
1B4M35PAP Advanced Computer Architectures

Advanced Computer Architectures

Multiprocessor systems and memory consistency problems

Czech Technical University in Prague, Faculty of Electrical Engineering
Slides authors: Michal Štepanovský, update Pavel Píša

2B4M35PAP Advanced Computer Architectures

• Memory operation execution rules,
• Memory coherence – last lecture

• Rules for access to individual locations in memory

• Memory consistency – today lecture
• Rules for mutual order of execution and visibility of memory

operations

• Ensuring sequential consistency,
• Weaker memory consistency models

• Consistency achieved by synchronization, that is by
special synchronization instructions.

Terminology of the lecture topic

3B4M35PAP Advanced Computer Architectures

We say that a multiprocessor memory system is coherent if

the results of any execution of a program are such that for
each location, it is possible to construct a hypothetical serial
order of all operations (reads and writes) to the location that
is consistent with the results of the execution and in which:

1) Memory operations to a given memory location for each
process are performed in the order in which they were
initiated by the process.

2) The values returned by each read operation are the
values of the most recent write operation in a given
memory location with respect to the serial order.

Memory coherence definition (in common sense)

4B4M35PAP Advanced Computer Architectures

Memory

Variable X

P2: X=0;
P1: X=0;
P1: read(X)
P2: read(X)
P2: read(X)
P1: X=1;
P2: read(X)
P2: read(X)
P2: X=2;

At the time when P2 reads X==1, is it ensured that function fun() called by
process P1 is executed with all side effects including global memory?

P2: read(X)
P2: X=0;
P1: X=0;
P1: read(X)
P2: read(X)
P1: X=1;
P2: read(X)
P2: read(X)
P2: X=2;

 Proces P1:
X=0;
if(X ==0) {
 y=fun();
 X = 1;
}

 Proces P2:
X=0;
while(X ==0)
 { ; }
X = 2;

Coherence

5B4M35PAP Advanced Computer Architectures

• Consistency (when compared to coherence)
specifies order in which individual peocesses
executes their memory operations and or how is
this order viewed by other processes.

• Sequential order of all memory oeprations to all
locations is considered.

• Coherence focuses only on hypothetical
sequential order to individual memory
locations but guarantees nothing order/vilibility
of acesses to different locations.

• Consistency defines what is expected behavior of
shared memory regarding all reads and writes

Consistency

6B4M35PAP Advanced Computer Architectures

CPU
Cache

CPU
Cache

CPU
Cache

Shared bus

Shared
memory

It is expected that print(x) writes 1 to output.

Variables initialization seen by both: x=0, y=0
P1: P2:
x = 1; while(y==0) {;}
y = 1; print(x);

Example of program execution on multiprocessor system

7B4M35PAP Advanced Computer Architectures

CPU
Cache

CPU
Cache

CPU
Cache

Shared bus

Shared
memory

Possible scenario of execution:
1. Processor P2 does not find y in cache and initiated request to read from

memory. The bus has to be obtained through arbitration first.
2. Processor P2 starts reading of x speculatively – line „print(x)“. It finds y value (0)

in its cache. Speculation is conventionalized by variable y==1.
3. Processor P1 acquaires bus and executes write to variable x „x=1“.

Corresponding cacheline is marked as M (MESI protocol) and invalidated in P2.
4. Processor P1 acquires bus and writes y=1 into memory.
5. Processor P2 acquires bus and reads y value. This confirms

„correctness“/condition of speculation and speculative instructions are
completed.

6. Processor P2 outputs 0.

Variables initialization seen by both: x=0, y=0
P1: P2:
x = 1; while(y==0){;}
y = 1; print(x);

Example of program execution on multiprocessor system

8B4M35PAP Advanced Computer Architectures

• Variable y indicates that variable x has been changes.
• But memory coherence provides no guarantee for mutual execution

order of memory operations (read, write) by P1 and P2 and order in
which are writes to x and y (different variables) visible to P2.

• Coherence ensures only that new values of x and y are finally visible to
P2 but provides no guarantee about order in which are these values
obtained.

• That is why P2 can print old value of x (which is 0) even on
computer with coherent memory system.

• Coherence – which value is returned by read
• Consistency – when is written value returned by read

Coherence of cache memories is skrytých pamětí je
necessary (but not enough) for ensuring data (memory)
consistency in multiprocessor system.

Is coherence enough to ensure expected program behavior?

9B4M35PAP Advanced Computer Architectures

• Single-processor system:
x = 1;
y = 2;
x = 3;
print(x);

(Each read from address x returns last walue writtent to
address x.)

• For multi-processor system:
• Existence of global precise time in all nodes and

immediate modification propagation
• Non-realistic (absurd) requirement

time
x=1;

y=2;
x=3;

print(x);

Strict consistency

10B4M35PAP Advanced Computer Architectures

• Definice (Lamport, 1979): “Computer is sequentially consistent
if the result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in
the order specified by its program.

• Sequential consistency is weaker model than srict consistency but
it is simplementable…

• If the processes are running on different processors, arbitrary
interleaving of instructions execution is allowed, but all processes
recognizes memory changes in exactly same order (including
writing one). Modifications are not propagated immediately, only
their order is guaranteed (the consequence does not precede the
cause).

Sequential consistency

11B4M35PAP Advanced Computer Architectures

P1: P2: P3:
a=1; b=1; c=1;
print(b,c); print(a,c); print(a,b);

It can come as follows:

a=1;
b=1;
c=1;
print(b,c);
print(a,c);
print(a,b);

Let variables are initialized a=0, b=0, c=0.

time

Output: 111111

a=1;
print(b,c);
b=1;
print(a,c);
c=1;
print(a,b);

Output: 001011

etc.

There exist 6! different
permutations of
instructions interleave but
not all fulfill sequential
consistency requirement
6! / 8 = 90

Sequential consistency

12B4M35PAP Advanced Computer Architectures

Legend:
• Write value „a“ to address „x“: w(x)a
• Read from address „x“. Return value is „a“: r(x)a

Example – consider 4 processors (processes) which are executed in parallel:
• P1: w(x)a, w(x)c, r(x)?
• P2: w(x)b
• P3: r(x)?, r(x)?
• P4: r(x)?, r(x)?

P1 w(x)a w(x)c r(x)c

P2 w(x)b

P3 r(x)b r(x)b

P4 r(x)b r(x)b

Time/ordering

In given time instant,
only single operation
is executed

Operations swap in
the process is not
allowed.

Operations can be shifted in the
process as long as order in the
process is preserved

Sequential consistency

13B4M35PAP Advanced Computer Architectures

I. Each processor P(i) issues memory operations in
program order.

II. Before issuing next memory operation processor P(i)
wait until last P(i) issued memory operation completes
(i.e., performs w.r.t. all other processors).

III. When Processor P(i) issues Read operation, it does not
issue another memory operation before issued read
operation is finished and before is finished (w.r.t. all
other processors) Write operation which value is
returned by Read → write atomicity.

• Not only HW is required to keep sequential order but even compiler is
not allowed to alternate order of memory operation. But their
reordering and elimination is usual/necessary for program
optimization on single-processor system.

Sufficient conditions to ensure SC

14B4M35PAP Advanced Computer Architectures

CPU
Cache

CPU
Cache

CPU
Cache

Shared bus

Shared
memory

One of possible scenarios:
1. Processor P2 does not find y in cache and initiated request to read from

memory. The bus has to be obtained through arbitration first.
2. Processor P2 starts reading of x speculatively – line „print(x)“. It finds y value (0)

in its cache. Speculation is conventionalized by variable y==1.
3. Processor P1 acquaires bus and executes write to variable x „x=1“.

