
1B4M35PAP Advanced Computer Architectures

Advanced Computer Architectures

Multiprocessor systems and memory coherence problem

Czech Technical University in Prague, Faculty of Electrical Engineering
Slides authors: Michal Štepanovský, update Pavel Píša

2B4M35PAP Advanced Computer Architectures

• What is cache memory?
• What is SMP?
• Other multi-processor systems?

UMA, NUMA, aj.
• Consistence and coherence
• Coherence protocol
• Explanation of states of cache lines

Content

3B4M35PAP Advanced Computer Architectures

Multiprocessor systems

Change of meaning: Multiprocessor systems = system with multiple processors.
Toady term processor can refer even to package/silicon with multiple cores.

Software point of view (how programmer seems the system):
• Shared memory systems - SMS. Single operating system

(OS, single image), Standard: OpenMP, MPI (Message
Passing Interface) can be used as well.

• Advantages: easier programming and data sharing
• Distributed memory systems - DMS: communication and

data exchange by message passing. Unique instance of
OS on each node (processor, group of processors - hybrid).
Network protocols, RPC, Standard: MPI. Sometime labelled
as NoRMA (No Remote Memory Access)

• Advantages: less HW required, easier scaling
• Often speedup by Remote Direct Memory Access (RDMA),

Remote Memory Access (RMA), i.e. for InfiniBand

4B4M35PAP Advanced Computer Architectures

Multiprocessor systems

Hardware point of view:
• Shared memory systems – single/common physical address-

space – SMP: UMA
• Distributed memory system – memory physically distributed to

multiple nodes, address-space private to node (cluster) or
global i.e. NUMA, then more or less hybrid memory organization

Definitions:
• SMP – Symmetric multiprocessor – processors are connected to cetral common

memory. Processors are identical and „access“ memory and rest of the system
same way (by same address, port, instructions).

• UMA – Uniform Memory Access – all memory ranges are accessed from different
CPUs in same time. UMA systems are the most often implemented as SMP today.

• NUMA – Non-Uniform Memory Access – memory access time depends on accessed
location (address) and initiating processor/node. Faster node local, slower remote.

• ccNUMA – cache-coherent NUMA – coherence is guaranteed by HW resources
• Cluster – group of cooperating computers with fast interconnection network and SW

which allows to view group as a single computing system.

5B4M35PAP Advanced Computer Architectures

Traditional SMP, and UMA P

cache

Main
Memory

P

cache…

Interconnection Network

UMA UMA

P

cache

Main
Memory

P

cache…

Main
Memory

Interconnection Network

P

cache

Main
Memory

P

cache…

bus

P

cache

Main
Memory

P

cache…

Interconnection Network

Main
Memory

NUMA
Interconnection Network

It can be a crossbar switch,
or a dynamic multi-stage
interconnection network, or
some type of fast static
network

Multiprocessor systems - examples

6B4M35PAP Advanced Computer Architectures

HDD

HDD

HDDHDD

Try to find SMP system ???

7B4M35PAP Advanced Computer Architectures

• Multiprocessor systems have existed for decades and have been used for
demanding computing in science and commerce ...

• With the introduction of the first multi-core processors is the SMP available to
ordinary computer (PC, tablets, phones, …) users

http://www.intel.de

Memory controller
(nord bridge) – fulfills
the function of bus/
interconnection network

I/O controller
(south bridge)

Procesor1 Procesor2
P

cache

Main
Memory

P

cache…

sběrnice

Main
memory

CacheCache

PC – from SMP to NUMA development

8B4M35PAP Advanced Computer Architectures

• Further development shifted the function of the northern bridge directly
into the processor.

The memory controller can
• be found there.

P

cache

Main
Memory

P

cache…

interconnection

http://www.intel.de

Core i7-2600K

The core can be seen as (de
facto is) processor. If the L3
cache memory is inclusive
then it can be seen as whole
main memory.

L2 Cache

 L1i L1d

L2 Cache

 L1i L1d

L2 Cache

 L1i L1d

L2 Cache

 L1i L1d

PC – from SMP to NUMA development

9B4M35PAP Advanced Computer Architectures

• QuickPath Interconnect allows to mutually interconnect multiple
processors… As a result, common PC becomes NUMA system.

• Intel solution and design:

• QPI: point-to-point interconnect

PC – from SMP to NUMA development

10B4M35PAP Advanced Computer Architectures

• Four AMD Opteron™ 6000
series processors (Socket
G34) 16/12/8/4-Core ready; HT3.0
Link support

• Up to 1TB DDR3 1600MHz
• 6x SATA2
• 1x PCI-E 2.0 x16 slot

Motherboard

• AMD solution and design (HT - HyperTransport):

PC – from SMP to NUMA development

11B4M35PAP Advanced Computer Architectures

This lecture foccus:

Shared memory systems

• Often developed as extension of single-processor
computers by adding additional processors (or cores).

• Traditional single-processor OSs were extended to
schedule processes for multiple processors.

• Multi-processor / multi-threaded program runs on single-
processor system in timesharing mode but uses multiple
processors, if they are available.

• A suitable model for tasks with significant data sharing, data
are shared automatically. This solves transparently HW. Be
careful about synchronization/race conditions.

• Difficult to scale for larger numbers of processors.

Shared memory systems

12B4M35PAP Advanced Computer Architectures

1. Processor P1 inquiry PrRd(A) to own cache.

2. Data are not found in the cache => cache read miss

CPU
Cache

CPU
Cache

CPU
Cache

Shared bus

Shared
memoryP1 P2 P3

 0x0000

 0xFFFF

 0x00FC

1. PrRd(A)

2. Read miss

 13

Intent of processor P1 to data read from address A (0x00FC):

3. BusRd(A)

3. Cache/bus controller of P1 sends BusRd(A) request to the bus.

4. Memory
response: Delivers

data to the bus
5. Update cache

4. Memory controller recognizes request to read from given address
(0x00FC) and provides data, value 13 for this example.

