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• Memory operation execution rules,
• Memory coherence – last lecture

• Rules for access to individual locations in memory

• Memory consistency – today lecture
• Rules for mutual order of execution and visibility of memory 

operations

• Ensuring sequential consistency, 
• Weaker memory consistency models

• Consistency achieved by synchronization, that is by 
special synchronization instructions. 

Terminology of the lecture topic
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We say that a multiprocessor memory system is coherent if

the results of any execution of a program are such that for 
each location, it is possible to construct a hypothetical serial 
order of all operations (reads and writes) to the location that 
is consistent with the results of the execution and in which:

1) Memory operations to a given memory location for each 
process are performed in the order in which they were 
initiated by the process.

2) The values returned by each read operation are the 
values of the most recent write operation in a given 
memory location with respect to the serial order.

Memory coherence definition (in common sense)
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Memory

Variable X

P2:  X=0;
P1:  X=0;
P1:  read(X)
P2:  read(X)
P2:  read(X)
P1:  X=1;
P2:  read(X)
P2:  read(X)
P2:  X=2;

At the time when P2 reads X==1, is it ensured that function fun() called by 
process P1 is executed with all side effects including global memory? 

P2:  read(X)
P2:  X=0;
P1:  X=0;
P1:  read(X)
P2:  read(X)
P1:  X=1;
P2:  read(X)
P2:  read(X)
P2:  X=2;

      Proces P1:
X=0;
if(X ==0) {
  y=fun();
  X = 1;
}

      Proces P2:
X=0;
while(X ==0) 
  { ; }
X = 2;

Coherence
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• Consistency (when compared to coherence) 
specifies order in which individual peocesses 
executes their memory operations and or how is 
this order viewed by other processes.

• Sequential order of all memory oeprations to all 
locations is considered.

• Coherence focuses only on hypothetical 
sequential order to individual memory 
locations but guarantees nothing order/vilibility 
of acesses to different locations.

• Consistency defines what is expected behavior of 
shared memory regarding all reads and writes

Consistency
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CPU
Cache

CPU
Cache

CPU
Cache

Shared bus

Shared
memory

It is expected that print(x) writes 1 to output.

Variables initialization seen by both: x=0, y=0
P1: P2:
x = 1; while(y==0) {;}
y = 1; print(x);

Example of program execution on multiprocessor system
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CPU
Cache
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Possible scenario of execution:
1. Processor P2 does not find y in cache and initiated request to read from 

memory. The bus has to be obtained through arbitration first.
2. Processor P2 starts reading of x speculatively – line „print(x)“. It finds y value (0) 

in its cache. Speculation is conventionalized by variable y==1.
3. Processor P1 acquaires bus and executes write to variable x „x=1“. 

Corresponding cacheline is marked as M (MESI protocol) and invalidated in P2. 
4. Processor P1 acquires bus and writes y=1 into memory.
5. Processor P2 acquires bus and reads y value. This confirms 

„correctness“/condition of speculation and speculative instructions are 
completed.

6. Processor P2 outputs 0.

Variables initialization seen by both: x=0, y=0
P1: P2:
x = 1; while(y==0){;}
y = 1; print(x);

Example of program execution on multiprocessor system
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• Variable y indicates that variable x has been changes.
• But memory coherence provides no guarantee for mutual execution 

order of memory operations (read, write) by P1 and P2 and order in 
which are writes to x and y (different variables) visible to P2.

• Coherence ensures only that new values of x and y are finally visible to 
P2 but provides no guarantee about order in which are these values 
obtained.

• That is why P2 can print old value of x (which is 0) even on 
computer with coherent memory system.

• Coherence – which value is returned by read 
• Consistency – when is written value returned by read

Coherence of cache memories is  skrytých pamětí je 
necessary (but not enough) for ensuring data (memory) 
consistency in multiprocessor system.

Is coherence enough to ensure expected program behavior?
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• Single-processor system:
x = 1;
y = 2;
x = 3;
print(x);

(Each read from address x returns last walue writtent to 
address x. )

• For multi-processor system:
• Existence of global precise time in all nodes and 

immediate modification propagation
• Non-realistic (absurd) requirement 

time
x=1;

y=2;
x=3;

print(x);

Strict consistency
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• Definice (Lamport, 1979): “Computer is  sequentially consistent 
if the result of any execution is the same as if the operations of all 
the processors were executed in some sequential order, and the 
operations of each individual processor appear in this sequence in 
the order specified by its program.

• Sequential consistency is weaker model than srict consistency but 
it is simplementable…

• If the processes are running on different processors, arbitrary 
interleaving of instructions execution is allowed, but all processes 
recognizes memory changes in exactly same order (including 
writing one). Modifications are not propagated immediately, only 
their order is guaranteed (the consequence does not precede the 
cause).

Sequential consistency
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P1: P2: P3:
a=1; b=1; c=1;
print(b,c); print(a,c); print(a,b);

It can come as follows:

a=1;
b=1;
c=1;
print(b,c);
print(a,c);
print(a,b);

Let variables are initialized a=0, b=0, c=0.

time

Output: 111111

a=1;
print(b,c);
b=1;
print(a,c);
c=1;
print(a,b);

Output: 001011

etc.

There exist 6! different 
permutations of 
instructions interleave but 
not all fulfill sequential 
consistency requirement
6! / 8 = 90

Sequential consistency
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Legend:
• Write value „a“ to address „x“: w(x)a
• Read from address „x“. Return value is „a“: r(x)a

Example – consider 4 processors (processes) which are executed in parallel:
• P1:  w(x)a, w(x)c, r(x)?
• P2: w(x)b
• P3: r(x)?, r(x)?
• P4: r(x)?, r(x)?

P1 w(x)a w(x)c r(x)c

P2 w(x)b

P3 r(x)b r(x)b

P4 r(x)b r(x)b

Time/ordering

In given time instant, 
only single operation 
is executed

Operations swap in 
the process is not 
allowed.

Operations can be shifted in the 
process as long as order in the 
process is preserved

Sequential consistency
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I. Each processor P(i) issues memory operations in 
program order.

II. Before issuing next memory operation processor P(i) 
wait until last P(i) issued memory operation completes  
(i.e., performs w.r.t. all other processors).

III. When Processor P(i) issues Read operation, it does not 
issue another memory operation before issued read 
operation is finished and before is finished (w.r.t. all 
other processors ) Write operation which value is 
returned by Read → write atomicity.

• Not only HW is required to keep sequential order but even compiler is 
not allowed to alternate order of memory operation. But their 
reordering and elimination is usual/necessary for program 
optimization on single-processor system.

Sufficient conditions to ensure SC
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One of possible scenarios:
1. Processor P2 does not find y in cache and initiated request to read from 

memory. The bus has to be obtained through arbitration first.
2. Processor P2 starts reading of x speculatively – line „print(x)“. It finds y value (0) 

in its cache. Speculation is conventionalized by variable y==1.
3. Processor P1 acquaires bus and executes write to variable x „x=1“. 