Corresponding cacheline is marked as M (MESI protocol) and invalidated in P2.
4. Processor P1 acquires bus and writes y=1 into memory. This invalidates y in P2

cache.
5. Processor P2 acquires bus and reads y value. This confirms „correctness“ of

speculation and speculative instructions are completed.
6. Processor P2 outputs 0 1. It has to read „x“ again/there because read in step

number 3 is forbidden or aborted.

Let variables are initialized: x=0, y=0
P1: P2:
x = 1; while(y==0){;}
y = 1; print(x);

Assume sequential consistency
Condition violation III.

 Analysis of execution of program on SC system

15B4M35PAP Advanced Computer Architectures

• As shown in the example, forbidding speculation (as well as all
read ahead, reordering of memory operations etc.) solves
problem..

• Another solution is to isolate processes as long as no variables
sharing emerge – absence coherence activits indicates, that
processor can reorder memory operations and enable speculation.

• But it is still necessary to keep/propagate order of memory
references regarding cache misses and snooping.

• The solution:
• Speculation execution is allowed
• All adresses relating to speculation (or reorder) has to be

remembered until instruction complete
• If some of these addresses collides with coherence activities

then whole speculative execution branch is abandoned.

Sequential consistency and speculation

16B4M35PAP Advanced Computer Architectures

CPU
Cache

CPU
Cache

CPU
Cache

Shared bus

Shared
memory

One of possible scenarios:
1. Processor P2 does not find y in cache and initiated request to read from memory.

The bus has to be obtained through arbitration first.
2. Processor P2 starts reading of x speculatively – line „print(x)“. It finds y value (0)

in its cache. Speculation is conventionalized by variable y==1.
3. Processor P1 acquaires bus and executes write to variable x „x=1“.

Corresponding cacheline is marked as M (MESI protocol) and invalidated in P2.
This collides with address remembered for step 2 speculation. It is abandoned.

4. Processor P1 acquires bus and writes y=1 into memory.
5. Processor P2 acquires bus and reads value of y.
6. Processor P2 acquires bus, requests x value, P1 cache changes state M→S,

simultaneously send x value to memory and P2 which changes state I→S.
P2 outputs 1.

Let variables are initialized: x=0, y=0
P1: P2:
x = 1; while(y==0){;}
y = 1; print(x);

Assume sequential consistency

Analysis of execution of program on such system

17B4M35PAP Advanced Computer Architectures

If processors (program) fulfil seqential consistency conditions and
parallel system uses shared bus then model of sequential
consistency is achieved. Bus arbitration (acquire time slot) in
processor decides memory operations order – order can be perturbed
for each collision occurrence but keeps consistency conditions.

• Definition (Lamport, 1979): “Computer is sequentially consistent
if the result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and
the operations of each individual processor appear in this
sequence in the order specified by its program.

CPU
Cache

CPU
Cache

CPU
Cache

Shared bus

Shared
memory

The shared bus is exactly the
palce where “some” sequential
instructions interleave/order is
ensured ⇒ serialization

Ensuring consistence for SMP system with shared memory

18B4M35PAP Advanced Computer Architectures

Problem:
Consider two processors P1 and P2 and shared variable A.
P1: A = A+1; P2: A = A +2;

As long as addition is atomic then final A values is A+3. However:

P1: load R1, A P2: load R1, A
addi R1,R1,1 addi R1,R1,2
store R1,A store R2,A

One of possible execution order results in value A+1:
P1: load R1, A

P2: load R1, A
addi R1,R1,2
store R1,A

addi R1,R1,1
store R1,A

This instructions
interleave fulfills
sequential
consistency model
but leads to
„unexpected“
result.

Consistency – synchronization – example

19B4M35PAP Advanced Computer Architectures

Solution:

1. SW approach. Code sequention incrementing A needs to be „protected“
again interaction -> mutual exclusion, critical section.
• Mutual exclusion in sequential consistency memory model can be

realized with use of atomic operations Read a Write.
• Dekker's algorithm – the first known correct solution – it guarantees

mutual exclussion without risk to stuck in deadlock and resource
allocation.

P1: wants_to_enter[0] = true;
 turn = 1;
 while(wants_to_enter[1] && turn==1)
 ; // busy waiting
 // critical section
 A=A+1;
 // end of critical section
 wants_to_enter[0] = false;

P2: wants_to_enter[1] = true;
 turn = 0;
 while(wants_to_enter[0] && turn==0)
 ; // busy waiting
 // critical section
 A=A+2;
 // end of critical section
 wants_to_enter[1] = false;

Peterson's algorithm: initial value of wants_to_enter = { false, false}

Consistency – synchronization – example

Problem:
Consider two processors P1 and P2 and shared variable A.
P1: A = A+1; P2: A = A +2;

20B4M35PAP Advanced Computer Architectures

Solution:

2. SW+HW approach. Code sequention incrementing A needs to be
„protected“ again interaction -> mutual exclusion, critical section.
• SW only approch is to complicated. We want to implement code as:

while(!acquire(lock)) { waiting algorithm/schedule }
computation with shared data
release(lock)

Because multiple processes can attempt to acquire lock at the same
time, process to acquire lock has to be atomic.
• Waiting algorithm: busy waiting or blocking waiting. Busy waiting –

continual attempts to acquire lock – no schedule, deadlock w.r.t. schedule on
given processor, blocking waiting – process enters sleep state, releases
processor (schedule) and is waken up when lock is released. Comination of
both techniques is possible.

Consistency – synchronization – example

Problem:
Consider two processors P1 and P2 and shared variable A.
P1: A = A+1; P2: A = A +2;

21B4M35PAP Advanced Computer Architectures

Simple way how to realize lock (spinlock) is use of shared memory atomic
variable which can signal one of two states - 0 (lock is free) or 1 (lock is
acquired by some process). Lock acquisition then means checking that
variable value is 0 and setting it to 1. This operation has to be atomic (i.e.
no other memory operation to given location is allowed to occur between
related read and write)!

This required specific instruction in ISA which:
Reads, modifies and writes (RWM) value into memory without
interference.
test-and-set – all modern processors support such operation in their ISA
or provide primitives which allows to build such construct (ll, sc); This
operation is fundamental atomic operation. It writes 1 (set) to memory and
returns previous value of variable.

• Generalization of test-and-set is exchange-and-swap and compare-and-
swap

● example: compare-and-exchange in implemented in x86 ISA by
instruction: CMPXCHG with LOCK prefixem

Consistency – synchronization

22B4M35PAP Advanced Computer Architectures

If test-and-set is used then above code fragment can be implemented as:

loop: test-and-set R2, lock // test lock, old value to R2 and set lock=1
 bnz R2, loop // if R2 is not 0 jump to loop, repeat acquire attempt
 load R1, A
 addi R1, R1, 1
 store R1, A
 store #0, lock // release lock by write of 0.

Instruction test-and-set R2, lock, executes atomically: {load R2,lock; store
#1,lock}

Another variation of atomic instructions are operations fetch-and-xx (i.e. fetch-and-increment,
fetch-and-add, fetch-and-store,…). If such operation is used then program to increment A can
be implemented by single atomic instruction (or C++ 11 construct, see later):

P1: fetch-and-inc A; P2: fetch-and-inc A;

while(!acquire(lock)){ ; }
operations with shared data
release(lock)

Consistency – spinlock synchronization

23B4M35PAP Advanced Computer Architectures

CPU 2
Cache

CPU 3
Cache

Shared
memory
lock==0
A==0

CPU 1
Cache

CPU 0
Cache

CPU 0

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 1
 store R1, A
 store #0, lock

CPU 1

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 2
 store R1, A
 store #0, lock

CPU 2

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 3
 store R1, A
 store #0, lock

CPU 3

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 4
 store R1, A
 store #0, lock

• All CPUs attempt to execute test-and-set instruction. That is why all
request the bus. Only one receives it in given instant of time.