5. Cache controller of P1 receives bus data and stores them in cache.

What is the basic problem? Consider the write-back cache

13B4M35PAP Advanced Computer Architectures

CPU
Cache

CPU
Cache

CPU
Cache

Shared bus

Shared
memoryP1 P2 P3

 0x0000

 0xFFFF

 0x00FC 13

Processor P1 requests data from address A (0x00FC). Result?
• P1 received data into its cache. A: 13 (address:value)

Processor P2 requests data from address A (0x00FC). Result?
• The same. P2 received data from memory stores then to cache. A: 13

The processors can read/access data from A independently from
their caches, no need for bus activity, great scalability but…

 A: 13 A: 13

What is the basic problem? Consider the write-back cache

14B4M35PAP Advanced Computer Architectures

CPU
Cache

CPU
Cache

CPU
Cache

Shared bus

Shared
memoryP1 P2 P3

 0x0000

 0xFFFF

 0x00FC 13

Processor P1 requests data from address A (0x00FC). Result?
• P1 received data into its cache. A: 13 (address:value)

Processor P2 requests data from address A (0x00FC). Result?
• The same. P2 received data from memory stores then to cache. A: 13

Processor P1 writes new value into a A. 31 for example.
• Value in its cache is modified.

 A: 13 A: 13
 A: 31

Processor P3 request to read from address A. Result value?
• Memory provides 13. But processor P1 woks with 31. > Incoherent

What is the basic problem? Consider the write-back cache

15B4M35PAP Advanced Computer Architectures

CPU
Cache

CPU
Cache

CPU
Cache

Shared bus

Shared
memoryP1 P2 P3

 0x0000

 0xFFFF

 0x00FC 13

Processor P1 requests data from address A (0x00FC). Result?
• P1 received data into its cache. A: 13 (address:value)

Processor P2 requests data from address A (0x00FC). Result?
• The same. P2 received data from memory stores then to cache. A: 13

Processor P1 writes new value into a A. 31 for example.
• Value in its cache is modified and propagates into memory.

 A: 13 A: 13
 A: 31

 31

 Processor P2
keeps old value!!!

Incoherent.

Processor P3 requests data from address A. Result?
• Memory provides value 31. But P1 works with 31. > Coherent?

 A: 31

What is the basic problem? Consider write-through cache

16B4M35PAP Advanced Computer Architectures

• The problem lies in memory incoherence:
• Processor modified (appropriately) data in its cache
• Even immediate change in main memory is not enough.
• Chache memories of other processors can keep outdated

data.

Important definitions:
• Memory coherence => toady lecture

• Rules regarding access to individual memory locations.
• Memory consistency => next lecture

• Rules for all memory operations in parallel computer.
Sequential consistency: "The computer is sequentially consistent if the result of the
execution of the program is the same as if the operations on all the processors were
performed in a sequential order and the operations of each individual processor
appear in that sequence in the order given by their program.”

Result of previous analysis

17B4M35PAP Advanced Computer Architectures

• Definition: We say that a multiprocessor memory system
is coherent if
• the results of any execution of a program are such that for each

location, it is possible to construct a hypothetical serial order of all
operations (reads and writes) to the location that is consistent
with the results of the execution and in which:

• 1. Memory operations to a given memory location for each
process are performed in the order in which they were initiated by
the process.

• 2. The values returned by each read operation are the values of
the most recent write operation in a given memory location with
respect to the serial order.

• Methods which ensures memory coherence are called
coherence protocols.

Memory coherence

18B4M35PAP Advanced Computer Architectures

Definition 1. Memory system is coherent, if

(1) preserves the order of accesses initiated by one of processors/processes P:
Op. Read(M[x]) executed by Pi after op. Write(M[x],V1) executed by Pi, among

which there is no other Write(M[x],V*) executed by other Pj, always returns V1.

(2) cache memories maintain coherent views: op. Read(M[x]) executed by Pi which

follows op. Write(M[x],V1) executed by other Pj returns V1 if operations Read and

Write are sufficiently separated (by time, barrier instructions) and any other op.
Write(M[x],V*) to address x is not executed by other Pk in between.

(3) ensures serialization of operations Write: two op. Write targeting same SM cell
(address) executed by two processors are seen by all processors in same order.

This definition is entirely equivalent to the definition of the previous slide. Its
advantage is the formal formal definition of the terms "memory operations" and
"serialization of write operations".

The methods for coherence are called cache coherence protocols.

Formal definition of memory coherent system

19B4M35PAP Advanced Computer Architectures

1. Snooping
• Snooping = spy or (bus traffic) monitoring
• Requires to supplement cache with HW which

monitors transactions on the bus and
• Detect operation in interest,
• Actualizes state of relevant cache lines/data blocks,
• Generates memory transactions

• Protocols used in practice are MESI, MSI, MEI, MOESI, MESIF
and some their variants.

2. Directory based
• Used for larger scale systems where common shared

bus cannot be used/implemented

Maintaining memory coherence in multiprocessor system

20B4M35PAP Advanced Computer Architectures

Variant where each processor knows which other processors
have copy of its cached data. It is too complex. Solution:
• Each cache controller snoops the bus for write operations

relating to addresses and data which are in its cache
• Global shared bus is required to allow all cache controllers

snoop transaction and receive operations is same order.
• Requirement for global bus is main problem for scalability.
• The variant using „Directory based“ is better scalable.

P

cache

Main
Memory

P

cache…

shared bus

State Address Data

0xFFE400

…

The cache controller snoops the bus and
tracks all transactions by address. If the
address matches the address in its cache, it
responds appropriately.

Bus snooping

21B4M35PAP Advanced Computer Architectures

Snooping protocols: write-update, write-invalidate

• Write-update
• Before processor can write data, it has to acquire bus.

Then it sends new data. (All processors including memory are
connected to the same bus)

• All snooping controllers actualize their data if
address matches and memory writes them
unconditionally.

• The varinat loads the bus heavily. It is not used.

Snooping protocols

22B4M35PAP Advanced Computer Architectures

Snooping protokoly

• Write-invalidate
• Processor writes to some address. The message

requesting invalidation of all places keeping data for that
address is send.

