
1B4M35PAP Advanced Computer Architectures

Advanced Computer Architectures

Parallel systems programming concepts, using Message
Passing Interface (MPI) and Open Multi-Processing

(OpenMP) to create parallel programs.

Czech Technical University in Prague, Faculty of Electrical Engineering
Slides authors: Michal Štepanovský, update Pavel Píša

2B4M35PAP Advanced Computer Architectures

Instruction level parallelism (ILP)

• Parallelism on the lowest level – bit-level parallelism (word width;
addition of 64-bit numbers on 32-bit microprocessor., buses,
SIMD…)

• Instruction level parallelism
• Pipelining – temporal parallelism (squential instructions flow)
• Superscalar execution (in a broader sense) – spatial parallelism

Pipelining:
• Suppose that instruction execution can be divided to 5 stages

IF – Instruction Fetch, ID – Instr. decode (and Operand Fetch),
MEM – Memory Access, EX – Execute, WB – Write Back

let  = max { i }ki=1, where i is propagation delay of i-the pipeline stage.

IF ID EX MEM WB

3B4M35PAP Advanced Computer Architectures

Instruction level parallelism – pipelining

• Execution time of n instructions k-stages pipeline:

 Tk = k. + (n – 1) 
 Assumption: ideally balance pipeline

• Speedup:

IF I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

ID I1 I2 I3 I4 I5 I6 I7 I8 I9

EX I1 I2 I3 I4 I5 I6 I7 I8
MEM I1 I2 I3 I4 I5 I6 I7

ST I1 I2 I3 I4 I5 I6

1 2 3 4 5 6 7 8 9 10

5      

kS
nk

nk

T

T
S k

n
k

k 





lim
)1(

1




čas

4B4M35PAP Advanced Computer Architectures

Instruction level parallelism – pipelining

• Does not reduce execution time of single instruction, it is
usually longer due to interstage registers, etc. in path

• Hazards:
Structural hazards (solved by duplication),
Data hazards (the consequence of data dependencies)
Control hazards (instructions modifying PC)...

• There are situations when it is necessary to stall or flush
pipeline to resolve some hazards which cannot be solved by
forwarding or other non-blocking solution.

• Notice: Deeper pipeline (more stages) results in less gates in
each stage which allows to increase clock frequency. But more
stages means more complex control and forwarding circuitry
and higher cost of pipeline flush (instructions has to be better
(re)ordered to utilize theoretical speedup)

5B4M35PAP Advanced Computer Architectures

Pipelined superscalar execution: N-ways/wide pipeline

• Sequential instructions flow
• Data dependencies are dynamically identified by hardware (versus by

software during compilation → static: WLIV)

Instruction level parallelism – pipelining + superscalar

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

… … N

k

NkS
nk

nNk

T

T
S Nk

n
Nk

Nk 



 ,

,

1
, lim

)1(


6B4M35PAP Advanced Computer Architectures

Instruction level parallelism

Techniques used to achieve and utilize higher degree of
instruction level parallelism:

• Propagation results within the pipeline (forwarding)
• Instructions out-of-order execution
• Register renaming
• Speculative execution
• Branch prediction
• VLIW (Very Long Instruction Word) and EPIC –

MIMD on the lowest level
• Details in lectures from 02 until 06…

7B4M35PAP Advanced Computer Architectures

Thread level parallelism (TLP)

• Multithreading (MT) – more threads of execution share functional
units of processor (cores) – attempt to utilize that units which are
not fully loaded by multiprocessing

• Incerases throughput of whole system, not of individual thread
• Processor (core) is required to maintain state of each thread in

group – context switching (copies of working registers - RF, GPR,
PC, …)

• Virtual memory support
• Ability to switch threads much faster than classincal process

switching/scheduling
• Multithreading:

• temporal (or interleaved multithreading)
• fine-grain
• coarse-grain

• simultaneous (or hyperthreading – Intel) – always fine-grain

8B4M35PAP Advanced Computer Architectures

Thread level parallelism

x x x x x x x x x x x x +

x x x x o   o o

x x x x x x x x + + + x x

x x x x    o o o

x x x x x + +

o o o o o o o o o o  
x x o o + + + + + x x

x x x x o o o   x o o o

x x x o o o x x x x   
x o o o o + + +

x x + + + + + + + o o x x

+ + +      +

4-way superscalar processor (TLP -> ILP):

superscalar
only

coarse-grain
multithreading

fine-grain
multithreading

simultaneous
multithreading

time

slots usage

vertical
waste

- bubble

horizontal
waste –

some units
unused

9B4M35PAP Advanced Computer Architectures

Thread level parallelism

• Superscalar only – limited by resources for ILP, long
latencies to fetch instructions, resolve branch miss-
prediction and waiting for data read from memory
(instruction L2 cache miss, data cache miss, etc.)