MESI protocol and spinlock based on test-and-set instruction

24B4M35PAP Advanced Computer Architectures

CPU 2
Cache

CPU 3
Cache

Shared
memory
lock==0
A==0

R2 == 0
lock == 1, M

CPU 0
Cache

CPU 0

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 1
 store R1, A
 store #0, lock

CPU 1

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 2
 store R1, A
 store #0, lock

CPU 2

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 3
 store R1, A
 store #0, lock

CPU 3

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 4
 store R1, A
 store #0, lock

• CPU 1 obtains the bus. It reads value of „lock“ variable from memory to
R2 and writes 1 to memory. Write happens only in its cache. Cache line
reaches state M (modified).

MESI protocol and spinlock based on test-and-set instruction

25B4M35PAP Advanced Computer Architectures

CPU 2
Cache

R2 == 1
lock == 1, S

Sdílená
Paměť
lock==1
A==0

R2 == 0
lock == 1, S

CPU 0
Cache

CPU 0

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 1
 store R1, A
 store #0, lock

CPU 1

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 2
 store R1, A
 store #0, lock

CPU 2

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 3
 store R1, A
 store #0, lock

CPU 3

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 4
 store R1, A
 store #0, lock

• CPU 3 obtains bus. It request to read „lock“ value to R2. Snooping
CPU 1 recognizes MemRead request and propagates modified data to
CPU 1 and memory. Corresponding line changes to S. CPU 3 receives
data its final cache state is S as well.

MESI protocol and spinlock based on test-and-set instruction

26B4M35PAP Advanced Computer Architectures

CPU 2
Cache

R2 == 1
lock == 1, M

Sdílená
Paměť
lock==1
A==0

R2 == 0
lock == 1, I

CPU 0
Cache

CPU 0

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 1
 store R1, A
 store #0, lock

CPU 1

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 2
 store R1, A
 store #0, lock

CPU 2

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 3
 store R1, A
 store #0, lock

CPU 3

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 4
 store R1, A
 store #0, lock

• CPU 3 keeps bus control (lock prefix). Next step of atomic action test-
and-set is write 1 to “lock” memory location. That is recognized by
snooping CPU 1. It changes state to I (invalid), CPU 3 reaches state M.
CPU3 releases bus.

MESI protocol and spinlock based on test-and-set instruction

27B4M35PAP Advanced Computer Architectures

CPU 2
Cache

R2 == 1
lock == 1, M

Sdílená
Paměť
lock==1
A==0

R2 == 0
lock == 1, I

CPU 0
Cache

CPU 0

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 1
 store R1, A
 store #0, lock

CPU 1

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 2
 store R1, A
 store #0, lock

CPU 2

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 3
 store R1, A
 store #0, lock

CPU 3

L: {load R2,lock;
 store #1,lock}
 bnz R2, L
 load R1, A
 addi R1, R1, 4
 store R1, A
 store #0, lock

• CPU 0 obtains bus. It reads “lock” and writes 1 to it. This results in
invalidation of all other caches and setting M in his own cache.

• CPU 3 tests R2 but value is 1 and it has jumps to L label to repeat
attempt to acquire bus and receive “lock”.

MESI protocol and spinlock based on test-and-set instruction

28B4M35PAP Advanced Computer Architectures

Observation:
• Each attempt to acquire lock (successful or unsuccessful) modifies value

in cache line and requires it change to M state.
• Consequence is invalidation of corresponding cache line in all other

CPUs attempting to enter critical section.
• Unsucesfull attempt to acquire lock leads to start of another attempt.
• When number of CPUs increases then bus load increases quadratically

for both, reads and writes.
• Remark: spinlock on single CPU without sleep or schedule disable causes deadlock.

Enhancement No 1:
• If attemp to acquire lock is unucesfull then delay next attempt – sleep

exponentially increasing or random.

Enhancement No 2:
• Execution of test-and-set instruction realizes 2 transactions on the bus,

the second invalidates all other caches. Advantage to conditionalize
attempt to write by check that lock is empty – repeated only single
transaction MemRead and result state is S until there is chance to
acquire lock after release. Bus load is decreased and continuous caches
trashing is eliminated. But use of ll and sc is even better.

MESI protocol and spinlock based on test-and-set instruction

29B4M35PAP Advanced Computer Architectures

Another alternative is instruction pair load-locked (ll) (or load-link, load-
linked, load-and-reserve) and store-conditional (sc) found in many
modern ISAs.

• Instruction ll returns value stored in memory, sc stores new value to the
address only if value on linked address has not been modified by other
thread/CPU – atomic operation is successful – implementation can be
based on load address register (LAR) and added lock flag (LF).

loop: ll R1, A // read A into R1, address A into LAR. LF=1;
addi R1, R1, 1
sc R1, A // if(LF==1) store R1 into A; R1=LF;
bz R1, loop

• IBM PowerPC, DEC Alpha, MIPS, ARM, RISC-V, IA-64

Problem:
Consider two processors P1 and P2 and shared variable A.
P1: A = A+1; P2: A = A +2;

Atomics implemented by load link + store conditional

30B4M35PAP Advanced Computer Architectures

• ll and sc implementation requires at least minimal support in HW: link
address register LAR for address monitoring and link flag LF.

• ll instruction: sets LF and LAR value – location or cache line is
reserved/remembered for monitoring.

• sc instruction: if LF==1 then store data into memory. Return LF value.
• Important: sc instruction does not generate any transaction for

unsuccessful state = does not invalidate cache lines.
• When contect is changed or exception/interrupt occurs: clear LF
• Possible cache controller ll+sc support:

• compare RWITM transactions addresses with address stored in
LAR. Clear LF in case of addresses match.

• Do not allow linked cache line replacement as a result of cache lines
reuse (cache replacement policy – i.e. LRU) when LF==1.
Replacement would clear LF and result in situation when sc can never
succeed. That would result in infinite repeat of code between ll-sc → active
blocking - livelock. SW side solution is to forbid use keep away of use any
memory revefencing instructions = no read, no write between ll and sc
instructions and use memory barriers for out-of-order execution to prevent
instruction in and around ll+sc block to get out or in the ll+sc region.

Atomics implemented by load link + store conditional

31B4M35PAP Advanced Computer Architectures

Discussion

• Compare test-and-set and instruction pair ll-sc methods. Which
variant loads the bus less?

• Is memory coherent model enough to ensure sequential consistency
model for lock?

• Shared bus is not used today for cores/processors interconnection.
It is possible that more request are in the flight simultaneously…

• What happens if 2 processors do RWITM simultaneously?

• What happens if requests and responses are
delivered to different processors in different order?

P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

Solution:
Serialization (or synchronization) of requests (required for coherence and
consistency) – same as on the bus … But there is no shared bus ….
Instead of serialization: Home Node (see previous lecture), but only for
single address/memory block

32B4M35PAP Advanced Computer Architectures

Discussion

• In sequential program exist fragment of code:

Instr.1: load R1, A // read of value A from memory to R1
Instr.2: load R2, B
Instr.3: store R3, C // value of R3 into C
Instr.4: load R4, D
…
Instr.N: store R5, A

Question No 1
• Is there problem to finish (execute) instruction No 2 before No 1?
Question No 2
• Is there problem to finish (execute) instruction N before No 1?
Question No 3
• Is there problem to finish (execute) instruction No 4 before No 3?