• All snooping controllers invalidate address matching
content in caches.

• This ensures that there is only single copy of data
correcponding to the cache line written by initiating
processor. Processor can modify cache line without load
the bus (strategy Write allocate)..

• All other read requests initiated by other processors result
in cache miss and read request is visible on the bus.

• Write-invalidate protocol requires to distinguis at least
two states of cache line – valid (modified), invalid.

23B4M35PAP Advanced Computer Architectures

• WTWNA: Invalidation protocol with only two cache-line states

PrRd
(cache read

hit)

PrWr
(cache write

miss)

= bus transaction

Valid

Invalid

PrRd
(cache read

miss)

BusRd

BusWr

BusWr

PrWr
(cache write hit)

Valid

Invalid

BusWr

Local CPU Snooping CPU
Legend:

= generates
transaction
on the bus

= recognizes
operation on

the bus

Observation: Each write
to any any address
generates MemWrite
transaction on bus…

PrRd – data read from given cache-line/block by processor
 PrWr – data write to given cache-line/block by processor..

Protocol Write Through Write No Allocate

24B4M35PAP Advanced Computer Architectures

Example: Consider SMP system, processor clock frequency f =
1.6 GHz. Executed code statistic and more parameters:
• Average IPC = 1,
• s = 15% of all instructions are Write operations,
• Each write Write oparation stores L = 8 B.

Let is throughput of global shared bus b = 8 GB/s. How many
processors can be included in such system without bus saturation?

Solution:
• Single P generates w = s*IPC*f Write operations per second
• Final bandwidth requirement of one P is r = w*L B/s.
• For our case, r=0.15*1*1.6G*8 = 1.92 GB/s
• Only four processors are satisfied even if we ignore bandwidth

required for read miss situations

p = b/r = 8/1,92 4.

source slides by Prof. Ing. Pavel Tvrdík, CSc.

Scalability of WTWNA protocol

25B4M35PAP Advanced Computer Architectures

• WBWA: Invalidation protocol with only two cache-line states

PrWr
(cache write

miss)

Valid

Invalid

Valid

Invalid

Local CPU Snooping CPU

Legenda:

Observation: Even if
processor only read data,
it has to write back to
memory… = it writes back
what is already in memory.

= copy backBusRdX is RWITM –
Read with intent to modify.

Snooping core recognizes RWITM on
the bus, if it has modified data, it
aborts RWITM and writes data to
memory (copy back). Initiating core
repeats RWITM transaction. It is
allowed this time and cache line state
changes from Invalid to Valid.
Why so complicated?
Block has to be read the first
(strategy Write Allocate) because
data can be modified by other core
on different offset in the cache-line.
If we write whole block, some bytes
from snooping processor cache
would be lost if it is in valid state.
That is why copy-back is required
before invalidation.

PrRd
(cache read

hit)

PrRd
(cache read

miss)

BusRd

PrWr
(cache write hit)

BusRdX

BusRdX

Write Back Write Allocate protocol

26B4M35PAP Advanced Computer Architectures

Example: Consider SMP with clock f = 1.6 GHz and next parameters:
• Average IPC = 1,
• sW = 10% of all operations are Write operations, sR = 10% operace Read

• Each Write operations stores block of size L = 64 B (cache line size).
• Program ran on given CPU results in read cache miss rate MR = 2% and write cache

miss rate MW = 3%, misses are distributed equally.

• Consider, that extending of system by each other CPU results only in constatnt value
increase of write cache miss rate: d=1%.

Global bus bandwidth is b = 8 GB/s. How many processors can be included in the
system without saturation situation?

Solution:
• Single P generates wW = sW*IPC*f Write operations per second and wR = sR*IPC*f

Read operations per second, it is total w = wW+wR operations per second.

• Complete required bandwidth for single P case is r1 = (wW*MW + wR*MR)*L B/s.

• Write miss rate increases if N processors are used: MW,N = MW + d*(N-1).

• Aggregated bandwidth required for N processors is rN = N*(wW*MW,N + wR*MR)*L B/s.

• If bandwidth required for other transactions is ignored then

N = b/rN, after N evaluation and parameters substitution N=7 processors.

WBWA protocol scalability

27B4M35PAP Advanced Computer Architectures

• It is protocol which minimalize multiprocessor system bus transactions
in the case of invalidation operations.

• It is based on write back, cache lines modification does not generate
subsequent bus write transactions until there is attempt to modify
corresponding cache-line on other CPU. Then write back occurs.

• Requires to extend cache-line flags (meta-data). Invalid and Dirty/Valid
has been considered till now.

• Each cache line ocurs in one of 4 states (2 bits are
enough for encoding)
• M – Modified. Cache-line content differs from data in

corresponding memory cells, (it is equivalent to Dirty state),
• E – Exclusive. Line content is in exactly only one processor

cache and is the same as corresponding memory cells.
• S – Shared. Line content is same as corresponding memory

but content can be kept in multiple cache memories.
• I – Invalid. The cache line is not used, no valid content or tag.

MESI protocol

28B4M35PAP Advanced Computer Architectures

• Required actions are comprehensivelly sumarized by
state diagram of transitions. It defines what happens with
cache-line of processor in a role of
• accessing memory (read hit/miss, write hit/miss)
• snooping processor which evaluates address/line

match with accessing processor (Mem read, RWITM =

Read With Intent To Modify, Invalidate).
• Operations of the local processor:

• Read Hit (read value is available to processor)
• Read Miss (value is not in cache, bus transaction

required)
• Write Hit (successful write)
• Write Miss (corresponding line is not in cache, bus

transaction is required)

MESI

29B4M35PAP Advanced Computer Architectures

MESI – Local processor

Invalid

Modified Exclusive

Shared

BusRdX
(RWITM)

BusUpgr
(Invalidate)

BusRd

BusRd

= bus transaction

PrRd
(cache read

hit)

PrRd

PrWr

PrRd

PrWr
(cache write hit)

PrWr
(cache write hit)

PrWr
(cache write hit)

PrRd
(cache read

hit)

PrRd
(cache read

hit)

Decision which edge is followed is done after snoop interval
expiration (snoop done) when it is sure that no copy exists in
other cache. Can be implemented by additional bus signal

30B4M35PAP Advanced Computer Architectures

= copy back

Snooping processor
recognizes RWITM,
blocks it and writes
data (copy back).
Initial processor
restarts RWITM.