• Coarse MT – long delays are eliminated by thread; but still
empty cycles (start-up period) and low utilization of
resources (execution units);

• Finegrain MT – thread switch in each cycle; but still not all
resources utilized; blocked threads are ignored;

• Simultaneous MT – switch/schedule in each cycle;
simultaneously executes more than one thread; use of all
resources depends on threads demand (consider as ideal
combination thread computing FP and thread moving data)

10B4M35PAP Advanced Computer Architectures

Task level parallelism (TLP)

• Task-level parallelism (TLP) – also function parallelism or
control parallelism – software/OS level/controlled

• multiprocessing taken as support for TLP – software
(multitasking) and hardware view (symmetric / asymmetric;
tightly / loosely coupled,..) - HW resources are assigned to
threads by SW, possibly combined with SMT(processor Intel
Core i7-980X: 6 cores, 2 threads/core simultaneously, Sparc
T3 8 therads/core, POWER8 and 9 8 threads/core)

• TLP: SPMD program:
if CPU_ID == 0

 then do task "A"
else if CPU_ID == 1
 then do task "B"
end if

Each processor (core, SMT
virtual core) has own ID.
Program recognizes on which
processor runs and executes
only part of program assigned
to given processor

11B4M35PAP Advanced Computer Architectures

Task level parallelism

• TLP MPMD program: program is divided to modules (which
communicate together!) – demanding demanding scientific
applications, but also client-server applications;

• Key components:
• Communication between nodes (from HW point of view) or

between processes/threads (from SW point of view)
• Mutual synchronization

• According to the communication demans are HPC
programs executed on:
• tightly-coupled multiprocessor systems (MPP)

• loosely-coupled multiprocessor systems (Cluster, Grid)

• Execution of independent programs

12B4M35PAP Advanced Computer Architectures

Data-level parallelism

• identical operations executed on data set/vector (SIMD)
on hardware level

• distribute chunks of data to individual nodes (processes):

for i from lower_limit to upper_limit
 do a[i] = b[i] + c[i]

• parallelism – explicitly programmed (OpenMP), implicit
(on compilators level)

• support of programming languages for parallel computing

Each processor
(core) uses different
lower and upper limit
→ works with
different data

13B4M35PAP Advanced Computer Architectures

Dependencies in programs

• Prerequisite for parallel execution of prrogram segments –
independence on other segments (at least for
some/fundamental part of algorithm)

• Expression of dependency relations – graph theory
• Nodes – operations (segments)
• Edges (always oriented) – relations between nodes
Graph analysis – finding the existence of parallelism

Three types of dependencies:
• Data – defines succession relationships between

commands
• Resources – resources of given system (conflict of shared

resources – registers, memory, ALU, FPU, processors…)
• Control – order of operations execution cannot be

determined before program is started (condtional
branches, iterations, achieving required precision, …)

14B4M35PAP Advanced Computer Architectures

Data dependencies

• Data dependency:
• Flow dependency (true dependency)
• Anti-dependency (name/store dependency)
• Output dependency
• Input-output dependency
• Unknown dependency

• Flow dependency (Read-after-Write: RAW) S1  S2:
S2 flow dependent on S1 if  execution path from S1 to S2 and at least
one output of S1 is routed to S2. Symbolically: O(S1) ∩ I(S2) , S1-> S2

• (Flow) Anti-dependency (Write-After-Read: WAR) S1  S2:
 I(S1) ∩ O(S2) , S1-> S2

• Output dependency (Write-after-Write: WAW) S1  S2:
 O(S1) ∩ O(S2), S1->S2 (produce the same output variable)

On
instruction
level when
pipeline is
realized

When parallel
program is
developed

15B4M35PAP Advanced Computer Architectures

Data dependencies

• Input output dependency S1  S2
when both I/O commands (read, write) are referencing the same file
(not variable)

• Unknown dependency – dependence relation cannot be
determined
• Index of variable is indexed
• Variable appears more than once with indexes which have multiply loop

variable by different coefficients
• Index defined by loop variable is nonlinear
• Etc.