Corresponding cacheline is marked as M (MESI protocol) and invalidated in P2.
4. Processor P1 acquires bus and writes y=1 into memory. This invalidates y in P2 

cache.
5. Processor P2 acquires bus and reads y value. This confirms „correctness“ of 

speculation and speculative instructions are completed.
6. Processor P2 outputs 0  1. It has to read „x“ again/there because read in step 

number 3 is forbidden or aborted.

Let variables are initialized: x=0, y=0
P1: P2:
x = 1; while(y==0){;}
y = 1; print(x);

Assume sequential consistency 
Condition violation III.

 Analysis of execution of program on SC system 
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• As shown in the example, forbidding speculation (as well as all 
read ahead, reordering of memory operations etc. ) solves 
problem.. 

• Another solution is to isolate processes as long as no variables 
sharing emerge – absence coherence activits indicates, that 
processor can reorder memory operations and enable speculation.

• But it is still necessary to keep/propagate order  of memory 
references regarding cache misses and snooping.

• The solution:
• Speculation execution is allowed
• All adresses relating to speculation (or reorder) has to be 

remembered until instruction complete
• If some of these addresses collides with coherence activities 

then whole speculative execution branch is abandoned.

Sequential consistency and speculation
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One of possible scenarios:
1. Processor P2 does not find y in cache and initiated request to read from memory. 

The bus has to be obtained through arbitration first.
2. Processor P2 starts reading of x speculatively – line „print(x)“. It finds y value (0) 

in its cache. Speculation is conventionalized by variable y==1.
3. Processor P1 acquaires bus and executes write to variable x „x=1“. 

Corresponding cacheline is marked as M (MESI protocol) and invalidated in P2. 
This collides with address remembered for step 2 speculation. It is abandoned.

4. Processor P1 acquires bus and writes y=1 into memory. 
5. Processor P2 acquires bus and reads value of  y. 
6. Processor P2 acquires bus, requests x value, P1 cache changes state M→S, 

simultaneously send x value to memory and P2 which changes state I→S.
P2 outputs 1. 

Let variables are initialized: x=0, y=0
P1: P2:
x = 1; while(y==0){;}
y = 1; print(x);

Assume sequential consistency 

Analysis of execution of program on such system 
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If processors (program) fulfil seqential consistency conditions and 
parallel system uses shared bus then  model of sequential 
consistency is achieved. Bus arbitration (acquire time slot) in 
processor decides memory operations order – order can be perturbed 
for each collision occurrence but keeps consistency conditions.

• Definition (Lamport, 1979): “Computer is  sequentially consistent 
if the result of any execution is the same as if the operations of all 
the processors were executed in some sequential order, and 
the operations of each individual processor appear in this 
sequence in the order specified by its program.

CPU
Cache

CPU
Cache

CPU
Cache

Shared bus

Shared
memory

The shared bus is exactly the 
palce where “some” sequential 
instructions interleave/order is 
ensured ⇒ serialization

Ensuring consistence for SMP system with shared memory
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Problem: 
Consider two processors P1 and P2 and shared variable A. 
P1: A = A+1; P2: A = A +2;

As long as addition is atomic then final A values is A+3. However:

P1: load R1, A P2: load R1, A
addi R1,R1,1 addi R1,R1,2
store R1,A store R2,A

One of possible execution order results in value A+1:
P1: load R1, A

P2: load R1, A
addi R1,R1,2
store R1,A

addi R1,R1,1
store R1,A

This instructions 
interleave fulfills 
sequential 
consistency model 
but leads to  
„unexpected“ 
result.

Consistency – synchronization – example 
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Solution:

1. SW approach.  Code sequention incrementing A needs to be  „protected“ 
again interaction -> mutual exclusion, critical section.
• Mutual exclusion in sequential consistency memory model can be 

realized with use of atomic operations Read a Write.
• Dekker's algorithm – the first known correct solution – it guarantees 

mutual exclussion without risk to stuck in deadlock and resource 
allocation.

P1: wants_to_enter[0] = true;
    turn = 1;
    while(wants_to_enter[1] && turn==1)
       ; // busy waiting
    // critical section
    A=A+1;
    // end of critical section
    wants_to_enter[0] = false;

P2: wants_to_enter[1] = true;
    turn = 0;
    while(wants_to_enter[0] && turn==0)
       ; // busy waiting
    // critical section
    A=A+2;
    // end of critical section
    wants_to_enter[1] = false;

Peterson's algorithm: initial value of wants_to_enter = { false, false}

Consistency – synchronization – example 

Problem: 
Consider two processors P1 and P2 and shared variable A. 
P1: A = A+1; P2: A = A +2;
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Solution:

2. SW+HW approach. Code sequention incrementing A needs to be  
„protected“ again interaction -> mutual exclusion, critical section.
• SW only approch is to complicated. We want to implement code as:

while(!acquire(lock)) { waiting algorithm/schedule }
computation with shared data
release(lock)

Because multiple processes can attempt to acquire lock at the same 
time, process to acquire lock has to be atomic.
• Waiting algorithm: busy waiting or blocking waiting. Busy waiting – 

continual attempts to acquire lock – no schedule, deadlock w.r.t. schedule on 
given processor, blocking waiting – process enters sleep state, releases 
processor (schedule) and is waken up when lock is released. Comination of 
both techniques is possible.

Consistency – synchronization – example 

Problem: 
Consider two processors P1 and P2 and shared variable A. 
P1: A = A+1; P2: A = A +2;
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Simple way how to realize lock (spinlock) is use of shared memory atomic 
variable which can signal one of two states - 0 (lock is free) or 1 (lock is 
acquired by some process). Lock acquisition then means checking that 
variable value is 0 and setting it to 1. This operation has to be  atomic (i.e. 
no other memory operation to given location is allowed to occur between  
related read and write)!
 

This required specific instruction in ISA which:
Reads, modifies and writes (RWM) value into memory without 
interference.
test-and-set – all modern processors support such operation in their ISA 
or provide primitives which allows to build such construct (ll, sc); This 
operation is fundamental atomic operation. It writes 1 (set) to memory and 
returns previous value of variable.

• Generalization of test-and-set is exchange-and-swap and compare-and-
swap

● example: compare-and-exchange in implemented in x86 ISA by 
instruction: CMPXCHG with LOCK prefixem

Consistency – synchronization
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If test-and-set  is used then above code fragment can be implemented as: 

loop: test-and-set R2, lock  // test lock, old value to R2 and set lock=1
         bnz R2, loop          // if R2 is not 0 jump to loop, repeat acquire attempt
         load R1, A
         addi R1, R1, 1
         store R1, A
         store #0, lock          // release lock by write of 0. 