33B4M35PAP Advanced Computer Architectures

• Load / Store instructions are responsible for data
transfers from and to memory and processor general
purpose registers

• Processor is equipped with only limited numebr of registers
• Compiller generates so called spill code, which swaps

used variables data into memory temporarily to make
registers available for processed variables – load/store
instructions are used for this task

• Data dependencies – RAW, WAR, WAW – between
load/store instructions referencing the same address

• Total ordering – keeping program order of
allload/store instructions. Is it necessary?

We already know...

34B4M35PAP Advanced Computer Architectures

• Requirement of sequential consistency results in some
some restrictions on out-of-order execution load/store
instructions

• What happens if exception occurs?
• Memory state must be based on the sequential order of

load/store instructions
• This results in requirement that memory operations must

be executed in program order, or precisely, that memory
must be updated such way as when instruction were
executed in program order

• If store instructions are executed in program order, it is
guaranteed fulfillment of WAW and WAR dependencies.
RAW dependencies are only one to care…

• Load instructions – out-of-order

Model of sequential consistency

35B4M35PAP Advanced Computer Architectures

For now, expect issuing of load/store instructions from reservatio station in order

• Load bypassing allows to execute load before store, if they are
memory independent. In other case (if dependency exists): Load
forwarding.

1. Address generation
2. Address translation
3. Memory access

1. Address generation
2. Address translation

Memory update

It can be
incomplete

Load forwarding and Load bypassing

36B4M35PAP Advanced Computer Architectures

For now, expect issuing of load/store instructions from reservatio station in order

• Load bypassing allows to execute load before store, if they are
memory independent. In other case (if dependency exists): Load
forwarding.

1. Address generation
2. Address translation
3. Memory access

1. Address
 generation
2. Address

translation

Memory update

It must be
complete

Load forwarding and Load bypassing

This solution (complete
address) allows both:
load bypassing and
load forwarding

Store: dispached,
issued, finished,
completed, retired

Load – if match:
discard read data
and take one
available in
Store buffer

37B4M35PAP Advanced Computer Architectures

• Store buffer use enables significant speedup of
sequential program execution… However:

L3 cache

L2 cache L2 cache L2 cache L2 cache

L1d L1i L1d L1i L1d L1i L1d L1i

Sto
re

buff
er

Sto
re

buff
er

Sto
re

buff
er

Sto
re

buff
er

Core 0 Core 1 Core 2 Core 3
1. Memory write is
recorded in Store

buffer

3. Propagation from Store
buffer into cache which

triggers coherence
mechanism takes some

time (same to regain
consistency). Consistency

is violated for that time.

2. Load forwarding allows to read correct/up-to-
date value to the core 0

Store buffer

38B4M35PAP Advanced Computer Architectures

• If it is allowed to issue instructions from reservation
station out-of-ordert then it is possible that load
instruction can be already executed but preceding
conflicting (RAW hazard) store is not in the store buffer
yet (it can be executed, in reservation station or even in
dispatch buffer). Information about conflicting store
address is not known and RAW hazard cannot be
detected.

• Solution?
• Assume that there is no dependency and check for

dependency later … => speculative execution
• Speculative load execution is supported by Finished

load buffer (Finish load queue)

Load forwarding and Load bypassing

39B4M35PAP Advanced Computer Architectures

• Load instruction is stored in Finished load buffer between execution finishing and
completion.

• Each time when store reaches completion, alias checking with FLB entries is
performed. No conflict → store is finished ; Conflict→abandon load instr. speculation

Speculative execution of load instructions

40B4M35PAP Advanced Computer Architectures

• Why to enable speculation of load instructions?
• It is useful to perform load as early as possible – other compuation

depends on it usually

• In addition, earlier load execution can initiate cache miss in
advance

• It can mask cache miss penalty (main memory access time)

• However: In case of incorrect speculation – abandon of
speculated instructions (sequence starting by load) cost time
and resources which could be better utilized...

• That is why to add: Dependence prediction
Dependency between store and load is quite predictable for typical
programs

• Memory dependence predictor then decides if speculative
load and following instruction should be started

Speculative execution

41B4M35PAP Advanced Computer Architectures

CPU
Cache

CPU
Cache

CPU
Cache

Shared
memory

One of possible scenarios:
1. Processor P2 does not find y in cache and initiated request to read from

memory. The bus has to be obtained through arbitration first.
2. Processor P2 starts reading of x speculatively – line „print(x)“. It finds y value (0)

in its cache. Speculation is conventionalized by variable y==1.
3. Processor P1 acquaires bus and executes write to variable x „x=1“.

Corresponding cacheline is marked as M (MESI protocol) and invalidated in P2.
This collides with address remembered for step 2 speculation. It is abandoned.

4. Processor P1 acquires bus and writes y=1 into memory..
5. Processor P2 acquires bus and reads y value.
6. Processor P2 acquires bus, requests x value, P1 cache changes state M→S,

simultaneously send x value to memory and P2 which changes state I→S.
P2 outputs 1.

Let variables are initialized: x=0, y=0
P1: P2:
x = 1; while(y==0){;}
y = 1; print(x);

Assume sequential consistency But possible cache miss
cannot be propagated out …

Execute example program on this system

42B4M35PAP Advanced Computer Architectures

• Significant efforts have been made to accelerate the
execution of applications on single-core processors – out-
of-order, speculation, store buffer before cache, ...

• These techniques are often not compatible with the
sequential consistency model

• So what will we give up?
• Answer: Sequence consistency model
•
• But how can we ensure that the programmer does not get

unexpected results?
• Answer: We will offer another consistency model - it will

provide a sequential consistent view only at certain times
• For this we need additional instructions … => HW and ISA

support

Sequential consistency – summary

43B4M35PAP Advanced Computer Architectures

Causal consistency (Hutto, Ahamad, 1990)
• Writes that are potentially causally bound, must be seen by all processes in the

same order. Concurrent writes can be seen in different order
• Distinguishing events that are potentially dependent and which are not

• Reading on a given P is causally ordered before writing (even to another address) - the written value
may depend on the read value

• Reading is causally ordered after an earlier write to the same address if the read has received data
written by that write

• Writes at the same address given by P are causally arranged as they were done

• Weaker than sequential consistency

P1 w(x)a w(x)c r(x)c

P2 w(x)b r(x)c

P3 r(x)a r(x)b

P4 r(x)b r(x)a

Time

Simultaneous writes

Swap of operations
in given process is
forbidden.

Operation can be
arbitrarily shifted in
given process

Causually ordered

P3 observes a first, then b.

P4 observes different order of concurrent writes

Another consistence models

44B4M35PAP Advanced Computer Architectures

P1 w(x)a w(x)c

P2 w(x)b r(x)c w(x)d

P3 r(x)a r(x)b r(x)d r(x)c

P4 r(x)b r(x)a r(x)c r(x)d

Writes are not causally
bound – simultaneous
writes

Write w(x)d on P2 is causally bound to earlier r(x)c, which is
causually bound to write w(x)c on P1. That is why these writes
are causually bound as well and systems has to ensure their
order: w(x)c < w(x)d. This ensures that on P3 r(x) last read
cannot return c because d has been already seen by P3.

Causal consistency (Hutto, Ahamad, 1990)
• Writes that are potentially causally bound, must be seen by all processes in the

same order. Concurrent writes can be seen in different order
• Distinguishing events that are potentially dependent and which are not

• Reading on a given P is causally ordered before writing (even to another address) - the written value
may depend on the read value

• Reading is causally ordered after an earlier write to the same address if the read has received data
written by that write

• Writes at the same address given by P are causally arranged as they were done

• Weaker than sequential consistency

Another consistence models

45B4M35PAP Advanced Computer Architectures

• PRAM konsistency (pipelined random access memory
consistency) = FIFO consistency, (Lipton, Sandberg (1988)

• Writes executed by one process are seen by other processes in the
order in which they were performed, but the writes executed by different
processes can be seen by different processes differently (permuted).

• Weaker than sequential consistency

P1 w(x)a w(x)c

P2 w(x)b r(x)c w(x)d

P3 r(x)a r(x)b r(x)d r(x)c

P4 r(x)b r(x)a r(x)c r(x)d

Writes by different
processors can be seen
in different order

Does not obey causality principle.
Writes originate on different
processors and that is why P3 can
observe these in order different to P4.

Another consistence models

46B4M35PAP Advanced Computer Architectures

To recall

• In sequential program exist fragment of code:

Instr.1: load R1, A // read of value A from memory to R1
Instr.2: load R2, B
Instr.3: store R3, C // value of R3 into C
Instr.4: load R4, D
…
Instr.N: store R5, A

Question No 1
• Is there problem to finish (execute) instruction No 2 before No 1?
Question No 2
• Is there problem to finish (execute) instruction N before No 1?
Question No 3
• Is there problem to finish (execute) instruction No 4 before No 3?

47B4M35PAP Advanced Computer Architectures

 Relaxed consistency
• Sequential consistency preserves order of reads and writes:

1. W→R: write must be finished before following read
2. R→R: read must be finished before following read

3. R→W: read must be finished before following write

4. W→W: write must be finished before following write

• Relaxed consistency leaves out some of these requirements
• Additionally, we can leave out the requirement of a unique sequence

interlace of instructions seen by all processors equally when:
5. Processor can observe result of its write before it is seen by other processors

6. Processor can observe result of other processor write before it is seen by others

P1 w(x)a w(y)c w(z)d

P2 w(x)b r(x)b w(z)f

P3 r(x)b

It is possible to „reorder“ instructions in given
process based on „relaxation“. But operation
have to be referencing different addresses

More consistency models

48B4M35PAP Advanced Computer Architectures

 Relaxed consistency – What are the benefits?
• W→R: removes Write from critical path – overlap of Write and

following Read „reduces“ memory latenci for Write. (Write in coherent
NUMA system is not only write but also finding of valid block – queries to home node,
distribution of invalidation to all others with block, block reading, etc.)

• R→R and R→W: nonblocking cache – it is possible to continue with
execution even after read miss, waiting to miss service is not
necessary – speculative execution

• W→W: memory level parallelism
• Read of own write before others: Load forwarding – store buffer

before cache → speedup of program execution
• Read of other processor write before others: read from memory

before change is distrubuted to all others

• Thus, the release allows for parallel execution. Forced serialization
required by sequential consistency is suppressed.

More consistency models

49B4M35PAP Advanced Computer Architectures

Relaxed konzistence
Next models falls into relaxed consistency category:
• Total Store Ordering (TSO) – IBM 370: read operation can be completed

before earlier write to other address, but read cannot return written value
until write is visible to all other nodes

• Total Store Ordering (TSO) – SPARC: read operation can be completed
before earlier write to other address. Read cannot return value written by
other processor until write is visible to all other processors. But processor
can return own write value before this write is visible to other processors.

• Processor Consistency (PC): read can be completed before earlier write
(arbitrarily processor to arbitrarily place) is visible to all, that is readread
executed on some of processors can return new value while read executed
on other processors still returns old value.

• Partial Store Ordering (PSO) – similar to TSO. Difference: PSO preserves
only order of writes to same address, writes to different locations can be
reordered.

• And more…

More consistency models

50B4M35PAP Advanced Computer Architectures

Relaxace

• Write to Read program order
• Write to Write program order
• Read to Read and Read to Write program orders

• Read others’ write early (write atomicity is not
kept)

• Read own write early To different addresses!

W->R W->W R->R,W Read own
write before
others

Read others
write before
others

TSO – IBM 370 x

TSO – SPARC: SPARC,
IA-32, Intel64, AMD64

x x

PC x x x

PSO x x x

Weak consistency: PowerPC,
ARMv7, IA-64

x x x x x

 Relaxed consistency

More consistency models

51B4M35PAP Advanced Computer Architectures

Intel Core i5, Core i7, Intel Xeon, Intel Core2 Extreme

• Read in respect to read and write in respect to write on given processor are
not reordered (exception are special long string store and string move write
operations) – that is R->R and W->W is not relaxed

• Write cannot precede earlier read – that is R->W is not relaxed

• Read can precede earlier write to different address -- relaxed W->R,
Dekker's algorithm can fail to protect critical section

P1: P2:
X=1; Y=1;

R1=Y; R2=X;

For initial values X=Y=0, it can return P1.R1=0 and simultaneously P2.R2=0.

• Read cannot precede earlier write to same address
• Load-forwarding inside give processor is allowed – that is read of own write before

oethers

P1: P2:

X=1; Y=1;
R1=X; R3=Y;

R2=Y; R4=X;

For initial values X=Y=0, it can return P1.R2=0 and simultaneously P2.R4=0.

Consistency model of IA-32 and Intel64

52B4M35PAP Advanced Computer Architectures

Intel Core i5, Core i7, Intel Xeon, Intel Core2 Extreme

• Writes are visible transitively – write, which are causually bound are seen by
all others processors in same order

P1: P2: P3:
X=1; R1=X; R2=Y;

Y=1; R3=X;

For initial values X=Y=0,it cannot return P2.R1=1, P3.R2=1 and simultaneously P3.R3=0.

• Writes are seen by all other processors in same order – processor
executing write can see different order

P1: P2: P3: P4:
X=1; Y=1; R1=X; R3=Y;

R2=Y; R4=X;

For initial values X=Y=0, it cannot return P3.R1=1, P3.R2=0, P4.R3=1 and
simultaneously P4.R4=0.

• IA-32 and Intel64 architecture comply with TSO – SPARC consistency.

Consistency model of IA-32 and Intel64

53B4M35PAP Advanced Computer Architectures

Example A:
 P1: P2:
A=1; while(flag==0);
flag=1; print(A);

Example B:
 P1: P2:
A=1; print(B);
B=1; print(A);

Example C:
 P1: P2: P3:
A=1; while(A==0); while(B==0);

B=1; print(A);

Example D:
 P1: P2:
A=1; B=1;
print(B); print(A);

Example A Example B Příklad C Příklad D

TSO – SPARC Yes Yes Yes No

PC Yes Yes No No

PSO No No No No

Weak consistency No No No No

Would be code executed with conformance to sequential consystency?

Assuming that the compiler follows the order of lines/operation… Initial values: A=flag=0.

Which behavior can be expected for next code fragments?

54B4M35PAP Advanced Computer Architectures

Use memory barrier (there more types, consider full for now)
• All data operations (instructions) BEFORE barrier has to be completed
• All data operations (instructions) AFTER barrier has to wait until barrier

instruction is completed
• Barrier instruction are processed in program order

Programmer has to accept that memory operations working
with shared varables can be arbitrarily reordered in each
code sequence block. These blocks are separated by barriers.

• IA-32, Intel64 defines three barrier instructions: sfence, lfence, mfence
• Sfence – all store operations before barrier has to be completed before the

first store after barrier instructions is executed
• Lfence – all load instructions before barriear has to be completed before the

fisrt load after barrier is executed
• Mfence – all memory operations has to be finished (be globally visible)

before the first memory operation after barrier instruction is executed

• PowerPC ISA defines sync instruction
• OpenMP defines flush directive

How to achieve desired behavior of program

55B4M35PAP Advanced Computer Architectures

Use memory barrier

Example A:
P1: P2:
A=1; while(flag==0);
#pragma omp flush #pragma omp flush
flag=1; print(A);
#pragma omp flush

Guarantees
order

Accelerates flag
propagation

• It is guaranteed, that P2 would read of variable A return 1. Memory operation in
block before, between and after barriers can be reordered by compiler and or
hardware. But that does not influence program result.

• Barrier instruction implementation must ensure that shared variables (thread-
visible) are visible to all threads/processors after this directive → compiler must
ensure that for such variables are values from registers written to memory
(Write/SW instructions are inserted), processor flushes write-buffers, etc.

• Memory barrier ensures sequentially consistent view of memory only in
defined instants of time – the action has to be considered by all
participating threads/processors.

How to achieve desired behavior of program

56B4M35PAP Advanced Computer Architectures

Next synchronization types are distinguished by parallel programing:
• Two-point synchronization: it ensures safe data passing between two

processes (threads). The fisrt one can eventually continue in execution
without need to wait – see previous slide (or can be implemented by semaphore)

• Synchronization barrier: all processed from given processes group must
wait in this point until last one reaches barrier then they can continue
(Warning: do not confuse this barrier for with term memory barrier by mistake)

• Mutual exclusion – critical section: Only one of processes can acquire
access to the marked code block and others need to wait until it exists
block (often implemented by mutex)

P1 P2 P1 P2 … PN P1 P2 … PN

Two-point
synchronization

Synchr.
barrier

Critical
section

Synchronization events types

57B4M35PAP Advanced Computer Architectures

Two-point synchronization:
#pragma omp flush
as has been shown already

Synchronization barrier:
…
#pragma omp barrier
…

Notice: Flush operation (memory barrier) is inserted by two-point synchronization
directive as well for synchrozization barrier and at clricical section entry and exit – it
is important for ensuring sequentionally consistent memory view at given location.

Already introduced and described instructions for memory synchronization and
atomic operations (test-and-set, pair ll-sc) together with memory barrier instructions
(enforcing sequentially consistent view in given instant of time) are building blocks for
implementation of above described synchronization events.

Critical section:
#pragma omp critical
{
 … // A = A+1;
}

Synchronization events types defined by OpenMP

58B4M35PAP Advanced Computer Architectures

Using synchronization only in minimal required form

• Programing models using full memory barriers are too
restrictive for efficient use of processor cores.

• It is useful to define memory models which allow to precisely
define purpose of shared variable access/modification. There
are next use cases: atomic operation concerning only specified
variable (relaxed model, i.e. A+=2), confirmation of data
availability in some other variables (release), for checking that
variable protected that data are ready (consume), for overtake
of control/lock (acquire), combined (acq-rel) and operations
version version which ensures complete synchronization
(seq_cst). Only last one, the most expensive (Sequentially-
consistent ordering) corresponds to before introduced
synchronization events.

• The most sophisticated model of these operations is probably in
the C++11 language standard
http://en.cppreference.com/w/cpp/atomic/memory_order

http://en.cppreference.com/w/cpp/atomic/memory_order

59B4M35PAP Advanced Computer Architectures

Ticket-lock based on C++ memory model

• Ticket-lock is spinlock implementation, critical section with
busy waiting

• Peter Cordes – analysis of question on StackOverflow about
implementation optimization for GCC
https://stackoverflow.com/questions/33284236/implementing-
a-ticket-lock-with-atomics-generates-extra-mov

#include <atomic>

struct atom_ticket { std::atomic<uint32_t> next_ticket,now_serving;};

void lock_acquire(atom_ticket* tkt) {
 const auto my_ticket =
 tkt->next_ticket.fetch_add(1,std::memory_order_acquire);
 while (tkt->now_serving.load(std::memory_order_acquire) !=
 my_ticket) {
 _mm_pause(); /* x86 specific, #include <immintrin.h> */
 }
}

void lock_release(atom_ticket* tkt) {
 tkt->now_serving++; // variable data type ensures atomic inkrement
} // used strongest memory_order_seq_cst model

https://stackoverflow.com/questions/33284236/implementing-a-ticket-lock-with-atomics-generates-extra-mov
https://stackoverflow.com/questions/33284236/implementing-a-ticket-lock-with-atomics-generates-extra-mov

60B4M35PAP Advanced Computer Architectures

lock_acquire(atom_ticket*):
 mov edx, 1
 lock xadd DWORD PTR [rdi], edx
 add rdi, 4
.L2:
 mov eax, DWORD PTR [rdi]
 cmp edx, eax
 jne .L2
 rep ret

lock_release(atom_ticket*):
 lock add DWORD PTR [rdi+4], 1
 ret

• Compilation by https://gcc.godbolt.org/
• x86_64 gcc 5.2 -std=gnu++1y -Wall -O3 -ffast-math -fverbos

e-asm -march=native -mtune=native

Ticket-lock – compilation for x86_86

https://gcc.godbolt.org/
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,source:'%23include+%3Catomic%3E%0A%0Astruct+atom_ticket+%7B+std::atomic%3Cuint32_t%3E+next_ticket,now_serving%3B%7D%3B%0A%0Avoid+lock_acquire(atom_ticket*+tkt)+%7B%0A++++const+auto+my_ticket+%3D%0A++++++++tkt-%3Enext_ticket.fetch_add(1,std::memory_order_acquire)%3B%0A++++while+(tkt-%3Enow_serving.load(std::memory_order_acquire)+!!%3D%0A+++++++++++my_ticket)+%7B%0A++++++++//_mm_pause()%3B+/*+specifick%C3%A9+pro+x86,+%23include+%3Cimmintrin.h%3E+*/%0A++++%7D+++%0A%7D%0A%0Avoid+lock_release(atom_ticket*+tkt)+%7B%0A++++++++tkt-%3Enow_serving%2B%2B%3B+//+typem+je+dan%C3%A9,+%C5%BEe+bude+inkrement+atomick%C3%BD%0A%7D'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:g72,filters:(b:'0',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'0',trim:'1'),libs:!(),options:'-std%3Dgnu%2B%2B1y+-Wall+-O3+-ffast-math++-fverbose-asm+-march%3Dnative+-mtune%3Dnative',source:1),l:'5',n:'0',o:'x86-64+gcc+7.2+(Editor+%231,+Compiler+%231)',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,source:'%23include+%3Catomic%3E%0A%0Astruct+atom_ticket+%7B+std::atomic%3Cuint32_t%3E+next_ticket,now_serving%3B%7D%3B%0A%0Avoid+lock_acquire(atom_ticket*+tkt)+%7B%0A++++const+auto+my_ticket+%3D%0A++++++++tkt-%3Enext_ticket.fetch_add(1,std::memory_order_acquire)%3B%0A++++while+(tkt-%3Enow_serving.load(std::memory_order_acquire)+!!%3D%0A+++++++++++my_ticket)+%7B%0A++++++++//_mm_pause()%3B+/*+specifick%C3%A9+pro+x86,+%23include+%3Cimmintrin.h%3E+*/%0A++++%7D+++%0A%7D%0A%0Avoid+lock_release(atom_ticket*+tkt)+%7B%0A++++++++tkt-%3Enow_serving%2B%2B%3B+//+typem+je+dan%C3%A9,+%C5%BEe+bude+inkrement+atomick%C3%BD%0A%7D'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:g72,filters:(b:'0',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'0',trim:'1'),libs:!(),options:'-std%3Dgnu%2B%2B1y+-Wall+-O3+-ffast-math++-fverbose-asm+-march%3Dnative+-mtune%3Dnative',source:1),l:'5',n:'0',o:'x86-64+gcc+7.2+(Editor+%231,+Compiler+%231)',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4

61B4M35PAP Advanced Computer Architectures

lock_acquire(atom_ticket*):
1: ll $3,0($4)
 addiu $1,$3,1
 sc $1,0($4)
 beq $1,$0,1b
 nop
 sync
 addiu $4,$4,4
2: lw $2,0($4)
 sync
 bne $3,$2,1b
 nop
 jr $31
 nop

• Compilation by https://gcc.godbolt.org/
• MIPS gcc 5.4 -std=gnu++1y -Wall -O3 -ffast-math

lock_release(atom_ticket*):
 sync
1: ll $1,4($4)
 addiu $1,$1,1
 sc $1,4($4)
 beq $1,$0,1b
 nop
 sync
 jr $31
 nop

Ticket-lock – compilation for MIPS

https://gcc.godbolt.org/
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,source:'%23include+%3Catomic%3E%0A%0Astruct+atom_ticket+%7B+std::atomic%3Cuint32_t%3E+next_ticket,now_serving%3B%7D%3B%0A%0Avoid+lock_acquire(atom_ticket*+tkt)+%7B%0A++++const+auto+my_ticket+%3D%0A++++++++tkt-%3Enext_ticket.fetch_add(1,std::memory_order_acquire)%3B%0A++++while+(tkt-%3Enow_serving.load(std::memory_order_acquire)+!!%3D%0A+++++++++++my_ticket)+%7B%0A++++++++//_mm_pause()%3B+/*+specifick%C3%A9+pro+x86,+%23include+%3Cimmintrin.h%3E+*/%0A++++%7D+++%0A%7D%0A%0Avoid+lock_release(atom_ticket*+tkt)+%7B%0A++++++++tkt-%3Enow_serving%2B%2B%3B+//+typem+je+dan%C3%A9,+%C5%BEe+bude+inkrement+atomick%C3%BD%0A%7D'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:mips5,filters:(b:'1',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'0',trim:'1'),libs:!(),options:'-std%3Dgnu%2B%2B1y+-Wall+-O3+-ffast-math+',source:1),l:'5',n:'0',o:'MIPS+gcc+5.4+(Editor+%231,+Compiler+%231)',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4

62B4M35PAP Advanced Computer Architectures

lock_acquire(atom_ticket*):
.L4:ldaxr w2, [x0]
 add w1, w2, 1
 stxr w3, w1, [x0]
 cbnz w3, .L4
 add x0, x0, 4
.L2:ldar w1, [x0]
 cmp w2, w1
 bne .L2
 ret

• Compilation by https://gcc.godbolt.org/
• ARM64 gcc 6.3 -std=gnu++1y -Wall -O4

lock_release(atom_ticket*):
 add x0, x0, 4
.L7:ldaxr w1, [x0]
 add w1, w1, 1
 stlxr w2, w1, [x0]
 cbnz w2, .L7
 ret

Ticket-lock – compilation for ARM Aarch64

https://gcc.godbolt.org/
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,source:%27%23include+%3Catomic%3E%0A%0Astruct+atom_ticket+%7B+std::atomic%3Cuint32_t%3E+next_ticket,now_serving%3B%7D%3B%0A%0Avoid+lock_acquire(atom_ticket*+tkt)+%7B%0A++++const+auto+my_ticket+%3D%0A++++++++tkt-%3Enext_ticket.fetch_add(1,std::memory_order_acquire)%3B%0A++++while+(tkt-%3Enow_serving.load(std::memory_order_acquire)+!!%3D%0A+++++++++++my_ticket)+%7B%0A++++++++//_mm_pause()%3B+/*+specifick%C3%A9+pro+x86,+%23include+%3Cimmintrin.h%3E+*/%0A++++%7D+++%0A%7D%0A%0Avoid+lock_release(atom_ticket*+tkt)+%7B%0A++++++++tkt-%3Enow_serving%2B%2B%3B+//+typem+je+dan%C3%A9,+%C5%BEe+bude+inkrement+atomick%C3%BD%0A%7D%27),l:%275%27,n:%270%27,o:%27C%2B%2B+source+%231%27,t:%270%27)),k:50,l:%274%27,n:%270%27,o:%27%27,s:0,t:%270%27),(g:!((h:compiler,i:(compiler:mips5,filters:(b:%271%27,binary:%271%27,commentOnly:%270%27,demangle:%270%27,directives:%270%27,execute:%271%27,intel:%270%27,trim:%271%27),libs:!(),options:%27-std%3Dgnu%2B%2B1y+-Wall+-O3+-ffast-math+%27,source:1),l:%275%27,n:%270%27,o:%27MIPS+gcc+5.4+(Editor+%231,+Compiler+%231)%27,t:%270%27)),k:50,l:%274%27,n:%270%27,o:%27%27,s:0,t:%270%27)),l:%272%27,n:%270%27,o:%27%27,t:%270%27)),version:4

63B4M35PAP Advanced Computer Architectures

Ticket-lock – compilation for ARM 32-bit

lock_acquire(atom_ticket*):
 push {r4, r5, r6, lr}
 mov r1, #1
 mov r5, r0
 bl __sync_fetch_and_add_4
 mov r6, r0
 add r5, r5, #4
.L2:ldr r4, [r5]
 bl __sync_synchronize
 cmp r6, r4
 bne .L2
 pop {r4, r5, r6, lr}
 bx lr

• Compilation by https://gcc.godbolt.org/
• ARM gcc 6.3.0 -std=gnu++1y -Wall -O4

lock_release(atom_ticket*):
 push {r4, lr}
 add r0, r0, #4
 mov r1, #1
 bl __sync_fetch_and_add_4
 pop {r4, lr}
 bx lr

https://gcc.godbolt.org/
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,source:'%23include+%3Catomic%3E%0A%0Astruct+atom_ticket+%7B+std::atomic%3Cuint32_t%3E+next_ticket,now_serving%3B%7D%3B%0A%0Avoid+lock_acquire(atom_ticket*+tkt)+%7B%0A++++const+auto+my_ticket+%3D%0A++++++++tkt-%3Enext_ticket.fetch_add(1,std::memory_order_acquire)%3B%0A++++while+(tkt-%3Enow_serving.load(std::memory_order_acquire)+!!%3D%0A+++++++++++my_ticket)+%7B%0A++++++++//_mm_pause()%3B+/*+specifick%C3%A9+pro+x86,+%23include+%3Cimmintrin.h%3E+*/%0A++++%7D+++%0A%7D%0A%0Avoid+lock_release(atom_ticket*+tkt)+%7B%0A++++++++tkt-%3Enow_serving%2B%2B%3B+//+typem+je+dan%C3%A9,+%C5%BEe+bude+inkrement+atomick%C3%BD%0A%7D'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:armg630,filters:(b:'1',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'0',trim:'1'),libs:!(),options:'-std%3Dgnu%2B%2B1y+-Wall+-O4',source:1),l:'5',n:'0',o:'ARM+gcc+6.3.0+(linux)+(Editor+%231,+Compiler+%231)',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4

64B4M35PAP Advanced Computer Architectures

Ticket-lock – compilation for ARM Cortex-A7

lock_acquire(atom_ticket*):
.L4:ldrex r2, [r0]
 add r3, r2, #1
 strex r1, r3, [r0]
 cmp r1, #0
 bne .L4
 add r0, r0, #4
 dmb ish
.L2:ldr r3, [r0]
 dmb ish
 cmp r2, r3
 bne .L2
 bx lr

• Compilation by https://gcc.godbolt.org/
• ARM gcc 6.3 -std=gnu++1y -Wall -O4 -march=armv7-a

lock_release(atom_ticket*):
 add r0, r0, #4
 dmb ish
.L7:ldrex r3, [r0]
 add r3, r3, #1
 strex r2, r3, [r0]
 cmp r2, #0
 bne .L7
 dmb ish
 bx lr

https://gcc.godbolt.org/
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,source:'%23include+%3Catomic%3E%0A%0Astruct+atom_ticket+%7B+std::atomic%3Cuint32_t%3E+next_ticket,now_serving%3B%7D%3B%0A%0Avoid+lock_acquire(atom_ticket*+tkt)+%7B%0A++++const+auto+my_ticket+%3D%0A++++++++tkt-%3Enext_ticket.fetch_add(1,std::memory_order_acquire)%3B%0A++++while+(tkt-%3Enow_serving.load(std::memory_order_acquire)+!!%3D%0A+++++++++++my_ticket)+%7B%0A++++++++//_mm_pause()%3B+/*+specifick%C3%A9+pro+x86,+%23include+%3Cimmintrin.h%3E+*/%0A++++%7D+++%0A%7D%0A%0Avoid+lock_release(atom_ticket*+tkt)+%7B%0A++++++++tkt-%3Enow_serving%2B%2B%3B+//+typem+je+dan%C3%A9,+%C5%BEe+bude+inkrement+atomick%C3%BD%0A%7D'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:armg630,filters:(b:'1',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'0',trim:'1'),libs:!(),options:'-std%3Dgnu%2B%2B1y+-Wall+-O4+-march%3Darmv7-a',source:1),l:'5',n:'0',o:'ARM+gcc+6.3.0+(linux)+(Editor+%231,+Compiler+%231)',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4

65B4M35PAP Advanced Computer Architectures

Memory model for parallel programing and Linux

• Paul E. McKenney, IBM
• Memory Ordering in Modern Microprocessors,

http://www2.rdrop.com/users/paulmck/scalability/paper
/whymb.2010.07.23a.pdf

• Is Parallel Programming Hard, And, If So, What Can You
Do About It?
https://www.kernel.org/pub/linux/kernel/people/paulmck/
perfbook/perfbook.html

• SMP Scalability Papers
http://www2.rdrop.com/users/paulmck/scalability/

• Read-Copy-Update (RCU) papers
http://www2.rdrop.com/users/paulmck/RCU/

http://www2.rdrop.com/users/paulmck/scalability/paper/whymb.2010.07.23a.pdf
http://www2.rdrop.com/users/paulmck/scalability/paper/whymb.2010.07.23a.pdf
https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www2.rdrop.com/users/paulmck/scalability/
http://www2.rdrop.com/users/paulmck/RCU/

66B4M35PAP Advanced Computer Architectures

• Definition of sequential consistent memory system is eligible for
synchronization in parallel computers.

• Today computer systems support some of weaker models of memory
consistency where sequential consistency behavior can be specified only in
defined locations of programs with use of some of synchronization
operations.

• Synchronization operations are mutual exclusion, conditional/semaphore
synchronization (two-point synchronization) and synchronization barrier.

• Implementation of synchronization operations is based on atomic RMW
primitives and memory barriers.
• Processors ISA includes RMW instructions T&S, SWAP, F&I, C&S
• Newer processors support building of RMW primitives by inclusion of

LL and SC instructions which allows efficient implementation of
synchronization operations in systems with cache memories

• Memory barrier ensures separation/order of memory operations before and
after barrier. These instructions in different variants are found in ISA of
todays processors as well.

Conclusion and summary

67B4M35PAP Advanced Computer Architectures

1. Bečvář M: Přednášky Architektury paralelních počítačů II: Sekvenční konzistence paměti,
Implementace synchronizačních událostí, s použitím slajdů Prof. Ing. Pavla Tvrdíka, CSc.

2. Shen, J.P., Lipasti, M.H.: Modern Processor Design : Fundamentals of Superscalar
Processors, First Edition, New York, McGraw-Hill Inc., 2005

3. https://www.cs.utexas.edu/~pingali/CS395T/2009fa/lectures/mesi.pdf

4. D.E.Culler, J.P. Singh,A.Gupta: Parallel Computer Architecture: A HW/SW Approach,Morgan
Kaufmann Publishers, 1998.

5. Einar Rustad: Numascale. Coherent HyperTransport Enables the Return of the SMP

6. Intel Itanium Processor 9300 Series and 9500 Series - Datasheet
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/itanium-9300-9500
-datasheet.pdf

7. Daniel Molka et al.: Cache Coherence Protocol and Memory Performance of the Intel Haswell-
EP Architecture.
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/20
15_ICPP_authors_version.pdf?lang=de

8. Michael R. Marty: Cache Coherence Techniques for Multicore Processors, 2008.

9. Brian Railing: Synchronization: Basics. 15-213: Introduction to Computer Systems
https://www.cs.cmu.edu/afs/cs/academic/class/15213-m16/www/lectures/24-sync-basic.pdf

10. http://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/lectures/14_relaxedReview.pdf

11. Adve and Gharachorloo: Shared Memory Consistency Models, WRL Research Report.
12. Synchronizing Instructions for PowerPC™ Instruction Set Architecture

http://cache.freescale.com/files/32bit/doc/app_note/AN2540.pdf

Literature and references

https://www.cs.utexas.edu/~pingali/CS395T/2009fa/lectures/mesi.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/itanium-9300-9500-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/itanium-9300-9500-datasheet.pdf
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=de
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=de
https://www.cs.cmu.edu/afs/cs/academic/class/15213-m16/www/lectures/24-sync-basic.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/lectures/14_relaxedReview.pdf
http://cache.freescale.com/files/32bit/doc/app_note/AN2540.pdf

	Multiprocessor systems and memory consistency problems
	Terminology of the lecture topic
	Memory coherence definition (in common sense)
	Coherence
	Consistency
	Example of program execution on multiprocessor system
	Example of program execution on multiprocessor system 1
	Is coherence enough to ensure expected program behavior?
	Strict consistency
	Sequential consistency
	Sequential consistency 1
	Sequential consistency 2
	Sufficient conditions to ensure SC
	Analysis of execution of program on SC system
	Sequential consistency and speculation
	Analysis of execution of program on such system
	Ensuring consistence for SMP system with shared memory
	Consistency – synchronization – example
	Consistency – synchronization – example 1
	Consistency – synchronization – example 2
	Consistency – synchronization
	Consistency – spinlock synchronization
	MESI protocol and spinlock based on test-and-set instruction
	MESI protocol and spinlock based on test-and-set instruction 1
	MESI protocol and spinlock based on test-and-set instruction 2
	MESI protocol and spinlock based on test-and-set instruction 3
	MESI protocol and spinlock based on test-and-set instruction 4
	MESI protocol and spinlock based on test-and-set instruction 5
	Atomics implemented by load link + store conditional
	Atomics implemented by load link + store conditional 1
	Discussion
	Discussion 1
	We already know...
	Model of sequential consistency
	Load forwarding and Load bypassing
	Load forwarding and Load bypassing 1
	Store buffer
	Load forwarding and Load bypassing 2
	Speculative execution of load instructions
	Speculative execution
	Execute example program on this system
	Sequential consistency – summary
	Another consistence models
	Another consistence models 1
	Another consistence models 2
	To recall
	More consistency models
	More consistency models 1
	More consistency models 2
	More consistency models 3
	Consistency model of IA-32 and Intel64
	Consistency model of IA-32 and Intel64 1
	Which behavior can be expected for next code fragments?
	How to achieve desired behavior of program
	How to achieve desired behavior of program 1
	Synchronization events types
	Synchronization events types defined by OpenMP
	Using synchronization only in minimal required form
	Ticket-lock based on C++ memory mode
	Ticket-lock – compilation for x86_86
	Ticket-lock – compilation for MIPS
	Ticket-lock – compilation for ARM Aarch64
	Ticket-lock – compilation for ARM 32-bit
	Ticket-lock – compilation for ARM Cortex-A7
	Memory model for parallel programing and Linux
	Conclusion and summary
	Literature and references

