IF
Yes No

Condition
initial

computation

Branch  A Branch  B

time T1

time T2
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Parallel program development – scheduling is fundamental 

Scheduling
• Bottom-up: The goal is to group sequentially executed 

instructions, commands, program fragments without linking to 
another (one line of instruction flow) - the grain packing at the 
lowest level, possibly continue according to a specific strategy 
in the grain packing with respect to communication (see 
introductory examples).

• The aim is to have the greatest possible compactness and the 
minimal possible mutual coupling.

• Compiler vs. programmer.
• Take into account memory architecture.
• Homogeneous  vs. heterogeneous computer system.
• Scheduling works also as a system resource allocation 

algorithm (many tasks and less CPUs..).
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Example No 2 – scheduling / mapping / load balance

T1 T2 T3 T4 T5 T6 T7 T8

3 5 7 3 6 8 7 5

T1,T4 T1,T5 T2,T6 T3,T7 T4,T8 T5,T8

2 6 2 5 3 1

S

R

C T3 T7

S

R

C T2 T4 T6

S

R

C T1 T5 T8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Gantt chart:

Tbeg

Tend

T1;3
T2;5 T3;7

T4;3 T5;6

T6;8 T7;7
T8;5

S = 44 / 16 = 2,75

Lets are three equivalent 
processors available.

Resources/processors 
utilization
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Example No 2 – scheduling / mapping / load balance

Tbeg

Tend

T1;3
T2;5 T3;7

T4;3 T5;6

T6;8 T7;7
T8;5

T1 T2 T3 T4 T5 T6 T7 T8

3 5 7 3 6 8 7 5

T1,T4 T1,T5 T2,T6 T3,T7 T4,T8 T5,T8

2 6 2 5 3 1

S

R

C Job 1

S

R

C Job 2

S

R

C                    Job 3 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Gantt chart:

Lets are three equivalent 
processors available.

S = 44 / 16 = 2,75

Resources/processors 
utilization
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Scheduling

• Scheduling as a system resource allocation algorithm – 
decides which task should run on which CPU and when
• First-come-first-serve (waiting for others causes delays),
• Gang scheduling (problem are I/O and blocking communication),
• Paired gang scheduling.

I/O

CPU count < tasks count 
=> all cannot run simultaneously
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Design of parallel program – partitioning

Partitioning – Domain decomposition 

Sharping

How to do that?
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Design of parallel program – partitioning 

Partitioning – Domain decomposition 

How to sharp image?    Convolution

What about memory access conflicts? 

Thread 1

Thread 2

Thread 3

How to utilize more 
CPUs in parallel 
program?

Pixels on the strips 
border are accessed  
by two threads
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Design of parallel program – partitioning 

Partitioning – Domain decomposition 
Parallel program result can look 
even as seen in the picture:

What is wrong?
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Design of parallel program – partitioning

Partitioning – Domain decomposition 

Results from st. Vitus cathedral sharpening on two-cores CPU?

Number of threads

Why increase?

How would 
look 
extrapolate 
of graph?

Average time of execution (ms)

Speed-up
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Design of parallel program – partitioning 

Partitioning – Domain decomposition 
• Data set is distributed to individual processes
• A = (a0, a1, … , an–1)     n elements

P = (q0, q1, … , qp–1)     p processes

Block mapping:

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14

process 0 process 2

process 1 process 3
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Design of parallel program – partitioning  

• Cyclic mapping:

• Block-cyclic: 

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14

process 0 process 2

process 1 process 3

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14

process 0: process 2:

process 1: Process 3:
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• Which mapping is better? Depends on solved task 
properties.. (it can influence precision of result or execution 
time)

Execution time – Computation can require higher number of 
iterations to achieven convergence for some elements 
groups/mapping…
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Design of parallel program – partitioning   

Result would depends on 
chosen mapping and 
would be somwhere 
between (double type 
and precision used)
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Design of parallel program – partitioning    

Athmosferic 
model

Continental 
model

Hydrological 
model

Ocean model

Mediterranean 
sea

North sea

West 
Europe

Low altitude troposphere 
above Pacific

Combined functional 
domain compozition:
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Design of parallel program – communication

• Direct communication between processes (threads) can be hidded to 
programmer (depends on model: shared memory, data-parallel 
model, threads, message passing…).

• Communication price.
• Latency and bandwidth – many short messages – latency 

domination…, few huge messages – bandwidth is more important..
• Synchronous and asynchronous communication.
• Point-to-point (Unicast) and collective communication; Collective:

• Broadcast (one-to-all) – one node sends its data to all nodes
• Multicast (one-to-many)
• Scatter – distribution – different (part of) data from one node to all nodes
• Gather – contrary to scatter, collect data from nodes in one node
• Reduction – collect some aspect of data into one node
• And others.. (Allreduce, Allgather, AlltoAll) -> Collective communication.: 

allways blocking.
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Design of parallel program – communication

Broadcast (source = 1):

Reduce (destination = 1, operation +):

7

process 0 process 1 process 2 process 3

before

77 7 7 after

72 1 3

process 0 process 1 process 2 process 3

before

13 after
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Design of parallel program – communication

Scatter (source = 1):

7

process 0 process 1 process 2 process 3

before

21 5 7 after

5

2

1



52B4M35PAP Advanced Computer Architectures

Design of parallel program – communication

Gather (destination = 1)