Instruction test-and-set R2, lock, executes atomically: {load R2,lock; store 
#1,lock}

Another variation of atomic instructions are operations fetch-and-xx (i.e. fetch-and-increment, 
fetch-and-add, fetch-and-store,…).  If such operation is used then program to increment A can 
be implemented by single atomic instruction (or C++ 11 construct, see later):

P1:  fetch-and-inc A; P2:  fetch-and-inc A;

while(!acquire(lock)){ ; }
operations with shared data  
release(lock)

Consistency – spinlock synchronization
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CPU 2
Cache

CPU 3
Cache

Shared
memory
lock==0
A==0

CPU 1
Cache

CPU 0
Cache

CPU 0

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 1
     store R1, A
     store #0, lock

CPU 1

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 2
     store R1, A
     store #0, lock

CPU 2

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 3
     store R1, A
     store #0, lock

CPU 3

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 4
     store R1, A
     store #0, lock

• All CPUs attempt to execute test-and-set instruction. That is why all 
request the bus. Only one receives it in given instant of time. 

MESI protocol and spinlock based on test-and-set instruction
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CPU 2
Cache

CPU 3
Cache

Shared
memory
lock==0
A==0

R2 == 0
lock == 1, M

CPU 0
Cache

CPU 0

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 1
     store R1, A
     store #0, lock

CPU 1

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 2
     store R1, A
     store #0, lock

CPU 2

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 3
     store R1, A
     store #0, lock

CPU 3

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 4
     store R1, A
     store #0, lock

• CPU 1 obtains the bus. It reads value of „lock“  variable from memory to 
R2 and writes 1 to memory. Write happens only in its cache. Cache line 
reaches state M (modified).

MESI protocol and spinlock based on test-and-set instruction
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CPU 2
Cache

R2 == 1
lock == 1, S

Sdílená
Paměť
lock==1
A==0

R2 == 0
lock == 1, S

CPU 0
Cache

CPU 0

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 1
     store R1, A
     store #0, lock

CPU 1

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 2
     store R1, A
     store #0, lock

CPU 2

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 3
     store R1, A
     store #0, lock

CPU 3

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 4
     store R1, A
     store #0, lock

• CPU 3 obtains bus. It request to read „lock“ value to R2. Snooping 
CPU 1 recognizes MemRead request and propagates modified data to 
CPU 1 and memory. Corresponding line changes to S. CPU 3 receives 
data its final cache state is S as well. 

MESI protocol and spinlock based on test-and-set instruction
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CPU 2
Cache

R2 == 1
lock == 1, M

Sdílená
Paměť
lock==1
A==0

R2 == 0
lock == 1, I

CPU 0
Cache

CPU 0

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 1
     store R1, A
     store #0, lock

CPU 1

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 2
     store R1, A
     store #0, lock

CPU 2

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 3
     store R1, A
     store #0, lock

CPU 3

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 4
     store R1, A
     store #0, lock

• CPU 3 keeps bus control (lock prefix). Next step of atomic action  test-
and-set is write 1 to “lock” memory location. That is recognized by 
snooping CPU 1. It changes state to I (invalid), CPU 3 reaches state M. 
CPU3 releases bus.

MESI protocol and spinlock based on test-and-set instruction
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CPU 2
Cache

R2 == 1
lock == 1, M

Sdílená
Paměť
lock==1
A==0

R2 == 0
lock == 1, I

CPU 0
Cache

CPU 0

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 1
     store R1, A
     store #0, lock

CPU 1

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 2
     store R1, A
     store #0, lock

CPU 2

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 3
     store R1, A
     store #0, lock

CPU 3

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 4
     store R1, A
     store #0, lock

• CPU 0 obtains bus. It reads “lock” and writes 1 to it. This results in 
invalidation of all other caches and setting M in his own cache.  

• CPU 3 tests R2 but value is 1 and it has jumps to L label to repeat 
attempt to acquire bus and receive “lock”.

MESI protocol and spinlock based on test-and-set instruction
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Observation:
• Each attempt to acquire lock (successful or unsuccessful) modifies value 

in cache line and requires it change to M state.
• Consequence is invalidation of corresponding cache line in all other 

CPUs attempting to enter critical section.
• Unsucesfull attempt to acquire lock leads to start of another attempt.
• When number of CPUs increases then bus load increases quadratically 

for both, reads and writes.
• Remark: spinlock on single CPU without sleep or schedule disable causes deadlock.  

Enhancement No 1:
• If attemp to acquire lock is unucesfull then delay next attempt  – sleep 

exponentially increasing or random.  

Enhancement No 2:
• Execution of test-and-set instruction realizes 2 transactions on the bus, 

the second invalidates all other caches. Advantage to conditionalize 
attempt to write by check that lock is empty – repeated only single 
transaction MemRead and result state is S until there is chance to 
acquire lock after release. Bus load is decreased and continuous caches 
trashing is eliminated. But use of ll and sc is even better.  

MESI protocol and spinlock based on test-and-set instruction
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Another alternative  is instruction pair load-locked (ll) (or load-link, load-
linked, load-and-reserve) and store-conditional (sc) found in many 
modern ISAs.

• Instruction ll returns value stored in memory, sc stores new value to the 
address only if value on linked address has not been modified by other 
thread/CPU – atomic operation is successful – implementation can be 
based on load address register (LAR) and added lock flag (LF).

loop:  ll R1, A // read A into R1, address A into LAR. LF=1;
addi R1, R1, 1
sc R1, A // if(LF==1) store R1 into A;          R1=LF; 
bz R1, loop

•    IBM PowerPC, DEC Alpha, MIPS, ARM, RISC-V, IA-64 

Problem: 
Consider two processors P1 and P2 and shared variable A.
P1: A = A+1; P2: A = A +2;

Atomics implemented by load link + store conditional
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• ll and sc implementation requires at least minimal support in HW: link 
address register LAR for address monitoring and link flag LF.

• ll instruction: sets LF and LAR value – location or cache line is 
reserved/remembered for monitoring.

• sc instruction: if LF==1 then store data into memory. Return LF value.
• Important: sc instruction does not generate any transaction for 

unsuccessful state = does not invalidate cache lines.
• When contect is changed or exception/interrupt occurs: clear LF
• Possible cache controller ll+sc support: 

• compare RWITM transactions addresses with address stored in 
LAR. Clear LF in case of addresses match.

• Do not allow linked cache line replacement as a result of cache lines 
reuse (cache replacement policy – i.e. LRU) when LF==1. 
Replacement would clear LF and result in situation when sc can never 
succeed. That would result in infinite repeat of code between ll-sc → active 
blocking - livelock.  SW side solution is to forbid use keep away of use any 
memory revefencing instructions = no read, no write between ll and sc 
instructions and use memory barriers for out-of-order execution to prevent 
instruction in and around ll+sc block to get out or in the ll+sc region.

Atomics implemented by load link + store conditional
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Discussion

• Compare test-and-set and instruction pair ll-sc methods. Which 
variant loads the bus less?