Snooping processor recognizes invalidate or
RWITM and state invalid is entered.

Invalid

Modified Exclusive

Shared

BusRd

BusRd
BusRd

Invalidate or BusRdX (RWITM)

BusRdX
(RWITM)

BusRdX
(RWITM)

MESI – Snooping processor

31B4M35PAP Advanced Computer Architectures

Shared
memoryCPU

Cache

P1

 13

Initial state.

A: ?, I

 A:
CPU
Cache

P2

A: ?, I

CPU
Cache

P3

A: ?, I

PrWr

I

M E

S

BusRdX

BusUpg

BusRd

BusRd

PrRd

PrRd

PrWr
PrRd

PrWr

PrWr
PrRd

PrRd

I

M E

S

BusRd

BusRd

BusUgr, BusRdX

 BusRdX

BusRdX

 BusRd

Example – MESI protocol

32B4M35PAP Advanced Computer Architectures

Shared
memoryCPU

Cache

P1

 13

Processor P1 requests read from address A.
• P1 send PrRd(A) to its cache controller but line is

ale Invalid, i.e. read miss occurs.
• Cache controller needs to read data from memory

– issues BusRd(A) request.
• None of snooping cache controllers evaluates

match, no line data copy in other caches.
• When memory delivers data which fill cache line

in requesting processor P1 and line state is
changed according to edge I->E.

A:13, E

 A:
CPU
Cache

P2

A: ?, I

CPU
Cache

P3

A: ?, I

PrWr

I

M E

S

BusRdX

BusUpg

BusRd

BusRd

PrRd

PrRd

PrWr
PrRd

PrWr

PrWr
PrRd

PrRd

I

M E

S

BusRd

BusRd

BusUgr, BusRdX

 BusRdX

BusRdX

S=0S=0

 BusRd

Example – MESI protocol

33B4M35PAP Advanced Computer Architectures

Shared
memoryCPU

Cache

P1

 13

Processor P2 requests read from address A.
• P2 sends PrRd(A) to its cache but line is Invalid,

i.e. read miss occurs.
• P2 cache controller sends BusRd(A) to the bus.
• Snooping cache controller of P1 indicates that it

has data copy in its cache (assersts signal S=1)
aborts read request and delivers data from cache.

• Both processors/cache controllers advance to
state S.
(P1: E->S; P2: I->S)

A:13, S

 A:
CPU
Cache

P2

A:13, S

CPU
Cache

P3

A: ?, I

PrWr

I

M E

S

BusRdX

BusUpg

BusRd

BusRd

PrRd

PrRd

PrWr
PrRd

PrWr

PrWr
PrRd

PrRd

I

M E

S

BusRd

 BusRd

BusRd

BusUgr, BusRdX

 BusRdX

BusRdX

S=0S=1

Example – MESI protocol

34B4M35PAP Advanced Computer Architectures

Shared
memoryCPU

Cache

P1

 13

Processor P1 writes new value to address A.
For example 31.
• P1 send PrWr to cache. But block is in the S state.
• Cache controller send BusUpgrade(A).
• All snooping cache controllers (in example only

one) recognize match with BusUpgrade(A) and
activate edge S->I.

• Memory is not updated.
• P1 cache-line state changes S->M and write is

finished.

A:31,M

 A:
CPU
Cache

P2

A:13, I

CPU
Cache

P3

A: ?, I

PrWr

I

M E

S

BusRdX

BusUpg

BusRd

BusRd

PrRd

PrRd

PrWr
PrRd

PrWr

PrWr
PrRd

PrRd

I

M E

S

BusRd

 BusRd

BusRd

BusUgr, BusRdX

 BusRdX

BusRdX

Example – MESI protocol

35B4M35PAP Advanced Computer Architectures

Shared
memoryCPU

Cache

P1

 31

Processor P3 reads data from address A.
Which value does it read?
• P3 sends PrRd(A) to its cache but line is Invalid.

Cache controller responds by sending BusRd(A).
• Snooping cache controller of P1 indicates match,

asserts signal S=1 and delivers data from its
cache to the bus and that way to P3.

• Both change state to S. (P1: M->S; P3: I->S)
• There is copy-back at M->S edge. Memory is

updated.

 A:
CPU
Cache

P2

CPU
Cache

P3

PrWr

I

M E

S

BusRdX

BusUpg

BusRd

BusRd

PrRd

PrRd

PrWr
PrRd

PrWr

PrWr
PrRd

PrRd

I

M E

S

BusRd

 BusRd

BusRd

BusUgr, BusRdX

 BusRdX

BusRdX

A:31,S A:13, I A:31,S

Example – MESI protocol

36B4M35PAP Advanced Computer Architectures

Shared
memoryCPU

Cache

P1

 31

Processor P2 writes data to address A.
Value 42 for example.
• P2 send PrWr(A) to its cache but line is Invalid.

Cache controller issues BusRdX(A).
• Snooping controllers indicate that they have data

copy. Abort memory read request and some of
controllers delivers data.

• Both snooping controllers follow edge do S->I.
• Data requesting P2 follows edge I->M.
• Memory is not updated.