72 1 3

process 0 process 1 process 2 process 3

before

2

after
7

1

3
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Design of parallel program – communication

All to All:

84 12 16

process 0 process 1 process 2 process 3

before

21 3 4

after

73 11 15

62 10 14

51 9 13

65 7 8

109 11 12

1413 15 16
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Design of parallel program – communication

• Blocking point-to-point communication  unbuffered

data data data

Sending 
process

Receiving 
process

požadavek

potvrzení

če
ka
jíc
í

Sending 
process

Receiving 
process

Sending 
process

Receiving 
process

Sending process is 
waiting until receiving 

process is ready

Receiving process 
waits for data – waste 

of its time

„Optimal“ situation; 
bud communication 
period usually lefts 

processors “unused”
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Design of parallel program – communication

• Dead-lock caused  by point- P0: P1:
to-point blocking unbuffered send() send()
communication. recieve() recieve()

• Solution, use communication buffers
can be application buffer (application memory) or system 
buffer (hidden to programmer).

Processor 0

Process AProcess A

System buffer

 Send DataData

Processor 1

Process BProcess B

System buffer

 Recv DataData
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Design of parallel program – communication

Blocking communication
• Sending  is  finished (return from routine) only when application 

buffer can be used again freely (use of system buffer is not 
necessary – in such case is sending implemented as synchronous).

• Synchronous sending – same as above + receive is finished as well.
• Buffered sending – data are copied into sending buffer – used if 

there is not enough space in system buffer.
• Receiving – blocks until data are received into application buffer

Non-blocking communication
• Sending – program continues without waiting; application buffer can 

be used again only when sending finished – test for release 
required…!!!

• Synchronous sending – test successful only when data are received 
• Buffered sending – test for success required…
• Receiving – program continues without waiting; – test required…
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Design of parallel program – Virtual topology

Virtual topology – method of making a collection of processes 
act like they are in a particular shape (i.e. MPI_Cart_create)

• Advantageous for specific communication requirements.
• Define neighbourhoodness of processes (nodes) – 

neighbourhood processes can communicate directly.
• Implementation can use to optimize decision of mapping 

processes to physical nodes… 
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Design of parallel program – Synchronization

• Barrier
- each task stops on barrier, execution continues when all 
tasks reach barrier
- for example new iteration in data processing loop

• Mutex / Lock / Semaphore
- to solve conflict of accesses into shared memory

• Operations of synchronous communication.
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Task to schedule for parallel execution

Analyze following program. Find maximum degree of parallelism between 
its 16 instructions, suppose that there are no conflicts between resources 
and functional units. All instructions are executed in single machine cycle. 
All other overhead is not accounted.

a) Draw a 16-node program graph to visualize the relationships between 
these 16 instructions.

b) Use a three-way superscalar processor to execute this program for a 
minimum amount of time. For one machine cycle, the processor can 
issue one memory access instruction (Load or Store, but not both), 
one Add/Sub instruction and one Mul instruction.

c) Implement the program on a dual-processor system, each processor 
being a above defined three-way superscalar processor.  Partition 
program into two balanced halves. Find the optimal schedule of split 
parallel program by two processors to achieve minimum time.
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Task to schedule for parallel execution

1: Load R1, A /R1  Mem(A)/
2: Load R2, B /R2  Mem(B)/
3: Mul R3, R1, R2 /R3  (R1) x (R2)/
4: Load R4, D /R4  Mem(D)/
5: Mul R5, R1, R4 /R5  (R1) x (R4)/
6: Add R6, R3, R5 /R6  (R3) + (R5)/
7: Store X, R6 /Mem(X)  (R6)/
8: Load R7, C /R7  Mem(C)/
9: Mul R8, R7, R4 /R8  (R7) x (R4)/
10: Load R9, E /R9  Mem(E)/
11: Add R10, R8, R9 /R10  (R8) + (R9)/
12: Store Y, R10 /Mem(Y)  (R10)/
13: Add R11, R6, R10 /R11  (R6) + (R10)/
14: Store U, R11 /Mem(U)  (R11)/
15: Sub R12, R6, R10 /R12  (R6) – (R10)/
16: Store V, R12 /Mem(V)  (R12)/
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Resources and links

•  John L. Hennessy; David A. Patterson (2003). 
Computer Architecture: a quantitative approach 
(3rd ed.). Morgan Kaufmann. ISBN 1-55860-724-
2.

• https://computing.llnl.gov/tutorials/openMP/
• https://www.open-mpi.org/doc/v2.1/
• http://www.inf.ed.ac.uk/teaching/courses/pa/Not

es/lecture09-multithreading.pdf
• http://meseec.ce.rit.edu/eecc756-spring2011/75

6-3-17-2011.ppt
• http://www.umsl.edu/~siegelj/CS4740_5740/MPI

andOpenMP/vtopologies.ppt

https://computing.llnl.gov/tutorials/openMP/
https://www.open-mpi.org/doc/v2.1/
http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture09-multithreading.pdf
http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture09-multithreading.pdf
http://meseec.ce.rit.edu/eecc756-spring2011/756-3-17-2011.ppt
http://meseec.ce.rit.edu/eecc756-spring2011/756-3-17-2011.ppt
http://www.umsl.edu/~siegelj/CS4740_5740/MPIandOpenMP/vtopologies.ppt
http://www.umsl.edu/~siegelj/CS4740_5740/MPIandOpenMP/vtopologies.ppt
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