• Is memory coherent model enough to ensure sequential consistency 
model for lock? 

• Shared bus is not used today for cores/processors interconnection. 
It is possible that more request are in the flight simultaneously…

• What happens if 2 processors do RWITM simultaneously?

• What happens if requests and responses are
delivered to different processors in different order?

P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

Solution:
Serialization (or synchronization) of requests (required for coherence and 
consistency) – same as on the bus … But there is no shared bus ….
Instead of serialization: Home Node (see previous lecture), but only for 
single address/memory block
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Discussion

• In sequential program exist fragment of code:

Instr.1:   load  R1, A  // read of value A from memory to R1
Instr.2:   load  R2, B
Instr.3:   store R3, C  // value of R3 into C
Instr.4:   load  R4, D
…
Instr.N:   store R5, A

Question  No 1
• Is there problem to finish (execute) instruction No 2 before No 1?
Question No 2
• Is there problem to finish (execute) instruction N before No 1?
Question No 3
• Is there problem to finish (execute) instruction No 4 before No 3?
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• Load / Store instructions are responsible for data 
transfers from and to memory and processor general 
purpose registers

• Processor is equipped with only limited numebr of registers
• Compiller generates so called spill code, which swaps 

used variables data into memory temporarily to make 
registers available for processed variables – load/store 
instructions are used for this task

• Data dependencies – RAW, WAR, WAW – between 
load/store instructions referencing the same address

• Total ordering – keeping program order of 
allload/store instructions. Is it necessary?

We already know...
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• Requirement of sequential consistency results in some 
some restrictions on out-of-order execution load/store 
instructions

• What happens if exception occurs? 
• Memory state must be based on the sequential order of 

load/store instructions
• This results in requirement that memory operations must 

be executed in program order, or precisely, that memory 
must be updated such way as when instruction were 
executed in program order

• If store instructions are executed in program order, it is 
guaranteed fulfillment of  WAW and WAR dependencies. 
RAW dependencies are only one to care…

• Load instructions – out-of-order

Model of sequential consistency
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For now, expect issuing of load/store instructions from reservatio station in order

• Load bypassing allows to execute load before store, if they are 
memory independent. In other case (if dependency exists): Load 
forwarding.

1. Address generation
2. Address translation
3. Memory access

1. Address generation
2. Address translation

Memory update

It can be 
incomplete

Load forwarding and Load bypassing
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For now, expect issuing of load/store instructions from reservatio station in order

• Load bypassing allows to execute load before store, if they are 
memory independent. In other case (if dependency exists): Load 
forwarding.

1. Address generation
2. Address translation
3. Memory access

1. Address
       generation
2. Address

translation

Memory update

It must be 
complete

Load forwarding and Load bypassing

This solution (complete 
address) allows both: 
load bypassing and 
load forwarding

Store: dispached, 
issued, finished, 
completed, retired

Load – if match: 
discard read data 
and take one 
available  in  
Store buffer
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• Store buffer use enables significant speedup of  
sequential program execution… However:

L3 cache

L2 cache L2 cache L2 cache L2 cache

L1d L1i L1d L1i L1d L1i L1d L1i

Sto
re 

buff
er

Sto
re 

buff
er

Sto
re 

buff
er

Sto
re 

buff
er

Core 0 Core 1 Core 2 Core 3
1. Memory write is 
recorded in Store 

buffer

3. Propagation from Store 
buffer into cache which 

triggers coherence 
mechanism takes some 

time (same to regain 
consistency). Consistency 

is violated for that time.

2. Load forwarding allows to read correct/up-to-
date value to the core 0 

Store buffer
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• If it is allowed to issue instructions from reservation 
station out-of-ordert then it is possible that load 
instruction can be already executed but preceding 
conflicting (RAW hazard) store is not in the store buffer 
yet (it can be executed, in reservation station or even in 
dispatch buffer). Information about conflicting store 
address is not known and RAW hazard cannot be 
detected.

• Solution?
• Assume that there is no dependency and check for 

dependency later …  => speculative execution
• Speculative load execution  is supported by Finished 

load buffer (Finish load queue)

Load forwarding and Load bypassing
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• Load instruction is stored in Finished load buffer between execution finishing and 
completion.

• Each time when store reaches completion, alias checking with FLB entries is 
performed. No conflict → store is finished ; Conflict→abandon load instr. speculation

Speculative execution of load instructions
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• Why to enable speculation of load instructions?
• It is useful to perform load as early as possible – other compuation 

depends on it usually

• In addition, earlier load execution can initiate cache miss in 
advance

• It can mask cache miss penalty (main memory access time)

• However: In case of incorrect speculation – abandon of 
speculated instructions (sequence starting by load) cost time 
and resources which could be better utilized...

• That is why to add: Dependence prediction
Dependency  between store and load is quite predictable for typical 
programs

• Memory dependence predictor then decides if speculative 
load and following instruction should be started

Speculative execution
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CPU
Cache

CPU
Cache

CPU
Cache

Shared
memory

One of possible scenarios:
1. Processor P2 does not find y in cache and initiated request to read from 

memory. The bus has to be obtained through arbitration first.
2. Processor P2 starts reading of x speculatively – line „print(x)“. It finds y value (0) 

in its cache. Speculation is conventionalized by variable y==1.
3. Processor P1 acquaires bus and executes write to variable x „x=1“. 

Corresponding cacheline is marked as M (MESI protocol) and invalidated in P2. 
This collides with address remembered for step 2 speculation. It is abandoned.

4. Processor P1 acquires bus and writes y=1 into memory.. 
5. Processor P2 acquires bus and reads y value. 
6. Processor P2 acquires bus, requests x value, P1 cache changes state M→S, 

simultaneously send x value to memory and P2 which changes state I→S.
P2 outputs 1.

Let variables are initialized: x=0, y=0
P1: P2:
x = 1; while(y==0){;}
y = 1; print(x);

Assume sequential consistency But possible cache miss 
cannot be propagated out …

Execute example program on this system
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• Significant efforts have been made to accelerate the 
execution of applications on single-core processors – out-
of-order, speculation, store buffer before cache, ...

• These techniques are often not compatible with the 
sequential consistency model

• So what will we give up?
• Answer: Sequence consistency model
•
• But how can we ensure that the programmer does not get 

unexpected results?
• Answer: We will offer another consistency model - it will 

provide a sequential consistent view only at certain times
• For this we need additional instructions … => HW and ISA 

support

Sequential consistency – summary



43B4M35PAP Advanced Computer Architectures

Causal consistency (Hutto, Ahamad, 1990)
• Writes that are potentially causally bound, must be seen by all processes in the 

same order. Concurrent writes can be seen in different order
• Distinguishing events that are potentially dependent and which are not

• Reading on a given P is causally ordered before writing (even to another address) - the written value 
may depend on the read value

• Reading is causally ordered after an earlier write to the same address if the read has received data 
written by that write

• Writes at the same address given by P are causally arranged as they were done

• Weaker than sequential consistency

P1 w(x)a w(x)c r(x)c

P2 w(x)b r(x)c

P3 r(x)a r(x)b

P4 r(x)b r(x)a

Time

Simultaneous writes

Swap of operations 
in given process is 
forbidden.