I/O

16B4M35PAP Advanced Computer Architectures

Data dependency

P1: C = D*E

P2: M = G+C

P3: A = B+C

P4: M = A+M

P5: F = G/E

Solid line – data dependency

Dashed line – resource dependency

×

+

+

+
÷

P1

P2

P3

P4

P5

Alternatively, it is possible to write
types (WAW, RAW, WAR, I/O) to
arrows instead of the symbols

17B4M35PAP Advanced Computer Architectures

Data dependency

P1: C = D*E

P2: M = G+C

P3: A = B+C

P4: M = A+M

P5: F = G/E

Solid line – data dependency

Dashed line – resource dependency

×

+

+

+
÷

P1

P2

P3

P4

P5

?

Remember, this need
not to be single
operation only... Use
generalized way

Alternatively, it is possible to write
types (WAW, RAW, WAR, I/O) to
arrows instead of the symbols

18B4M35PAP Advanced Computer Architectures

Bernstein's conditions of parallelism

• They determine when two processes can be performed in
parallel in terms of spatial parallelism
(process – software entity corresponding to program fragment abstraction on
different levels of processing, instruction, source lines, matrix operations, …)

• I – input set of process ( variables required to execute process)
• O – output set of process (variables generated by process)

• Processes P
i
 and P

j
can be executed in parallel (P

i
 P

j
) if:

[I(P
i
) ∩ O(P

j
)] [O(P∪

i
) ∩ I(P

j
)] [O(P∪

i
) ∩ O(P

j
)] = Ø

• P
1
  P

2
  …  P

k
 if and only if P

i
 P

j
for i ≠ j

• Commutativity applies (P
i
 P

j
= P

j
 P

i
)

• Transitivity doe not apply (P
i
 P

j
 P

j
 P

k
does not imply P

i
 P

k
)

• Associativity applies ([P
i
 P

j
]  P

k
= P

i
 [P

j
P

k
])

19B4M35PAP Advanced Computer Architectures

Bernstein's conditions of parallelism

Program fragment

P1: C = D*E

P2: M = G+C

P3: A = B+C

P4: M = A+M

P5: F = G/E

All pairs

P1  P4, P1  P5

P2  P3, P2  P5

P3  P5

P4  P5

x

All triplets

P1  P4  P5

P2  P3  P5

x

x

x

Bernstein's conditions are necessary conditions of parallelization, but not sufficient …
All source (even indirect) dependencies P

i
(i<j) of P

j
have to be executed!

If P
i
 P

j
  can be executed simultaneously or arbitrarily ordered

This is allowed:
1. P1

2. P2  P3

3. P4  P5

This also:
1. P1

2. P2  P3  P5

3. P4

This as well:
1. P1  P5

2. P2  P3

3. P4

Next sequnce
cannot be executed:

1. P1  P4  P5

2. P2  P3

20B4M35PAP Advanced Computer Architectures

Bernstein's conditions of parallelism

×

 +

 +

÷

 +

P1

P2

P3

P4

P5

DE

G

B

M

G
E M

F M A F

×

 + +

÷

 +

D E

G

M

G

P1

 P2 P3

P4

 P5

E

čas
sequential: 5 steps parallel: 3 steps

Two adders required

Program fragment

P1: C = D*E

P2: M = G+C

P3: A = B+C

P4: M = A+M

P5: F = G/E

21B4M35PAP Advanced Computer Architectures

Multiprocessor illustrative example No 1

1. a = 1
2. b = 2
3. c = 3
4. d = 4
5. e = 5
6. f = a*b
7. g = c*d
8. h = b–c
9. i = a+h
10. b = g+e
11. c =b*i
12. j = a*i

Implement a program on a two-processor
system that includes two-way processors
capable of execute one memory access
instruction and one arithmetic operation per
cycle. Latency of the communication between
the processors let is L = 2 cycles.
Communication is non-blocking.