 A:
CPU
Cache

P2

CPU
Cache

P3

PrWr

I

M E

S

BusRdX

BusUpg

BusRd

BusRd

PrRd

PrRd

PrWr
PrRd

PrWr

PrWr
PrRd

PrRd

I

M E

S

BusRd

 BusRd

BusRd

BusUgr, BusRdX

 BusRdX

BusRdX

A:31,I A:42,M A:31,I

S=1S=1

Example – MESI protocol

37B4M35PAP Advanced Computer Architectures

• If cache line is in E (Exclusive) state then there is no need
to send any bus transaction (for both read or write)

• State changes of cache-line occurs during Read and or
Write events (memory access)

• Event is caused by
• Cache controller local/connected processor

activity/code execution (cache access), or
• As result of successful bus snooping (address

matching) of other processor initiated bus activity.
• Changes of cache-line state occurs only in the cache of

corresponding transaction and cache-line address
(index+tag+address) match.

Remarks to simplify implementation

38B4M35PAP Advanced Computer Architectures

hit/miss

end

Send read request
to bus and main

memory

Is
there copy
in some of
caches?

hit

miss

read
1. Store data from
main memory into

cache
 2. change state to E

end
No copy

What is
state of

snooping
cache?

1. Abort request to read
from main mem.

2. Deliver data from
cache to the bus

3. Both caches change
state to S

end

1. Abort request to read
from main mem.

2. Deliver data from the
cache to the bus, it

allows to update main
memory as well

3. Both caches change
state to S

end

1 copy

1. Abort request to read
from main mem.

2. Deliver data from the
cache to the bus (any

of caches)
3. Both caches change

state to S

end

Multiple copies = shared

modifiedexclusive

Summary of previous slides – Read

39B4M35PAP Advanced Computer Architectures

hit/miss

hit

miss

zápis

…

Summary of previous slides – Write

40B4M35PAP Advanced Computer Architectures

• Systems based on Broadcast (snooping) can be practically scalled to
about 8-10 nodes where each node can be multicore processor
today

• Option for more processors is hierarchical Hierarchical Snooping.
• But shared buses are generally replaced by point-to-point

interconnection (on next slides) so snooping is not so important today

P

cache

Main
Memory

Snooping
Adapter

P

cache…

P

cache

Main
Memory

Snooping
Adapter

P

cache…

…

Broadcast domain 1 Broadcast domain 2

Snooping Adapter
Separates busses

Broadcast extension/scaling for more processors

41B4M35PAP Advanced Computer Architectures

• Classical bus limitation..
Problem: increase bus
frequency. Important: Bus
ensures serialization of all
requests (access arbitration
used) – any two peocessors
cannot modify the same cache-
line in the same isntant of time

• Two independent buses – DIB
(dual independent buses).
Snoop principle has to be
preserved. If all traffic is
propagated, throughput is
degraded. That is why snoop
filter filters requests and stores
snoop information and does not
propagate irreleveant
transactions

P
cache

P
cache

P
cache

P
cache

Chipset

Memory
interface I/O

about 4.2GB/s

Year
2004

P
cache

P
cache

P
cache

P
cache

Memory
interface I/O

Year
2005

Chipset

Snoop filter
about 12.8GB/s

Development inside of processor as a chips/packages

42B4M35PAP Advanced Computer Architectures

• Introduction high-speed
point-to-point
interconnects. But snoop
filter becomes the
bottleneck of the system. It
is too centralized

• Ring. Single direction ring (in
the picture) – all meseges are
delivered between nodes in
same direction and node order
is fixed. Two single direction
links placed in opisite direction
form bidirectional ring often
used today. Ring routers can
be simple – same as on
roundabout which is leaved by
car when you need/reach the
target node direction.

Year
2007

P
cache

P
cache

P
cache

P
cache

Memory
interface I/O

2009
till
today

Chipset

Snoop filter

about 34GB/s

P
cache

P
cache

P
cache

P
cache

P
cache

P
cache

P
cache

P
cache

Chipset

Memory
interface

I/O

Development inside of processor as a chips/packages

43B4M35PAP Advanced Computer Architectures

 Example: Intel Itanium Processor 9500

44B4M35PAP Advanced Computer Architectures

• Interconnected rings. Even
single package multi-
processor becomes NUMA
system.

• Ring offers fast point-to-point
interconnection and removes
complexity of packed oriented
interconnections with general
topology. Routing in each
node is simple – includes only
single input and output port for
each ring. Nodes can insers
and or remove message
thanks to distributed
arbitration. But ring does not
ensure global ordering of
events (which is natural on
bus) – order depends on
observer position… => Greedy
snooping (IBM Power4/5),
everything to everybody or
selective with use of
Directories.

(2013)
till
today

P
cache

P
cache

P
cache

P
cache

P
cache

P
cache

P
cache

P
cache

Chipset

Memory
interface

I/O

Ring
interf.

Ring
interf.

P
cache

P
cache

P
cache

P
cache

P
cache

P
cache

P
cache

P
cache

Chipset

Memory
interface

I/O

Ring
interf.

Ring
interf.

qu
e

u
e

qu
e

u
e

qu
e

u
e

qu
e

u
e

Development inside of processor as a chips/packages

45B4M35PAP Advanced Computer Architectures

caching
agent

Practical example: Broadwell-EP (Intel Xeon)

46B4M35PAP Advanced Computer Architectures

Broadwell-EP uses next means to speedup „snooping“ and lowering
communication load:

• Directory Cache – it is 14KB cache each HA (home agent). It stores
8-bit vector which inform which CA (caching agent) can deliver copy of
cache-line. Directory cache is integrated in chip. Directory cache hit
means whom we should ask to provide data for given address.

• Directory. Directory is placed in memory controller and requires only 2
bits (directory bits) for each block (cache line) – states Local/Invalid,
SnoopAll, Shared. Directory is consulted only in case of Directory cache
miss.

Remarks:
• Direcory cache extension to DAS protocol. Speedups access to cache lines,

which are (re)sent from cache of other nodes.
• Directory assisted snoop broadcast protocol (DAS) is extension of commonly

used MESIF protocol (F state means Forwarding – i.e. who is responsible for
forwarding). DAS uses directory to store auxiliary informations. It reduces number
of queries to HA that way.

Practical example: Broadwell-EP (Intel Xeon)

47B4M35PAP Advanced Computer Architectures

• Example: AMD Quad – Coherent HyperTransport
• Instead of a bus HT (AMD) or QPI (Intel) is used
• Example of interconnection of four multi-core processors:

How to snoop without shared bus?