Operation can be 
arbitrarily shifted in 
given process

Causually ordered

P3 observes a first, then b.

P4 observes different order of concurrent writes

Another consistence models
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P1 w(x)a w(x)c

P2 w(x)b r(x)c w(x)d

P3 r(x)a r(x)b r(x)d  r(x)c

P4 r(x)b r(x)a r(x)c r(x)d

Writes are not causally 
bound – simultaneous 
writes

Write w(x)d on P2 is causally bound to earlier r(x)c, which is 
causually bound to write w(x)c on P1. That is why these writes 
are causually bound as well and systems has to ensure their 
order: w(x)c < w(x)d. This ensures that on P3 r(x) last read 
cannot return c  because d has been already seen by P3. 

Causal consistency (Hutto, Ahamad, 1990)
• Writes that are potentially causally bound, must be seen by all processes in the 

same order. Concurrent writes can be seen in different order
• Distinguishing events that are potentially dependent and which are not

• Reading on a given P is causally ordered before writing (even to another address) - the written value 
may depend on the read value

• Reading is causally ordered after an earlier write to the same address if the read has received data 
written by that write

• Writes at the same address given by P are causally arranged as they were done

• Weaker than sequential consistency

Another consistence models
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• PRAM konsistency (pipelined random access memory 
consistency) = FIFO consistency, (Lipton, Sandberg (1988)

• Writes executed by one process are seen by other processes in the 
order in which they were performed, but the writes executed by different 
processes can be seen by different processes differently (permuted).

• Weaker than sequential consistency

P1 w(x)a w(x)c

P2 w(x)b r(x)c w(x)d

P3 r(x)a r(x)b r(x)d  r(x)c

P4 r(x)b r(x)a r(x)c r(x)d

Writes by different 
processors can be seen 
in different order

Does not obey causality principle. 
Writes originate on different 
processors and that is why P3 can 
observe these in order different to P4.

Another consistence models
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To recall

• In sequential program exist fragment of code:

Instr.1:   load  R1, A  // read of value A from memory to R1
Instr.2:   load  R2, B
Instr.3:   store R3, C  // value of R3 into C
Instr.4:   load  R4, D
…
Instr.N:   store R5, A

Question  No 1
• Is there problem to finish (execute) instruction No 2 before No 1?
Question No 2
• Is there problem to finish (execute) instruction N before No 1?
Question No 3
• Is there problem to finish (execute) instruction No 4 before No 3?
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   Relaxed consistency
• Sequential consistency preserves order of reads and writes:

1. W→R: write must be finished before following read
2. R→R: read must be finished before following read

3. R→W: read must be finished before following write

4. W→W: write must be finished before following write

• Relaxed consistency leaves out some of these requirements
• Additionally, we can leave out the requirement of a unique sequence 

interlace of instructions seen by all processors equally when:
5. Processor can observe result of its write before it is seen by other processors

6. Processor can observe result of other processor write before it is seen by others

P1 w(x)a w(y)c w(z)d

P2 w(x)b r(x)b w(z)f

P3 r(x)b

It is possible to „reorder“ instructions in given 
process based on „relaxation“. But operation 
have to be referencing different addresses

More consistency models
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   Relaxed consistency – What are the benefits?
• W→R: removes Write from critical path – overlap of Write and 

following Read „reduces“ memory latenci for Write. (Write in coherent 
NUMA system is not only write but also finding of valid block – queries to home node, 
distribution of invalidation to all others with block, block reading, etc.)

• R→R and R→W: nonblocking cache – it is possible to continue with 
execution even after read miss, waiting to miss service is not 
necessary – speculative execution

• W→W: memory level parallelism
• Read of own write before others: Load forwarding – store buffer 

before cache → speedup of program execution
• Read of other processor write before others: read from memory 

before change is distrubuted to all others

• Thus, the release allows for parallel execution. Forced serialization 
required by sequential consistency is suppressed.

More consistency models
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Relaxed konzistence
Next models falls into relaxed consistency category:
• Total Store Ordering (TSO) – IBM 370: read operation can be completed 

before earlier write to other address, but read cannot return written value 
until write is visible to all other nodes

• Total Store Ordering (TSO) – SPARC: read operation can be completed 
before earlier write to other address. Read cannot return value written by 
other processor until write is visible to all other processors. But processor 
can return own write value before this write is visible to other processors.

• Processor Consistency (PC): read can be completed before earlier write 
(arbitrarily processor to arbitrarily place) is visible to all, that is readread 
executed on some of processors can return new value while read executed 
on other processors still returns old value. 

• Partial Store Ordering (PSO) – similar to TSO. Difference: PSO preserves 
only order of writes to same address, writes to different locations can be 
reordered.

• And more…

More consistency models
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Relaxace

•  Write to Read program order
•  Write to Write program order
•  Read to Read and Read to Write program orders

•  Read others’ write early (write atomicity is not 
kept)

•  Read own write early To different addresses!

W->R W->W R->R,W Read own 
write before 
others

Read others 
write before 
others

TSO – IBM 370 x

TSO – SPARC: SPARC,   
IA-32, Intel64, AMD64

x x

PC x x x

PSO x x x

Weak consistency: PowerPC, 
ARMv7, IA-64

x x x x x

   Relaxed consistency

More consistency models
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Intel Core i5, Core  i7, Intel Xeon, Intel Core2 Extreme 

• Read in respect to read and write in respect to write on given processor are 
not reordered (exception are special long string store and string move write 
operations)  – that is R->R and W->W is not relaxed

• Write cannot precede earlier read  – that is  R->W is not relaxed

• Read can precede earlier write to different address  -- relaxed W->R, 
Dekker's algorithm can fail to protect critical section

P1: P2:
X=1; Y=1;

R1=Y; R2=X;

For initial values X=Y=0, it can return P1.R1=0 and simultaneously P2.R2=0.

• Read cannot precede earlier write to same address
• Load-forwarding inside give processor is allowed – that is read of own write before 

oethers

P1: P2:

X=1; Y=1;
R1=X; R3=Y;

R2=Y; R4=X;

For initial values X=Y=0, it can return P1.R2=0 and simultaneously P2.R4=0.

Consistency model of IA-32 and Intel64
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Intel Core i5, Core  i7, Intel Xeon, Intel Core2 Extreme 

• Writes are visible transitively – write, which are causually bound are seen by 
all others processors in same order

P1: P2: P3:
X=1; R1=X; R2=Y;

Y=1; R3=X;

For initial values X=Y=0,it cannot return P2.R1=1, P3.R2=1 and simultaneously P3.R3=0.