22B4M35PAP Advanced Computer Architectures

Multiprocessor illustrative example No 1

1. a = 1
2. b = 2
3. c = 3
4. d = 4
5. e = 5
6. f = a*b
7. g = c*d
8. h = b–c
9. i = a+h
10. b = g+e
11. c =b*i
12. j = a*i

V;d

Node label
delay

The node weight measures of the amount of work
assigned to that node. The simplest measure is
the number of instructions (or the execution time
of the node - the number of cycles).

1;1 2;1 3;1 4;1

6;1 8;1 7;1

5;1

9;1 10;1

11;112;1

23B4M35PAP Advanced Computer Architectures

Multiprocessor illustrative example No 1

1. a = 1
2. b = 2
3. c = 3
4. d = 4
5. e = 5
6. f = a*b
7. g = c*d
8. h = b–c
9. i = a+h
10. b = g+e
11. c =b*i
12. j = a*i

1;1 2;1 3;1 4;1

6;1 8;1 7;1

5;1

9;1 10;1

11;112;1

P1 P2

M C S R M C S R

3 4

2 3 5 3

1 8 3 3

9 7

12 9 10 9

6 9 9

11Processor 1 Processor 2

L

L

M – memory
C – compute
S – send
R – receive

24B4M35PAP Advanced Computer Architectures

Multiprocessor illustrative example No 1

1. a = 1
2. b = 2
3. c = 3
4. d = 4
5. e = 5
6. f = a*b
7. g = c*d
8. h = b–c
9. i = a+h
10. b = g+e
11. c =b*i
12. j = a*i

1;1 2;1 3;1 4;1

6;1 8;1 7;1

5;1

9;1 10;1

11;112;1

3’;1

P1 P2

M C S R M C S R

3 4

2 3

1 8 5 7

9 10

12 9 9

6 9 9

11

Significant speedup can
be achieved by node
duplication

Processor 1 Processor 2

25B4M35PAP Advanced Computer Architectures

Multiprocessor illustrative example No 1

1. a = 1
2. b = 2
3. c = 3
4. d = 4
5. e = 5
6. f = a*b
7. g = c*d
8. h = b–c
9. i = a+h
10. b = g+e
11. c =b*i
12. j = a*i

1;1 2;1 3;1 4;1

6;1 8;1 7;1

5;1

9;1 10;1

11;112;1

3’;1

P1 P2

M C S R M C S R

3 4

2 3

1 8 5 7

9 10

12 9 9

6 9 9

11Processor 1 Processor 2

A B

C

D

E

F

G

H

26B4M35PAP Advanced Computer Architectures

1. a = 1
2. b = 2
3. c = 3
4. d = 4
5. e = 5
6. f = a*b
7. g = c*d
8. h = b–c
9. i = a+h
10. b = g+e
11. c =b*i
12. j = a*i

Multiprocessor illustrative example No 1

7;1

D;1

A;1

B;2

C;2

E;2

F;2

G;1

H;1

P1 P2

C S R C S R

B E

B E

A G

C F

C F

D C C

C C

H

Grain packing can provide
a significant simplification
of scheduling while
maintaining same
speedup.

Processor 1 Processor 2

27B4M35PAP Advanced Computer Architectures

Multiprocessor illustrative example No 2

Lets are three equivalent
processors available.

Tbeg

Tend

T1
T2 T3

T4 T5

T6 T7
T8

How to divide
individual tasks

between them ???

T1 T2 T3 T4 T5 T6 T7 T8

3 5 7 3 6 8 7 5

T1,T4 T1,T5 T2,T6 T3,T7 T4,T8 T5,T8

2 6 2 5 3 1

Execution time of each task

Communication times (amount of data to
deliver) if source and destination tasks
are run on different processor

28B4M35PAP Advanced Computer Architectures

Multiprocessor illustrative example No 2

Tbeg

Tend

T1;3
T2;5 T3;7

T4;3 T5;6

T6;8 T7;7
T8;5

T1 T2 T3 T4 T5 T6 T7 T8

3 5 7 3 6 8 7 5

T1,T4 T1,T5 T2,T6 T3,T7 T4,T8 T5,T8

2 6 2 5 3 1

S

R

C T3 T7

S

R

C T2 T4 T6

S

R

C T1 T5 T8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S = 44 / 16 = 2,75

Gantt chart:

Lets are three equivalent
processors available.