48B4M35PAP Advanced Computer Architectures

Example: CPU1 reads memory location which is homed in CPU3 (it is in
memory controlled by P3 memory controller)

Unordered
interconnect

P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

Read cache line

P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

Read
cache
line

• Reaction on last-level cache miss: query
sent to home node

• There memory controller decides order
(of processing) of all queries to same
cache line

• There is no dirrect connection between
P1 and P3. Querry is set over P2.

How to snoop without shared bus? Broadcast protocol.

Step 1 Step 2

49B4M35PAP Advanced Computer Architectures

P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

Read
cache line

Probe
request 2

Probe
request 0

Probe
request 3

Probe
response 3

Probe
request 1

• When query reaches nome node and
starts to be served , cache probes
requests are sent to all processors and
access to RAM is initiated in parallel

• All processors send probe responses
(immediately as they obtain them) to
querying processor – P1.

• Memory controller sends also – when
data from RAM are available – step 5

Step 3 Step 4

Example: CPU1 reads memory location which is homed in CPU3 (it is in
memory controlled by P3 memory controller)

How to snoop without shared bus? Broadcast protocol.

50B4M35PAP Advanced Computer Architectures

P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

Probe
response 3

Probe
response 0

Read response

Read
response

Probe
response 2

• Querying processor P1, collect
responses from all processors in time as
they arrive

Example: CPU1 reads memory location which is homed in CPU3 (it is in
memory controlled by P3 memory controller)

How to snoop without shared bus? Broadcast protocol.

Step 5 Step 6

51B4M35PAP Advanced Computer Architectures

P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

Read
response

Source
done

• As requesting processor receives all responses,
it sends message to home node which informs
that cache line request is handled then home
node (memory controller) can service next
request to the same cache-line.

Read response

Example: CPU1 reads memory location which is homed in CPU3 (it is in
memory controlled by P3 memory controller)

Step 7 Step 8

How to snoop without shared bus? Broadcast protocol.

52B4M35PAP Advanced Computer Architectures

P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

Source
done

• Notice complexity of communication for
single read?

• Next generation of AMD processors
included HT assist (HyperTransport Assist
directory protocol) – about 2010 year

• HT assist uses directory (in home node)
which maintains information which cache-
lines are cached in another CPUs

• This allows reduce inte-processor
communication significantly. Instead of
previous broadcast to all processors next 3
cases can appear:

• no probe – data only in RAM, nobody else
• directed probe (query to single CPU only)

– it is not in RAM only one has line
• broadcast probe – fallback case

How to snoop without shared bus? Broadcast protocol.

Read response

Example: CPU1 reads memory location which is homed in CPU3 (it is in
memory controlled by P3 memory controller)

Step 9

53B4M35PAP Advanced Computer Architectures

Source: Conway, P., Kalyanasundharam, N. et al.:
Cache hierarchy and memory system of the AMD
Opteron processor, IEE Micro, March/April 2010.

• Probe Filter (HT Assist) – uses
part of L3 cache as directory
cache in which it monitors cached
lines. Instead of generating many
requests (cache probes),
processor searches this part of L3
cache.

P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

This is case of AMD Quad – Coherent HyperTransport

54B4M35PAP Advanced Computer Architectures

• Sending information to everyone else (or listening to all) is not a scalable
solution ...

• We noticed that removing buses (where monitoring/snooping is not a
problem) and by change to the point-to-point interconnection between
CPU cores (nodes) and the increase in the number of cores, the solution
how to “snoop” but not burden the system with excessive communication
becomes crucial

• Directories
(More projects aiming to solve problems related to shared memory started

by end of 80. and start of 90. years. One of then was “SCI” (Scalable
Coherent Interface) - HP, Apple, Data General, Dolphin, US Navy,.. The
next one was “DASH” – Stanford. Both use similar technologies.
 Directory based cache coherence architecture.

• This approach is suitable for interconnection of hundreds and or
thousands of processors.

• Directories use is not new idea. The new is only that their use has spread
even to todays common desktop CPUs.

When bus is not enough and broadcast to all is limiting

55B4M35PAP Advanced Computer Architectures

• Support cache coherence in HW (directory based)
• Max. 4096 nodes. One node: 4 processors (on left-top picture)
• node: 16 DIMM sockets x 32 GB = max. 512 GB
• Max. 256 TB total memory. Limited by 48-bit physical address-space of CPU

• Example: 4GB Cache, 8 GB Tag (supports 240 GB Local Node RAM)

Processors
(16/12/8/4-

Core ready)

HyperTransport connection
on motherboar (+PCIe)

Numascale
SMP adapter

Connectors to connect
another nodes

Example from practice – Numascale

56B4M35PAP Advanced Computer Architectures

• 2D torus – each node with 4 neighbors
• 3D torus – each node with 6 neighbors
• Max. 4096 nodes x 4 processor/node = 16 384 multi-core processors
• Program, which is written to run on single node, can run on whole system

without change if written with scaling in mind (OpenMP, MPI, Threads)

2D toroid

3D toroid

Nodes
interconnected by

2D torus

Example from practice – Numascale – Nodes interconnection

57B4M35PAP Advanced Computer Architectures

• If broadcast (multicast) cannot be easily realized (not a bus)

• Core idea: Introduce Directory, which remembers for each
line-block of memory:
• If it is in the cache (at least one)
• In which cache(s) it is present
• If it is clean or dirty in the cache

Directory Shared Memory
Physical
Memory
in first
node

Block size

…
…

P

cache

Main
Memory

Comm
Assist

Dir

P

cache

Main
Memory

Comm
Assist

Dir

Scalable interconnection network

Back to Directory solution from beginning …

58B4M35PAP Advanced Computer Architectures

• Full directory remembers complete information for each line of the
memory. For n processor system it is Boolean vector of length n+1. If
bit i (i=1,2,…n) is set then corresponding (i) cache holds copy of the
line. Bit 0 indicates if the line is in clean or disrty state (only one other
bit can be set for dirty state = line is only in one cache)

• In NUMA system, each node implements only part of the
directory with informations corresponding to that lines
which are stored in its memory = home node, the rest are
remote node for this part of memory.