• Writes are seen by all other processors in same order – processor 
executing write can see different order

P1: P2: P3: P4:
X=1; Y=1; R1=X; R3=Y;

R2=Y; R4=X;

For initial values X=Y=0, it cannot return P3.R1=1, P3.R2=0, P4.R3=1 and 
simultaneously P4.R4=0.

• IA-32 and Intel64 architecture comply with TSO – SPARC consistency.

Consistency model of IA-32 and Intel64
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Example A:    
  P1:     P2:
A=1; while(flag==0);
flag=1; print(A);

Example B:    
   P1:     P2:
A=1; print(B);
B=1; print(A);

Example C:    
 P1:      P2:        P3:
A=1; while(A==0); while(B==0);

B=1;  print(A);

Example D:    
   P1:     P2:
A=1; B=1;
print(B); print(A);

Example A Example B Příklad C Příklad D

TSO – SPARC Yes Yes Yes No

PC Yes Yes No No

PSO No No No No

Weak consistency No No No No

Would be code executed with conformance to sequential consystency?

Assuming that the compiler follows the order of lines/operation… Initial values: A=flag=0.

Which behavior can be expected for next code fragments?
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Use memory barrier (there more types, consider full for now)
• All data operations (instructions) BEFORE barrier has to be completed
• All data operations (instructions) AFTER barrier has to wait until barrier 

instruction is completed
• Barrier instruction are processed in program order

Programmer has to accept that memory operations working 
with shared varables can be arbitrarily reordered in each 
code sequence block. These blocks are separated by barriers.

• IA-32, Intel64 defines three barrier instructions: sfence, lfence, mfence
• Sfence – all store operations before barrier has to be completed before the 

first store after barrier instructions is executed
• Lfence – all load instructions before barriear has to be completed before the 

fisrt load after barrier is executed
• Mfence – all memory operations has to be finished (be globally visible) 

before the first memory operation after barrier instruction is executed

• PowerPC ISA defines sync instruction
• OpenMP defines flush directive

How to achieve desired behavior of program
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Use memory barrier

Example A:    
P1:       P2:
A=1; while(flag==0);
#pragma omp flush #pragma omp flush
flag=1; print(A);
#pragma omp flush

Guarantees 
order

Accelerates flag 
propagation

• It is guaranteed, that P2 would read of variable A return 1. Memory operation in 
block before, between and after barriers can be reordered by compiler and or 
hardware. But that does not influence program result.

• Barrier instruction implementation must ensure that shared variables (thread-
visible) are visible to all threads/processors after this directive → compiler must 
ensure that for such variables are values from registers written to memory 
(Write/SW instructions are inserted), processor flushes write-buffers, etc. 

• Memory barrier ensures sequentially consistent view of memory only in 
defined instants of time – the action has to be considered by all 
participating threads/processors.

How to achieve desired behavior of program
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Next synchronization types are distinguished by parallel programing:
• Two-point synchronization: it ensures safe data passing between two 

processes (threads). The fisrt one can eventually continue in execution 
without need to wait – see previous slide (or can be implemented by semaphore)

• Synchronization  barrier: all processed from given processes group must 
wait in this point until last one reaches barrier then they can continue 
(Warning: do not confuse this barrier for with term memory barrier by mistake)

• Mutual exclusion – critical section: Only one of processes can acquire 
access to the marked code block and others need to wait until it exists 
block (often implemented by mutex)

P1       P2 P1  P2   …   PN P1  P2   …     PN

Two-point 
synchronization

Synchr. 
barrier

Critical 
section

Synchronization events types
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Two-point synchronization:
#pragma omp flush
as has been shown already

Synchronization barrier:
… 
#pragma omp barrier
…

Notice: Flush operation (memory barrier) is inserted by two-point synchronization 
directive as well for synchrozization barrier and at clricical section entry and exit – it 
is important for ensuring sequentionally consistent memory view at given location.

Already introduced and described instructions for memory synchronization and 
atomic operations (test-and-set, pair ll-sc) together with memory barrier instructions  
(enforcing sequentially consistent view in given instant of time) are building blocks for 
implementation of above described synchronization events.

Critical section:
#pragma omp critical 
{
    … // A = A+1;
}

Synchronization events types defined by OpenMP
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Using synchronization only in minimal required form

• Programing models using full memory barriers are too 
restrictive for efficient use of processor cores.

• It is useful to define memory models which allow to precisely 
define purpose of shared variable access/modification. There 
are next use cases: atomic operation concerning only specified 
variable (relaxed model, i.e. A+=2), confirmation of data 
availability in some other variables (release), for checking that 
variable protected that data are ready (consume), for overtake 
of control/lock (acquire), combined (acq-rel) and operations 
version version which ensures complete synchronization 
(seq_cst). Only last one, the most expensive (Sequentially-
consistent ordering) corresponds to before introduced 
synchronization events.

• The most sophisticated model of these operations is probably in 
the C++11 language standard
http://en.cppreference.com/w/cpp/atomic/memory_order

http://en.cppreference.com/w/cpp/atomic/memory_order
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Ticket-lock based on C++ memory model

• Ticket-lock is spinlock implementation, critical section with 
busy waiting

• Peter Cordes – analysis of question on StackOverflow about 
implementation optimization for GCC
https://stackoverflow.com/questions/33284236/implementing-
a-ticket-lock-with-atomics-generates-extra-mov

#include <atomic>

struct atom_ticket { std::atomic<uint32_t> next_ticket,now_serving;};

void lock_acquire(atom_ticket* tkt) {
    const auto my_ticket =
        tkt->next_ticket.fetch_add(1,std::memory_order_acquire);
    while (tkt->now_serving.load(std::memory_order_acquire) !=
           my_ticket) {
        _mm_pause(); /* x86 specific, #include <immintrin.h> */
    }   
}

void lock_release(atom_ticket* tkt) {
        tkt->now_serving++; // variable data type ensures atomic inkrement
}                       // used strongest memory_order_seq_cst model

https://stackoverflow.com/questions/33284236/implementing-a-ticket-lock-with-atomics-generates-extra-mov
https://stackoverflow.com/questions/33284236/implementing-a-ticket-lock-with-atomics-generates-extra-mov
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lock_acquire(atom_ticket*):
        mov        edx, 1
        lock xadd  DWORD PTR [rdi], edx
        add        rdi, 4
.L2:
        mov        eax, DWORD PTR [rdi]
        cmp        edx, eax
        jne        .L2
        rep ret

lock_release(atom_ticket*):
        lock add   DWORD PTR [rdi+4], 1
        ret

• Compilation by https://gcc.godbolt.org/
• x86_64 gcc 5.2 -std=gnu++1y -Wall -O3 -ffast-math  -fverbos

e-asm -march=native -mtune=native

Ticket-lock – compilation for x86_86

https://gcc.godbolt.org/
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,source:'%23include+%3Catomic%3E%0A%0Astruct+atom_ticket+%7B+std::atomic%3Cuint32_t%3E+next_ticket,now_serving%3B%7D%3B%0A%0Avoid+lock_acquire(atom_ticket*+tkt)+%7B%0A++++const+auto+my_ticket+%3D%0A++++++++tkt-%3Enext_ticket.fetch_add(1,std::memory_order_acquire)%3B%0A++++while+(tkt-%3Enow_serving.load(std::memory_order_acquire)+!!%3D%0A+++++++++++my_ticket)+%7B%0A++++++++//_mm_pause()%3B+/*+specifick%C3%A9+pro+x86,+%23include+%3Cimmintrin.h%3E+*/%0A++++%7D+++%0A%7D%0A%0Avoid+lock_release(atom_ticket*+tkt)+%7B%0A++++++++tkt-%3Enow_serving%2B%2B%3B+//+typem+je+dan%C3%A9,+%C5%BEe+bude+inkrement+atomick%C3%BD%0A%7D'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:g72,filters:(b:'0',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'0',trim:'1'),libs:!(),options:'-std%3Dgnu%2B%2B1y+-Wall+-O3+-ffast-math++-fverbose-asm+-march%3Dnative+-mtune%3Dnative',source:1),l:'5',n:'0',o:'x86-64+gcc+7.2+(Editor+%231,+Compiler+%231)',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,source:'%23include+%3Catomic%3E%0A%0Astruct+atom_ticket+%7B+std::atomic%3Cuint32_t%3E+next_ticket,now_serving%3B%7D%3B%0A%0Avoid+lock_acquire(atom_ticket*+tkt)+%7B%0A++++const+auto+my_ticket+%3D%0A++++++++tkt-%3Enext_ticket.fetch_add(1,std::memory_order_acquire)%3B%0A++++while+(tkt-%3Enow_serving.load(std::memory_order_acquire)+!!%3D%0A+++++++++++my_ticket)+%7B%0A++++++++//_mm_pause()%3B+/*+specifick%C3%A9+pro+x86,+%23include+%3Cimmintrin.h%3E+*/%0A++++%7D+++%0A%7D%0A%0Avoid+lock_release(atom_ticket*+tkt)+%7B%0A++++++++tkt-%3Enow_serving%2B%2B%3B+//+typem+je+dan%C3%A9,+%C5%BEe+bude+inkrement+atomick%C3%BD%0A%7D'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:g72,filters:(b:'0',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'0',trim:'1'),libs:!(),options:'-std%3Dgnu%2B%2B1y+-Wall+-O3+-ffast-math++-fverbose-asm+-march%3Dnative+-mtune%3Dnative',source:1),l:'5',n:'0',o:'x86-64+gcc+7.2+(Editor+%231,+Compiler+%231)',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4
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lock_acquire(atom_ticket*):
1:  ll      $3,0($4)
    addiu   $1,$3,1
    sc      $1,0($4)
    beq     $1,$0,1b
    nop
    sync
    addiu   $4,$4,4
2:  lw      $2,0($4)
    sync
    bne     $3,$2,1b
    nop
    jr      $31
    nop

• Compilation by https://gcc.godbolt.org/
• MIPS gcc 5.4 -std=gnu++1y -Wall -O3 -ffast-math

lock_release(atom_ticket*):
    sync
1:  ll      $1,4($4)
    addiu   $1,$1,1
    sc      $1,4($4)
    beq     $1,$0,1b
    nop
    sync
    jr      $31
    nop

Ticket-lock – compilation for MIPS

https://gcc.godbolt.org/
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,source:'%23include+%3Catomic%3E%0A%0Astruct+atom_ticket+%7B+std::atomic%3Cuint32_t%3E+next_ticket,now_serving%3B%7D%3B%0A%0Avoid+lock_acquire(atom_ticket*+tkt)+%7B%0A++++const+auto+my_ticket+%3D%0A++++++++tkt-%3Enext_ticket.fetch_add(1,std::memory_order_acquire)%3B%0A++++while+(tkt-%3Enow_serving.load(std::memory_order_acquire)+!!%3D%0A+++++++++++my_ticket)+%7B%0A++++++++//_mm_pause()%3B+/*+specifick%C3%A9+pro+x86,+%23include+%3Cimmintrin.h%3E+*/%0A++++%7D+++%0A%7D%0A%0Avoid+lock_release(atom_ticket*+tkt)+%7B%0A++++++++tkt-%3Enow_serving%2B%2B%3B+//+typem+je+dan%C3%A9,+%C5%BEe+bude+inkrement+atomick%C3%BD%0A%7D'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:mips5,filters:(b:'1',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'0',trim:'1'),libs:!(),options:'-std%3Dgnu%2B%2B1y+-Wall+-O3+-ffast-math+',source:1),l:'5',n:'0',o:'MIPS+gcc+5.4+(Editor+%231,+Compiler+%231)',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4
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lock_acquire(atom_ticket*):
.L4:ldaxr   w2, [x0]
    add     w1, w2, 1
    stxr    w3, w1, [x0]
    cbnz    w3, .L4
    add     x0, x0, 4
.L2:ldar    w1, [x0]
    cmp     w2, w1
    bne     .L2
    ret

• Compilation by https://gcc.godbolt.org/
• ARM64 gcc 6.3 -std=gnu++1y -Wall -O4

lock_release(atom_ticket*):
    add     x0, x0, 4
.L7:ldaxr   w1, [x0]
    add     w1, w1, 1
    stlxr   w2, w1, [x0]
    cbnz    w2, .L7
    ret

Ticket-lock – compilation for ARM Aarch64

https://gcc.godbolt.org/
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,source:%27%23include+%3Catomic%3E%0A%0Astruct+atom_ticket+%7B+std::atomic%3Cuint32_t%3E+next_ticket,now_serving%3B%7D%3B%0A%0Avoid+lock_acquire(atom_ticket*+tkt)+%7B%0A++++const+auto+my_ticket+%3D%0A++++++++tkt-%3Enext_ticket.fetch_add(1,std::memory_order_acquire)%3B%0A++++while+(tkt-%3Enow_serving.load(std::memory_order_acquire)+!!%3D%0A+++++++++++my_ticket)+%7B%0A++++++++//_mm_pause()%3B+/*+specifick%C3%A9+pro+x86,+%23include+%3Cimmintrin.h%3E+*/%0A++++%7D+++%0A%7D%0A%0Avoid+lock_release(atom_ticket*+tkt)+%7B%0A++++++++tkt-%3Enow_serving%2B%2B%3B+//+typem+je+dan%C3%A9,+%C5%BEe+bude+inkrement+atomick%C3%BD%0A%7D%27),l:%275%27,n:%270%27,o:%27C%2B%2B+source+%231%27,t:%270%27)),k:50,l:%274%27,n:%270%27,o:%27%27,s:0,t:%270%27),(g:!((h:compiler,i:(compiler:mips5,filters:(b:%271%27,binary:%271%27,commentOnly:%270%27,demangle:%270%27,directives:%270%27,execute:%271%27,intel:%270%27,trim:%271%27),libs:!(),options:%27-std%3Dgnu%2B%2B1y+-Wall+-O3+-ffast-math+%27,source:1),l:%275%27,n:%270%27,o:%27MIPS+gcc+5.4+(Editor+%231,+Compiler+%231)%27,t:%270%27)),k:50,l:%274%27,n:%270%27,o:%27%27,s:0,t:%270%27)),l:%272%27,n:%270%27,o:%27%27,t:%270%27)),version:4
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Ticket-lock – compilation for ARM 32-bit