Resources/processors
utilization

29B4M35PAP Advanced Computer Architectures

Parallel computers' memory architectures

• Shared memory systems (SMS) – access to whole memory possible for
each processor (global address space), memory resources are shared,
complexity of memory-CPU communication geometrically increases when
increasing CPU counts, same to maintain memory coherence…
• UMA (Uniform Memory Access) – same memory access time, SMP

(Symetric Multiprocessor), CC-UMA (Cache Coherent UMA)
• NUMA (Non-Uniform) – variable access time – depends on CPU and

address; can be build as interconnection of multiple SMP – when SMP
node can access into memory of other node; when Cache Coherency
preserved then CC-NUMA

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPUUMA

NUMA, RMA (Remote
Memory Access)

DSM (Distributed
Shared Memory) –
DGAS (D. Global
Address Space)

30B4M35PAP Advanced Computer Architectures

Parallel computers' memory architectures

• Distributed memory systems (DMS) – separated local address
spaces, node local physical memory; communication and
synchronization solved by programmer/SW; easier scalability when
CPU count increases; NORMA (No Direct Remote Memory Access)

• Hybrid (distributed + shared)

CPU Memory CPU Memory CPU Memory

Interconnection network

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

Interconnection network

31B4M35PAP Advanced Computer Architectures

Programming models

Abstraction of hardware and memory architecture;

Not necessarily tied to a particular architecture.
• Shared memory – Tasks share global address space,

asynchronous read and write; locks, semaphores, ..;
explicit communication is not needed when exchanging
data; Where are stored the data that the processor works
with?

• Threads - POSIX Threads (Pthreads) - very explicit
parallelism – the program must be designed to run tasks
"in parallel"; OpenMP – parallelization expressed in
directives, more automatic with help of compiler.

32B4M35PAP Advanced Computer Architectures

Programming models

• Messages passing – dtata and events exchange by
sending and receiving of messages; typical for DMS but
usable/used on SMS as well;
What is maximal communication latency to not degrade
performance?

• Data-parallel – focuses on the parallel execution of
operations over data sets; suitable for both SMS and DMS;
support in both languages (HPF – High Performance
Fortran) and compiler directives (OpenMP),

• Hybrid – combination of already described models with
use of SPMD (Single Program Multiple Data), or for
complex systems MPMD (Multiple Programs Multiple
Data).

33B4M35PAP Advanced Computer Architectures

Parallel program development – scheduling is fundamental

Scheduling

Zdroj: http://shmu.sk

34B4M35PAP Advanced Computer Architectures

Climate model

Parallel program development – scheduling is fundamental

Scheduling
• Top down view (functional decomposition): The aim is to divide the

program into a set of tasks which can be executed in parallel with
respect to mutual communication; can be applied recurrently

Atmosphere
model

Continental
model

Hydrological
model

Ocean model

35B4M35PAP Advanced Computer Architectures

Parallel program development – scheduling is fundamental

Scheduling
• Speculative decomposition

IF
Yes No

Condition
initial

computation

Branch A Branch B

time T1

time T2

36B4M35PAP Advanced Computer Architectures

Parallel program development – scheduling is fundamental

Scheduling
• Speculative decomposition

Condition
initial

computation

Branch A Branch B

IF
Yes No

Condition
initial

computation

Branch A Branch B

time T1

time T2

37B4M35PAP Advanced Computer Architectures

Parallel program development – scheduling is fundamental

Scheduling
• Bottom-up: The goal is to group sequentially executed

instructions, commands, program fragments without linking to
another (one line of instruction flow) - the grain packing at the
lowest level, possibly continue according to a specific strategy
in the grain packing with respect to communication (see
introductory examples).

• The aim is to have the greatest possible compactness and the
minimal possible mutual coupling.

• Compiler vs. programmer.
• Take into account memory architecture.
• Homogeneous vs. heterogeneous computer system.
• Scheduling works also as a system resource allocation

algorithm (many tasks and less CPUs..).

38B4M35PAP Advanced Computer Architectures

Example No 2 – scheduling / mapping / load balance

T1 T2 T3 T4 T5 T6 T7 T8

3 5 7 3 6 8 7 5

T1,T4 T1,T5 T2,T6 T3,T7 T4,T8 T5,T8

2 6 2 5 3 1

S

R

C T3 T7

S

R

C T2 T4 T6

S

R

C T1 T5 T8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Gantt chart:

Tbeg

Tend

T1;3
T2;5 T3;7

T4;3 T5;6

T6;8 T7;7
T8;5

S = 44 / 16 = 2,75

Lets are three equivalent
processors available.