• For cache miss case, request is send only to home node
• Full directory – disadvantage to big directory size.

Example: for 8 processor system with L3 cache line size 64 B
(consideration: coherence resolved at level L3), directory size is 2% (9/
(64*8)=0.018) of capacity of shared memory, but for 64 processors it is
13% (65/(64*8)=0.127) . Bad scalability for thousands processors.

Directory

59B4M35PAP Advanced Computer Architectures

• Consider K processors. Each memory line/block
is equipped by 1 Dirty-bit, K Presence-bits.

Read block by processor „i“ (after read miss):
• If dirty-bit OFF the { read from main memory; set

p[i] ON; }
• If dirty-bit ON then { request/stole dirty line from

corresponding processor, update memory; set
dirty-bit OFF; set p[i] ON; send data to processor
i;}

Write to memory by processor „i” (after write
miss):

• If dirty-bit OFF then { send invalidation to all
shared copies; send data to ii, clear all p[j] in
directory and set only p[i] to ON; dirty bit ON; }

• If dirty-bit ON then {acquire (with invalidation)
block from corresponding processor; its p[j] bit
clearr; set p[i] to ON – only for new dirty node}

• Remark 1: If bit dirty is ON, then only one node (dirty node)
can cache given block and only single presence bit is ON

• Remark 2: Each block in cahe has: MESI, MOESI, another
state corresponding to coherence solution between multiple
cores/processors on given node with common L3 cache.

P

Cache

Comm.
assist

MEM
+dir

Interconnection network

P

Cache

Comm.
assist

MEM
+ dir

P

cache

P

cache…

Interconnection Network

o o o

Memory

Directory

Presence
bits

Dirty
bit

Memory block

UMA

NUMA

Example of Full directory realization

60B4M35PAP Advanced Computer Architectures

• CC-NUMA with Directories is solution for large scale systems –
Directory Based CC-NUMA (Cache-Coherent NUMA).

• Directory and memory are distributed between nodes.
• Example SGI Origin2000 – 512 nodes x 2 processors = 1024 x MIPS

R10K
• Idea is based on the fact that information about state of each block is

available (maintained). This information is stored in directory. Broadcast
are not necessary for such case and limited number of point-to-point
transactions is necessary for each miss.

• Home node is that node which memory contains requires data, other
nodes are remote nodes for that address range.

• Numebr of shared copies is usually small even in large systems
and this ensures significant communication reduction when
compared with Broadcast based solution.

• The price to pay is requirement to include additional resource – addres
(Directory): 4GB node, block 128B, 256 processors => Directory size
per node 32 M x 256b (bit-map) = 256 MB.

Full directories use

61B4M35PAP Advanced Computer Architectures

All of them related to each block in memory or cache:
• Home node – node which provides given memory block –

where it is allocated and corresponding memory
connected

• Dirty node – node which owns copy of given memory
block in its cache in modified state (M)

• Owner node – node with valid memory block copy in its
cache and is responsible to deliver data when they are
requested (can be home or dirty node) (M, O, E)

• Local node – requester for data: node witch send
request to shared or exclusive access to memory block

• Remote node – all other nodes which than local node for
given memory block

Definitions

62B4M35PAP Advanced Computer Architectures

More detailed directory supported operations

63B4M35PAP Advanced Computer Architectures

How to find where is part of directory corresponding to
given memory block address?
• The most common is Flat Directory where this part of directory is placed

on fixed location – usually on home node. It can be obtained/derived
directly from block address (address from which CPU wants read or write)

• Other option hierarchical directory where meory is distributed between
nodes usual way but directory is stored in form tree (logic structure).
Nodes (processors) are located in three leaves and nodes of the tree keep
information about given block: if its childs have or do not have copy of the
block. Cache miss is then realized as wanking thro the tree in direction to
parents. In the practice, tree nodes are distributed between system ndes
(processors) and each miss generates usually multiple transactions
between system nodes before required information is found.

• Centralized directory – advantage – single place to send querries – can be
used only for small systems – example is coherency maintenance inside
multi-core processors (in the fact inclusive cache hierarchy fall between
central and tree solution). Such node can be member of larger system.

Directory Storage Schemes

64B4M35PAP Advanced Computer Architectures

• Flat directory - Memory based – record for dirty node or all sharing nodes is
kept in home node (record in memory). Example is discussed full-directory
solution. An alternative is solution where remote nodes (processors) are
recorded by their number instead of bitmap (number of sharing nodes is then
limited – usual situation). System has to be prepared for situation when number
of remote nodes requesting single block is above limit (example solution is
forced invalidation in remote cache on oldest age basis …)

• Flat directory - Cache based – record in home node does not keep information
about all sharing nodes but only pointer to the first sharing node is kept (plus
state bits). Record about additional sharing nodes are stored in distributed
bidirectional linked list (its entries in remote caches). The second and additional
sharing nodes are found by iteration ove the list. Cache which contains copy of
the block stores pointer to next and previous node s well.

Flat Hierarchical Centralized

Memory-based Cache-based

Directory Storage Schemes

65B4M35PAP Advanced Computer Architectures

• IEEE standard SCI
• Scalable Coherent Interface
• Protocol based on rules for enlisting and removal of entries from

linked list… for example used in SEQUENT NUMA Q, Convex
Exemplar.