lock_acquire(atom_ticket*):
    push {r4, r5, r6, lr}
    mov  r1, #1
    mov  r5, r0
    bl   __sync_fetch_and_add_4
    mov  r6, r0
    add  r5, r5, #4
.L2:ldr  r4, [r5]
    bl   __sync_synchronize
    cmp  r6, r4
    bne  .L2
    pop  {r4, r5, r6, lr}
    bx   lr

• Compilation by https://gcc.godbolt.org/
• ARM gcc 6.3.0 -std=gnu++1y -Wall -O4

lock_release(atom_ticket*):
    push {r4, lr}
    add  r0, r0, #4
    mov  r1, #1
    bl __sync_fetch_and_add_4
    pop  {r4, lr}
    bx   lr

https://gcc.godbolt.org/
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,source:'%23include+%3Catomic%3E%0A%0Astruct+atom_ticket+%7B+std::atomic%3Cuint32_t%3E+next_ticket,now_serving%3B%7D%3B%0A%0Avoid+lock_acquire(atom_ticket*+tkt)+%7B%0A++++const+auto+my_ticket+%3D%0A++++++++tkt-%3Enext_ticket.fetch_add(1,std::memory_order_acquire)%3B%0A++++while+(tkt-%3Enow_serving.load(std::memory_order_acquire)+!!%3D%0A+++++++++++my_ticket)+%7B%0A++++++++//_mm_pause()%3B+/*+specifick%C3%A9+pro+x86,+%23include+%3Cimmintrin.h%3E+*/%0A++++%7D+++%0A%7D%0A%0Avoid+lock_release(atom_ticket*+tkt)+%7B%0A++++++++tkt-%3Enow_serving%2B%2B%3B+//+typem+je+dan%C3%A9,+%C5%BEe+bude+inkrement+atomick%C3%BD%0A%7D'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:armg630,filters:(b:'1',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'0',trim:'1'),libs:!(),options:'-std%3Dgnu%2B%2B1y+-Wall+-O4',source:1),l:'5',n:'0',o:'ARM+gcc+6.3.0+(linux)+(Editor+%231,+Compiler+%231)',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4
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Ticket-lock – compilation for ARM Cortex-A7

lock_acquire(atom_ticket*):
.L4:ldrex   r2, [r0]
    add     r3, r2, #1
    strex   r1, r3, [r0]
    cmp     r1, #0
    bne     .L4
    add     r0, r0, #4
    dmb     ish
.L2:ldr     r3, [r0]
    dmb     ish
    cmp     r2, r3
    bne     .L2
    bx      lr

• Compilation by https://gcc.godbolt.org/
• ARM gcc 6.3 -std=gnu++1y -Wall -O4 -march=armv7-a

lock_release(atom_ticket*):
    add     r0, r0, #4
    dmb     ish
.L7:ldrex   r3, [r0]
    add     r3, r3, #1
    strex   r2, r3, [r0]
    cmp     r2, #0
    bne     .L7
    dmb     ish
    bx      lr

https://gcc.godbolt.org/
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,source:'%23include+%3Catomic%3E%0A%0Astruct+atom_ticket+%7B+std::atomic%3Cuint32_t%3E+next_ticket,now_serving%3B%7D%3B%0A%0Avoid+lock_acquire(atom_ticket*+tkt)+%7B%0A++++const+auto+my_ticket+%3D%0A++++++++tkt-%3Enext_ticket.fetch_add(1,std::memory_order_acquire)%3B%0A++++while+(tkt-%3Enow_serving.load(std::memory_order_acquire)+!!%3D%0A+++++++++++my_ticket)+%7B%0A++++++++//_mm_pause()%3B+/*+specifick%C3%A9+pro+x86,+%23include+%3Cimmintrin.h%3E+*/%0A++++%7D+++%0A%7D%0A%0Avoid+lock_release(atom_ticket*+tkt)+%7B%0A++++++++tkt-%3Enow_serving%2B%2B%3B+//+typem+je+dan%C3%A9,+%C5%BEe+bude+inkrement+atomick%C3%BD%0A%7D'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:armg630,filters:(b:'1',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'0',trim:'1'),libs:!(),options:'-std%3Dgnu%2B%2B1y+-Wall+-O4+-march%3Darmv7-a',source:1),l:'5',n:'0',o:'ARM+gcc+6.3.0+(linux)+(Editor+%231,+Compiler+%231)',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4
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Memory model for parallel programing and Linux

• Paul E. McKenney, IBM
• Memory Ordering in Modern Microprocessors, 

http://www2.rdrop.com/users/paulmck/scalability/paper
/whymb.2010.07.23a.pdf

• Is Parallel Programming Hard, And, If So, What Can You 
Do About It?
https://www.kernel.org/pub/linux/kernel/people/paulmck/
perfbook/perfbook.html

• SMP Scalability Papers
http://www2.rdrop.com/users/paulmck/scalability/

• Read-Copy-Update (RCU) papers
http://www2.rdrop.com/users/paulmck/RCU/

http://www2.rdrop.com/users/paulmck/scalability/paper/whymb.2010.07.23a.pdf
http://www2.rdrop.com/users/paulmck/scalability/paper/whymb.2010.07.23a.pdf
https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www2.rdrop.com/users/paulmck/scalability/
http://www2.rdrop.com/users/paulmck/RCU/
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• Definition of sequential consistent memory system is eligible for 
synchronization in parallel computers. 

• Today computer systems support some of weaker models of memory 
consistency where sequential consistency behavior can be specified only in 
defined locations of programs with use of some of synchronization 
operations. 

• Synchronization operations are mutual exclusion, conditional/semaphore 
synchronization (two-point synchronization) and synchronization barrier.

• Implementation of synchronization operations is based on atomic RMW 
primitives and memory barriers.
• Processors ISA includes RMW instructions T&S, SWAP, F&I, C&S
• Newer processors support building of RMW primitives by inclusion of  

LL and SC instructions which allows efficient implementation of 
synchronization operations in systems with cache memories

• Memory barrier ensures separation/order of memory operations before and 
after barrier. These instructions in different variants are found in ISA of 
todays processors as well.

Conclusion and summary
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