Resources/processors
utilization

39B4M35PAP Advanced Computer Architectures

Example No 2 – scheduling / mapping / load balance

Tbeg

Tend

T1;3
T2;5 T3;7

T4;3 T5;6

T6;8 T7;7
T8;5

T1 T2 T3 T4 T5 T6 T7 T8

3 5 7 3 6 8 7 5

T1,T4 T1,T5 T2,T6 T3,T7 T4,T8 T5,T8

2 6 2 5 3 1

S

R

C Job 1

S

R

C Job 2

S

R

C Job 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Gantt chart:

Lets are three equivalent
processors available.

S = 44 / 16 = 2,75

Resources/processors
utilization

40B4M35PAP Advanced Computer Architectures

Scheduling

• Scheduling as a system resource allocation algorithm –
decides which task should run on which CPU and when
• First-come-first-serve (waiting for others causes delays),
• Gang scheduling (problem are I/O and blocking communication),
• Paired gang scheduling.

I/O

CPU count < tasks count
=> all cannot run simultaneously

41B4M35PAP Advanced Computer Architectures

Design of parallel program – partitioning

Partitioning – Domain decomposition

Sharping

How to do that?

42B4M35PAP Advanced Computer Architectures

Design of parallel program – partitioning

Partitioning – Domain decomposition

How to sharp image?  Convolution

What about memory access conflicts?

Thread 1

Thread 2

Thread 3

How to utilize more
CPUs in parallel
program?

Pixels on the strips
border are accessed
by two threads

43B4M35PAP Advanced Computer Architectures

Design of parallel program – partitioning

Partitioning – Domain decomposition
Parallel program result can look
even as seen in the picture:

What is wrong?

44B4M35PAP Advanced Computer Architectures

Design of parallel program – partitioning

Partitioning – Domain decomposition

Results from st. Vitus cathedral sharpening on two-cores CPU?

Number of threads

Why increase?

How would
look
extrapolate
of graph?

Average time of execution (ms)

Speed-up

45B4M35PAP Advanced Computer Architectures

Design of parallel program – partitioning

Partitioning – Domain decomposition
• Data set is distributed to individual processes
• A = (a0, a1, … , an–1) n elements

P = (q0, q1, … , qp–1) p processes

Block mapping:

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14

process 0 process 2

process 1 process 3

46B4M35PAP Advanced Computer Architectures

Design of parallel program – partitioning

• Cyclic mapping:

• Block-cyclic:

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14

process 0 process 2

process 1 process 3

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14

process 0: process 2:

process 1: Process 3:

47B4M35PAP Advanced Computer Architectures

• Which mapping is better? Depends on solved task
properties.. (it can influence precision of result or execution
time)

Execution time – Computation can require higher number of
iterations to achieven convergence for some elements
groups/mapping…

4822646449340667.1
1

,3018656449340578.1
1

)1(

111

1

10
2

10

1
2

1
2

1

2
1

2

10

10




















i

i

N

iNi

N

i

i

i

iNii

Design of parallel program – partitioning

Result would depends on
chosen mapping and
would be somwhere
between (double type
and precision used)

48B4M35PAP Advanced Computer Architectures

Design of parallel program – partitioning

Athmosferic
model

Continental
model

Hydrological
model

Ocean model

Mediterranean
sea

North sea

West
Europe

Low altitude troposphere
above Pacific

Combined functional
domain compozition:

49B4M35PAP Advanced Computer Architectures

Design of parallel program – communication

• Direct communication between processes (threads) can be hidded to
programmer (depends on model: shared memory, data-parallel
model, threads, message passing…).

• Communication price.
• Latency and bandwidth – many short messages – latency

domination…, few huge messages – bandwidth is more important..
• Synchronous and asynchronous communication.
• Point-to-point (Unicast) and collective communication; Collective:

• Broadcast (one-to-all) – one node sends its data to all nodes
• Multicast (one-to-many)
• Scatter – distribution – different (part of) data from one node to all nodes
• Gather – contrary to scatter, collect data from nodes in one node
• Reduction – collect some aspect of data into one node
• And others.. (Allreduce, Allgather, AlltoAll) -> Collective communication.:

allways blocking.

50B4M35PAP Advanced Computer Architectures

Design of parallel program – communication

Broadcast (source = 1):

Reduce (destination = 1, operation +):

7

process 0 process 1 process 2 process 3

before

77 7 7 after

72 1 3

process 0 process 1 process 2 process 3

before

13 after

51B4M35PAP Advanced Computer Architectures

Design of parallel program – communication

Scatter (source = 1):

7

process 0 process 1 process 2 process 3

before

21 5 7 after

5

2

1

52B4M35PAP Advanced Computer Architectures

Design of parallel program – communication

Gather (destination = 1)

72 1 3

process 0 process 1 process 2 process 3

before

2

after
7

1

3

53B4M35PAP Advanced Computer Architectures

Design of parallel program – communication

All to All:

84 12 16

process 0 process 1 process 2 process 3

before

21 3 4

after

73 11 15

62 10 14

51 9 13

65 7 8

109 11 12

1413 15 16

54B4M35PAP Advanced Computer Architectures

Design of parallel program – communication

• Blocking point-to-point communication unbuffered

data data data

Sending
process

Receiving
process

požadavek

potvrzení

če
ka
jíc
í

Sending
process

Receiving
process

Sending
process

Receiving
process

Sending process is
waiting until receiving

process is ready

Receiving process
waits for data – waste

of its time

„Optimal“ situation;
bud communication
period usually lefts

processors “unused”

55B4M35PAP Advanced Computer Architectures

Design of parallel program – communication

• Dead-lock caused by point- P0: P1:
to-point blocking unbuffered send() send()
communication. recieve() recieve()

• Solution, use communication buffers
can be application buffer (application memory) or system
buffer (hidden to programmer).

Processor 0

Process AProcess A

System buffer

 Send DataData

Processor 1

Process BProcess B

System buffer

 Recv DataData

56B4M35PAP Advanced Computer Architectures

Design of parallel program – communication

Blocking communication
• Sending is finished (return from routine) only when application

buffer can be used again freely (use of system buffer is not
necessary – in such case is sending implemented as synchronous).

• Synchronous sending – same as above + receive is finished as well.
• Buffered sending – data are copied into sending buffer – used if

there is not enough space in system buffer.
• Receiving – blocks until data are received into application buffer

Non-blocking communication
• Sending – program continues without waiting; application buffer can

be used again only when sending finished – test for release
required…!!!

• Synchronous sending – test successful only when data are received
• Buffered sending – test for success required…
• Receiving – program continues without waiting; – test required…

57B4M35PAP Advanced Computer Architectures

Design of parallel program – Virtual topology

Virtual topology – method of making a collection of processes
act like they are in a particular shape (i.e. MPI_Cart_create)

• Advantageous for specific communication requirements.
• Define neighbourhoodness of processes (nodes) –

neighbourhood processes can communicate directly.
• Implementation can use to optimize decision of mapping

processes to physical nodes…

58B4M35PAP Advanced Computer Architectures

Design of parallel program – Synchronization

• Barrier
- each task stops on barrier, execution continues when all
tasks reach barrier
- for example new iteration in data processing loop

• Mutex / Lock / Semaphore
- to solve conflict of accesses into shared memory

• Operations of synchronous communication.

59B4M35PAP Advanced Computer Architectures

Task to schedule for parallel execution

Analyze following program. Find maximum degree of parallelism between
its 16 instructions, suppose that there are no conflicts between resources
and functional units. All instructions are executed in single machine cycle.
All other overhead is not accounted.

a) Draw a 16-node program graph to visualize the relationships between
these 16 instructions.

b) Use a three-way superscalar processor to execute this program for a
minimum amount of time. For one machine cycle, the processor can
issue one memory access instruction (Load or Store, but not both),
one Add/Sub instruction and one Mul instruction.

c) Implement the program on a dual-processor system, each processor
being a above defined three-way superscalar processor. Partition
program into two balanced halves. Find the optimal schedule of split
parallel program by two processors to achieve minimum time.

60B4M35PAP Advanced Computer Architectures

Task to schedule for parallel execution

1: Load R1, A /R1  Mem(A)/
2: Load R2, B /R2  Mem(B)/
3: Mul R3, R1, R2 /R3  (R1) x (R2)/
4: Load R4, D /R4  Mem(D)/
5: Mul R5, R1, R4 /R5  (R1) x (R4)/
6: Add R6, R3, R5 /R6  (R3) + (R5)/
7: Store X, R6 /Mem(X)  (R6)/
8: Load R7, C /R7  Mem(C)/
9: Mul R8, R7, R4 /R8  (R7) x (R4)/
10: Load R9, E /R9  Mem(E)/
11: Add R10, R8, R9 /R10  (R8) + (R9)/
12: Store Y, R10 /Mem(Y)  (R10)/
13: Add R11, R6, R10 /R11  (R6) + (R10)/
14: Store U, R11 /Mem(U)  (R11)/
15: Sub R12, R6, R10 /R12  (R6) – (R10)/
16: Store V, R12 /Mem(V)  (R12)/

61B4M35PAP Advanced Computer Architectures

Resources and links

• John L. Hennessy; David A. Patterson (2003).
Computer Architecture: a quantitative approach
(3rd ed.). Morgan Kaufmann. ISBN 1-55860-724-
2.

• https://computing.llnl.gov/tutorials/openMP/
• https://www.open-mpi.org/doc/v2.1/
• http://www.inf.ed.ac.uk/teaching/courses/pa/Not

es/lecture09-multithreading.pdf
• http://meseec.ce.rit.edu/eecc756-spring2011/75

6-3-17-2011.ppt
• http://www.umsl.edu/~siegelj/CS4740_5740/MPI

andOpenMP/vtopologies.ppt

https://computing.llnl.gov/tutorials/openMP/
https://www.open-mpi.org/doc/v2.1/
http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture09-multithreading.pdf
http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture09-multithreading.pdf
http://meseec.ce.rit.edu/eecc756-spring2011/756-3-17-2011.ppt
http://meseec.ce.rit.edu/eecc756-spring2011/756-3-17-2011.ppt
http://www.umsl.edu/~siegelj/CS4740_5740/MPIandOpenMP/vtopologies.ppt
http://www.umsl.edu/~siegelj/CS4740_5740/MPIandOpenMP/vtopologies.ppt

	Parallel systems programming concepts
	Instruction level parallelism (ILP)
	Instruction level parallelism – pipelining
	Paralelizmus na úrovni instrukcí - zřetězení
	Instruction level parallelism – pipelining 1
	Instruction level parallelism
	Thread level parallelism (TLP)
	Thread level parallelism
	Thread level parallelism 1
	Task level parallelism (TLP)
	Task level parallelism
	Data-level parallelism
	Dependencies in programs
	Data dependencies
	Data dependencies 1
	Data dependencies 2
	Data dependencies 3
	Bernstein's conditions of parallelism
	Bernstein's conditions of parallelism 1
	Bernstein's conditions of parallelism 2
	Multiprocessor illustrative example No 1
	Multiprocessor illustrative example No 1 1
	Multiprocessor illustrative example No 1 2
	Multiprocessor illustrative example No 1 3
	Multiprocessor illustrative example No 1 4
	Multiprocessor illustrative example No 1 5
	Multiprocessor illustrative example No 2
	Multiprocessor illustrative example No 2 1
	Parallel computers' memory architectures
	Parallel computers' memory architectures 1
	Programming models
	Programming models 1
	Návrh paralelního programu - rozvrhování
	Parallel program development – scheduling is fundamental
	Parallel program development – scheduling 1
	Parallel program development – scheduling 2
	Parallel program development – scheduling 3
	Example No 2 – scheduling / mapping / load balance
	Example No 2 – scheduling / mapping / load balance 1
	Scheduling
	Design of parallel program – partitioning
	Design of parallel program – partitioning 1
	Design of parallel program – partitioning 2
	Design of parallel program – partitioning 3
	Design of parallel program – partitioning 4
	Design of parallel program – partitioning 5
	Design of parallel program – partitioning 6
	Design of parallel program – partitioning 7
	Design of parallel program – communication
	Design of parallel program – communication 1
	Design of parallel program – communication 2
	Design of parallel program – communication 3
	Design of parallel program – communication 4
	Design of parallel program – communication 5
	Design of parallel program – communication 6
	Design of parallel program – communication 7
	Design of parallel program – Virtual topology
	Design of parallel program – Synchronization
	Task to schedule for parallel execution
	Task to schedule for parallel execution 1
	Resources and links