Distributed directory – bidirectional linked list of sharing nodes

66B4M35PAP Advanced Computer Architectures

• Directory-directory
• Alternatives: Snooping-Snooping, Snooping-Direcory, Directory-Snooping

P

Cache

Comm.
assist

MEM
+dir

Interconnection network

P

Cache

Comm.
assist

MEM
+ dir

Directory
Adapter

P

Cache

Comm.
assist

MEM
+dir

Interconnection network

P

Cache

Comm.
assist

MEM
+ dir

Directory
Adapter

Interconnection network 2

Two-level cache coherent system

67B4M35PAP Advanced Computer Architectures

• Basic solution for coherence maintenance is snooping –
protocol MESI or newer MESIF (better for point-to-point
interconnect)

• Snooping request message are used today instead of
snooping on shared bus due to change to point-to-point
interconnect – typically ring, or 2D mesh

• Directories are used today for larger systems (>8 nodes)
• Hybrid and hierarchical solutions – snoop+directory systems
• Programmer model and competence are still significan for

development of scalable solutions using multiprocessors.
• Debugging and performance tuning is not easy.
• Large scale multirocessor systems typically ensure memory

coherence in individual compuational nodes (more multi-core
CPUs) – OpenMP. Data echange in the cluster of nodes is
under programmer control – MPI (Message Passing Interface).
=> Combination of OpenMP + MPI.

Summary and conclusions

68B4M35PAP Advanced Computer Architectures

1. Shen, J.P., Lipasti, M.H.: Modern Processor Design : Fundamentals of Superscalar Processors, First
Edition, New York, McGraw-Hill Inc., 2005

2. Bečvář M: Přednášky Pokročilé architektury počítačů.

3. https://www.cs.utexas.edu/~pingali/CS395T/2009fa/lectures/mesi.pdf

4. D.E.Culler, J.P. Singh,A.Gupta: Parallel Computer Architecture: A HW/SW Approach,Morgan Kaufmann
Publishers, 1998.

5. Einar Rustad: Numascale. Coherent HyperTransport Enables the Return of the SMP

6. https://www.numascale.com/numa_pdfs/numaconnect-white-paper.pdf

7. Rajesh Kota: HORUS: Large Scale SMP using AMD Opteron processors. Newisys Inc., a Sanmina-SCI
Company.
http://download.microsoft.com/download/5/d/6/5d6eaf2b-7ddf-476b-93dc-7cf0072878e6/LargeScaleSMP.do
c

8. http://www.intel.com/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf

9. David Culler, Jaswinder Pal Singh, Anoop Gupta: Parallel Computer Architecture. A Hardware / Software
Approach.

10. http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/itanium-9300-9500-datasheet.pd
f

11. https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_autho
rs_version.pdf?lang=de

12. Michael R. Marty: Cache Coherence Techniques for Multicore Processors, 2008.

13. http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/itanium-9300-9500-datasheet.pd
f

 References and literature:

https://www.cs.utexas.edu/~pingali/CS395T/2009fa/lectures/mesi.pdf
https://www.numascale.com/numa_pdfs/numaconnect-white-paper.pdf
http://download.microsoft.com/download/5/d/6/5d6eaf2b-7ddf-476b-93dc-7cf0072878e6/LargeScaleSMP.doc
http://download.microsoft.com/download/5/d/6/5d6eaf2b-7ddf-476b-93dc-7cf0072878e6/LargeScaleSMP.doc
http://www.intel.com/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/itanium-9300-9500-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/itanium-9300-9500-datasheet.pdf
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=de
https://tu-dresden.de/zih/forschung/ressourcen/dateien/abgeschlossene-projekte/benchit/2015_ICPP_authors_version.pdf?lang=de
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/itanium-9300-9500-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/itanium-9300-9500-datasheet.pdf

	Slide 1
	Osnova
	Multiprocesorové systémy
	Multiprocesorové systémy
	Multiprocesorové systémy - příklady
	Najdete SMP ???
	Historie a dnes
	Historie a dnes
	Historie a dnes
	Historie a dnes
	Systémy se sdílenou pamětí
	V čem je základní problém? Uvažujme write-back cache
	V čem je základní problém? Uvažujme write-back cache
	V čem je základní problém? Uvažujme write-back cache
	V čem je základní problém? Uvažujme write-through cache
	Co jsme zjistili?
	Paměťová koherence
	Slide 18
	Řešení problému koherence paměti multiprocesorovém systému?
	Bus Snooping
	Snooping protokoly
	Snooping protokoly
	Protokol Write Through Write No Allocate
	Škálovatelnost protokolu WTWNA
	Protokol Write Back Write Allocate
	Škálovatelnost protokolu WBWA
	MESI Protokol
	MESI
	MESI – lokální procesor
	MESI – slídící procesor
	Příklad – Protokol MESI
	Příklad – Protokol MESI
	Příklad – Protokol MESI
	Příklad – Protokol MESI
	Příklad – Protokol MESI
	Příklad – Protokol MESI
	Poznámky ulehčující implementaci
	Shrnutí předchozích slajdů.. Čtení
	Shrnutí předchozích slajdů.. Zápis
	Rozšiřování (škálování) Broadcastu pro více procesorů
	Pokud se podíváme na vývoj dovnitř procesoru…
	Pokud se podíváme na vývoj dovnitř procesoru…
	Příklad z praxe: Intel Itanium Processor 9500
	Pokud se podíváme na vývoj dovnitř procesoru…
	Příklad z praxe: Broadwell-EP (Intel Xeon)
	Příklad z praxe: Broadwell-EP (Intel Xeon)
	Jak se slídí, když není sběrnice?
	Jak se slídí, když není sběrnice? Broadcast protocol
	Jak se slídí, když není sběrnice? Broadcast protocol
	Jak se slídí, když není sběrnice? Broadcast protocol
	Jak se slídí, když není sběrnice? Broadcast protocol
	Jak se slídí, když není sběrnice? Broadcast protocol
	Takhle vypadá AMD Quad – Coherent HyperTransport
	Pokud sběrnice nestačí nebo nechceme posílat všechno všem
	Příklad z praxe - Numascale
	Příklad z praxe – Numascale – propojení uzlů
	Directories – začněme od začátku…
	Directories
	Příklad realizace Full directory
	Directories – úvodní konstatování
	Terminologie
	Podrobněji
	Directory Storage Schemes
	Directory Storage Schemes
	Slide 65
	Slide 66
	Sumarizace a závěr
	Použité zdroje:

