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Lecture motivation from programmer POV?

              A:
int matrix[M][N];

int i,j,sum=0;

…

for(i=0;i<M;i++)

  for(j=0;j<N;j++)

    sum+=matrix[i][j];

Quick Quiz 1.: Is the result of both code fragments a same?

Quick Quiz 2.: Which of the code fragments is processed faster and why?

               B:
int matrix[M][N];

int i,j,sum=0;

…

for(j=0;j<N;j++)

  for(i=0;i<M;i++)

    sum+=matrix[i][j];

Is there a rule how to iterate over matrix element efficiently? 
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From UMA to NUMA development (even in PC segment)
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Intel Core 2 generation more detailed …

Northbridge became Graphics and Memory Controller Hub (GMCH)
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Intel i3/5/7 generation more detailed …

Even more details in 
following lectures
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Memory subsystem – terms and definitions

• Memory address – fixed-length sequences of bits or index

• Data value – the visible content of a memory location

Memory location can hold even more control/bookkeeping 
information
• validity flag, parity and ECC bits etc.

• Basic memory parameters:
• Access time – delay or latency between a request and the access 

being completed or the requested data returned
• Memory latency – time between request and data being available 

(does not include time required for refresh and deactivation)
• Throughput/bandwidth – main performance indicator. Rate of 

transferred data units per time.
• Maximal, average and other latency parameters
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Memory subsystem – terms and definitions

• Memory types RWM (RAM), ROM, FLASH
• Data retention time and conditions (volatile/nonvolatile)  
• RAM memories implementations:

 SRAM (static), DRAM (dynamic).

• RAM = Random Access Memory – memory with arbitrary 
address/random access

memory 
type

required 
transistors

area for 
1 bit

data availability latency

SRAM about 6  < 0,1 m2 all the time < 1ns – 5ns

DRAM 1 < 0,001 m2 requires refresh about 10 ns
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Usual SRAM chip and SRAM cell

Area per memory cell:

SRAM memory cell
CMOS technology

Principle:

http://educypedia.karadimov.info/library/SEC08.PDF
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Usual SRAM chip and SRAM cell

Common SRAM chip Read example for synchronous case :

https://www.ece.cmu.edu/~ece548/localcpy/sramop.pdf

OE can be asynchronous
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Usual SRAM chip and SRAM cell

Larger memory?



11B4M35PAP Advanced Computer Architectures

Multiport cache? 

•  A must for superscalar CPU
•  Required when cache is shared between CPUs as well
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Detail of dynamic memory cell 

Single transistor dynamic memory 
bit cell

The nMOS transistor forms a switch that connects (or not) the capacitor to 
the "bitline" wire. The connection is controlled by a "wordline" wire.

The process of reading discharges the capacitor same as the 
current leakage in time. Therefore, its state must be renewed.
Refresh - required working phase of dynamic memory. 
Negatively affects (prolongs) the average access time.

Photo source: http://www.eetimes.com/document.asp?doc_id=1281315
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Internal architecture of the DRAM memory chip

This 4M × 1 DRAM is internally realized as an 2048x2048 array 
of 1b memory cells
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History of DRAM chips development

RAS – Row Address Strobe,
CAS – Column Address Strobe

Year Capacity Price[$]/GB Access time [ns]

1980 64 Kb 1 500 000 250

1983 256 Kb 500 000 185

1985 1 Mb 200 000 135

1989 4 Mb 50 000 110

1992 16 Mb 15 000 90

1996 64 Mb 10 000 60

1998 128 Mb 4 000 60

2000 256 Mb 1 000 55

2004 512 Mb 250 50

2007 1 Gb 50 40
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Old school DRAM – asynchronous access

• The address is transferred in two phases – reduces 
number of chip module pins and is natural for internal 
DRAM organization

• This method is preserved even for today chips even that 
more pins/balls are no so big problem today

RAS – Row Address Strobe,
CAS – Column Address Strobe
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SDRAM – end of 90-ties – synchronous DRAM

• SDRAM chip is equipped by counter that can be used to 
define continuous block length (burst) which is read together
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SDRAM – the most widely used main memory technology

• SDRAM – clock frequency up to 100 MHz, 2.5V.

• DDR SDRAM – data transfer at both CLK edges, 2.5V.

• DDR2 SDRAM – lower power consumption 1.8V, frequency 
up to 400 MHz.

• DDR3 SDRAM – even lower power consumption at 1.5V, 
frequency up to 800 MHz.

• DDR4 SDRAM …

• There are also other dynamic memory types, I.e. RAMBUS, 
that use entirely different concept 

• All these innovations are focused mainly on throughput, not 
on the random access latency.
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Memory and CPU speed disproportion – Moore's law
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Bubble sort – algorithm example from seminaries

int array[5]={5,3,4,1,2};
int main()
{
    int N = 5,i,j,tmp;
    for(i=0; i<N; i++)
        for(j=0; j<N-1-i; j++)
            if(array[j+1]<array[j])
            {
                tmp = array[j+1];
                array[j+1] = array[j];
                array[j] = tmp;
            }
    return 0;
}

   What we can 
consider and 
expect from our 
programs?

Think about 
some typical 
data access 
patterns and 
execution flow.
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Memory hierarchy – principle of locality

• Programs/processes access a small proportion 
of their address space at any given instant of 
time 

• Temporal locality
• Items accessed recently are likely to be accessed 

again soon
• e.g., instructions in a loop, instruction variables

• Spatial locality
• Items near those accessed recently are likely to be 

accessed soon. 
• E.g., sequential instruction access (program memory), 

array data (data memory).
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Memory hierarchy introduced based on locality

• The solution to resolve capacity and speed requirements is to 
build address space (data storage in general) as hierarchy of 
different technologies.

• Store input/output data, program code and its runtime data on 
large and cheaper secondary storage (hard disk)

• Copy recently accessed (and nearby) items from disk to 
smaller DRAM based main memory (usually under operating 
system control)

• Copy more recently accessed (and nearby) items from DRAM 
to smaller SRAM memory (cache) attached to CPU (hidden 
memory, transactions under HW control), optionally, tightly 
coupled memory under program's control

• Move currently processed variables to CPU registers (under 
machine program/compiler control) 
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Contemporary price/size examples

Data
path

Control unit

L1
cache

Level2
cache

(SRAM)

Main
memory
(DRAM)

Secondary
memory

(disc)

R
egiste rs

CPU

Type/
Size

L1 32kB Sync 
SRAM

DDR3
16 GB 

HDD 3TB

Price 10 kč/kB 300 
kč/MB

123 
kč/GB

1 kč/GB

Speed/ 
throughput

0.2...2ns 0.5...8 
ns/word

15 
GB/sec

100 MB/sec

Some data can be available in more copies (consider levels and/or SMP ). 
Mechanisms to keep consistency required if data are modified.
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Mechanism to lookup demanded information?

• According to the address and other management information 
(data validity flags etc).

• The lookup starts at the most closely located memory level 
(local CPU L1 cache).

• Requirements:

• Memory consistency/coherency.

• Used means:

• Memory management unit to translate virtual address to 
physical and signal missing data on given level.

• Mechanisms to free (swap) memory locations and migrate 
data between hierarchy levels

• Hit (data located in upper level – fast), miss (copy from lower 
level required)
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Example of the CPU with three-level cache 
 Harvard architecture L1 cache - Intel Nehalem

• IMC:  integrated memory 
controller with 3 DDR3 memory 
channels,

• QPI: Quick-Path Interconnect 
ports

• Compare sizes of caches at each 
level!!!
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Solution of memory and CPU speed disproportion? Cache.
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Terminology definitions for cache memory

• Cache hit corresponds to situation 
when search location is found in the 
cache.

• Cache miss, opposite. Not dound.
• Cache line or Cache block – basic 

unit/size which is copied to/from 
memory. 

• Cache block size from 8B to 1KB, 
typically 32/64/128B in practice.

Processor

• As for B4M35PAP use more precise definition:
• Cache block – data, which are transferred 

to/from memory cache.
• Cache line includes in addition management 

informations about block (Tag, valid, dirty, etc. – 
depends on protocol)

• Cache row – corresponds to internal cache organization
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Example

• Consider cache of size 8 one word blocks. Where 
are stored data/block from address 0xF0000014?
• Fully associative,
• Directly mapped, or
• Or limited number of ways (N=2) associative  

(2-way cache).
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Directly mapped cache

• Set = (Adresa/4) mod 8
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Directly mapped cache

Capacity – C

Number of sets – S

Block size – b

Number of blocks – B

Degree of associativity – N

C = 8 (8 words), 

S = B = 8,

b = 1 (one word in the block),

N = 1

Directly mapped cache: 
one block in each set
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More realistic cache line organization

• Tag upper bits of block index in memory (corresponds to 
memory address divided by size of one way of the 
cache).

• Data field holds actual content/values corresponding to 
the cached address/addresses.

• Validity bit – indicates if Data field is valid, holds real 
data or is unused/unsynchronized.  

• Dirty bit – distinguishes state of data field. Informs that 
value hold in cache (cache) differs to value in main 
memory, that is updated and not write back yet.

V More flags, i.e. D Tag Data
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Direct mapped cache implementation – block size 4 words

Why to use bigger block 
sizes than single word?



32B4M35PAP Advanced Computer Architectures

Cache with limited degree of associativity – N=2 (ways)

Capacity – C

Number of sets – S

Block size – b

Number of blocks – B

Degree of associativity – N

C = 8 (8 words), 

S = 4,

b = 1 (one word in the block),

B = 8

N = 2

What is advantage of higher 
associativity degree?
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Cache with limited degree of associativity – N=4 (ways)

4-way cache
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Fully associative cache

• The fully associative cache contains only one set, the degree of 
associativity is equal to the number of blocks (N = B). The memory 
address can be mapped anywhere.

• ... is another naming for a B-way associative cache with one set
• ... has the least amount of conflicts for the given capacity but needs 

the most HW means (comparators) - the chip surface is growing
• ... is suitable for a relatively small cache sizes

 A fully associative cache has only S=1 set.
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Important cache access statistical parameters

• Hit Rate - number of memory accesses satisfied by given 
level of cache divided by number of all memory accesses

• Miss Rate – same principle, but for requests resulting in 
access to slower memory = 1 – Hit Rate.

• Miss Penalty – time required to transfer block (data) from 
lower/slower memory level. 

• Average Memory Access Time (AMAT)
   AMAT = HitTime + MissRate×MissPenalty

Miss Penalty for multilevel cache can be computed by 
recursive application of AMAT formula
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Comparison of different cache sizes and organizations 

Remember: 1. miss rate is not cache parameter/feature!
2. miss rate is not parameter/feature of the program!
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What can be gained from spatial locality?

Miss rate of consecutive accesses can be reduced by increasing block size – 
expected spatial locality. On the other hand, increased block size for same 
cache capacity results in smaller number of sets and higher probability of 
conflicts (set number aliases) and then to increase of miss rate. Solution can 
be combination with prediction of locations for prefetch or prefetch control 
instructions.
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Resolve Cache Miss situation, data are not present in cache

• Data has to be filled from main memory, but quite often all available cache 
locations which address can be mapped to are allocated

• Cache content replacement policy (offending cache line is invalidated 
either immediately or after data are placed in the write queue/buffer)

• Random – random cache line is evicted. Simple but not optimal.

• LRU (Least Recently Used)  – additional information is required to find 
cache line that has not been used for the longest time

• LFU (Least Frequently Used) – additional information is required to find 
cache line that is used least frequently – requires some kind of forgetting

• ARC (Adaptive Replacement Cache) – combination of LRU and LFU 
concepts

• Write-back – content of the modified (dirty – D bit) cache line is moved to 
the write queue when line is to be used for another address. Procesed 
automatically by HW. 
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• How is LRU (Least Recently Used) policy implemented ???
• Consider 4-way asociative cache!

• It is not easy if LRU processing is expected to be implemented fast …
• Intel uses pseoudo-LRU pro 4-way, each set has only 3 additional bits 

(full LRU requires to encode one of 4! = 24 permutations i.e. 5 bits)
• Cache activity is different for two ceases, data are found (cache hit), 

data re not found (cache miss)
• In the case of a hit, we need to keep track of what way has provided 

data - certainly not the least used one (i.e. the most recently used)
• In the case of a miss, we have to decide where to save the new data

way A way B way C way D

way A way B way C way D

Resolve Cache Miss situation, data are not present in cache
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• How is LRU (Least Recently Used) policy implemented ???

• The first bit „AB/CD“ is set if the hit is in A or B. The bit is cleared if ht is 
in C or D. No information is changed for miss case. This bit „AB/CD“ 
informs in which “half” was last hit.

• Recurrently, bit „A/B“ is set if hit is in A and cleared for hit in B.
• Similarly for „C/D“ bit.

way A way B way C way D

way A way B way C way D

bit AB / CD 

bit A/B bit C/D

bit A/B

bit AB / CD bit C/D

Resolve Cache Miss situation, data are not present in cache
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• How is LRU (Least Recently Used) policy implemented ???
• Which data (way) are replaced in cache miss case???

• Sumarize: Pseudo-LRU advantage is that all bits „AB/CD“, „A/B“, „C/D“ 
are only written or unchanged in cache hit case. Slowdown (read) occurs 
only for cache miss case. Utilization of binary tree is easinly extendable for 
pseudo-LRU implementation for 8, 16, etc. ways.

way A way B way C way D

way A way B way C way D

bit AB / CD == 0 ? 

bit A/B == 0 ? bit C/D == 0  ?

Have all ways valid bit set?

yes no Use available 
( unused) line in 
chche yes no

yes no yes no

state replace next state

00x way A 11u

01x way B 10u

1x0 way C 0u1

1x1 way D 0u0

x – don’t care
u - unchanged

Resolve Cache Miss situation, data are not present in cache
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Resolve Data write by processor into memory 

• There is cache in between! 
• Data consistency – logical requirement to ensure same content for 

given address on all hierarchy levels. 

• Write through – as data are written into cache they are written to 
write queue-buffer and then are written asynchronously into memory.

• Write back – data are updated only in cache and Dirty (D bit of line 
metadata) is set. Actual write into memory is initated when given 
cache-line is to be reused for other content or when sync is required.

• Dirty bit – additional bit in cache-line metatada. Marks situation when 
cache holds modified value and main memory requires update.

V Další bity, např. D Tag Data



43B4M35PAP Advanced Computer Architectures

Resolve Data write by processor into memory  

There are more variants of write strategies:
• Write-combining (data are collected in write 

combine buffer. There are written together 
later; it does not guarantee ordering (weakly 
ordered memory); example: write to 
video/framebuffer RAM of graphic card)

• Uncacheable (typically when address does not 
target RAM/main memory => it usually  
corresponds to write into device registers, i.e.: 
PCIe card which has BAR mapped to this 
address

• Write-protect
• x86 architecture uses Memory Type Range 

Registers (MTRR) registers for these strategies 
selection or Page Attribute Table (PAT) on 
newer CPUs which allows per page attributes 
specification 

Write-
combining

Write-
back
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Trend – Multiple levels cache

• Primary cache is directly connected to the processor
• Fast, small. The most important: minimal Hit Time

• L2 Cache resolves misses in primary cache
• Larger, slower, but still much faster than main memory. Usually 

shared between cores cluster. The most important: low Miss Rate

• Main memory resolves misses in the last cache level
• Today high performance system use even L3 cache

Parameter typical for L1 typical for L2

Počet bloků 250-2000 15 000-250 000

KB 16-64 2 000-3 000

Velikost bloku v B 16-64 64-128

Miss penalty (v hod) 10-25 100-1 000

Miss rates 2-5% 0,1-2%
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Victim cache

• Directly mapped cache is cheap and fast
• The problem of the directly mapped cache is that in case of 

a collision (the aliasing mapping of two different addresses) 
older (often still useful) data/instructions are replaced by 
newer ones

• Solving this problem was N-way associative, resp. fully 
associative cache.

• Is this the only solution? No! You can still use the so-
called Victim cache.

• PRINCIPLE: Use a fast, directly mapped cache. If we 
remove data from this cache, we would store it in the Victim 
cache. In cache miss, data are additionally searched in the 
victim cache before access to the main memory.
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Victim cache

• A: The incomming block is placed into main cache and „expelled“ block 
into Victim cache (FIFO strategy for Victim cache is sufficient to realize 
LRU – result of B rule)

• B: In the case of  miss in main cache and hit in Victim cache, cache lines 
are swapped between these caches

• Is this only alternative? No! Assist cache is next alternative.

tag data

Main directly mapped cache

Victim cache – fully associative

tag data
from

memoryA

B
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Assist cache

• A: Incoming block is stored into Assist cache (FIFO)
• B: If there is miss in main cache and hit in Assist cache, swap cache lines 

between caches. 
• Remarks: Data are transferred into main cache only after hit in Assist 

cache, that is, after repeated requests to access the same address. 
Therefore, the data cached in main cache prove time locality.

tag data

Main directly mapped cache
Assist cache – fully associative

tag data

from
memory

A

B
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Do you understand to this lecture?

• If so, you are already aware that using 2 principles (temporal 
and spatial localityprinciples) can lead to a significant speedup 
of your program by using cache effectively ... !!!

• There are HW and SW (compiler) techniques that optimize 
caching based on these principles. You can not influence HW 
techniques from a programmer's point of view. You can set 
optimization level for compiler ...

• However, even the best compiler only compiles what the 
programmer wrote. Algorithm selection, storage and 
manipulation of data structures are all determined by the 
programmer. Therefore, "the most" work is still in the hands of 
the programmer, and it depends to a large extent on 
programmer how "fast" program will be .
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Do you understand to this lecture?

• Instruction cache – more complex 
• Appropriate code reordering, eventually reordering/grouping of 

hot or interconnected functions in memory
• Profiling

• Data cache – easier
• Proper data layout – the data we plan to use 

sequentially, sort sequentially in memory, etc.
• Merge fields or related data structures, locate the most 

used fields first in structures
• Work on data blocks - use the already used one as 

soon as possible
• Iteration in nested cycles - see introductory example - 

to browse the memory sequentially and not with skips
• merging two loops into one - Loop fusion, etc.
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Do you understand to this lecture?

• Spatial locality – conflicts/aliasing in cache:
/* Before optimization */ 
int values[SIZE]; 
int keys[SIZE];
int scores[SIZE];

/* After optimization */ 
struct item{ 
 int value; 
 int key; 
 int score;
}; 
struct item records[SIZE];

Assume 2-way associative 
cache…

for(i=0; i<SIZE; i++)
   for(j=0; j<SIZE; j++) 
     …
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Do you understand to this lecture?

• Temporal locality:
/* Před optimalizací */ 
for (i = 0; i < SIZE; i++) 
   for (j = 0; j < SIZE; j++) 
     a[i][j] = b[i][j] * c[i][j]; 
for (i = 0; i < SIZE; i++) 
   for (j = 0; j < SIZE; j++) 
     d[i][j] = a[i][j] - c[i][j]; 

/* Po optimalizaci */ 
for (i = 0; i < SIZE; i++) 
   for (j = 0; j < SIZE; j++) 
     { a[i][j] = b[i][j] * c[i][j]; 
     d[i][j] = a[i][j] - c[i][j];}

It's not just about saving the 
instructions, but also using 
the cache more efficiently ...
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Do you understand to this lecture?

• Next example –  matrix multiplication

for(i=0; i < N; i++) 
  for(j=0; j < N; j++) {
    tmp = 0; 
    for (k=0; k < N; k++) 
       tmp += y[i][k]*z[k][j];
    x[i][j] = tmp; 
  }

Will it help us somehow 
when swap these two lines? 
Will the program be 
equivalent?

(See introductory 
example ...)
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Do you understand to this lecture?

• Next example –  matrix multiplication
• It is better to use so-called block multiplication.
• Idea: Let's divide the calculation into BxB sub-matrices 

that will fit in cache ... => elimination of "capacity misses"
for (jj = 0; jj < N; jj = jj+B) 
  for (kk = 0; kk < N; kk = kk+B) 
    for (i = 0; i < N; i++) 
      for (j = jj; j < min(jj+B-1,N); j++) {
    tmp = 0; 

        for (k = kk; k < min(kk+B-1,N); k++)  
           tmp += y[i][k]*z[k][j]; 
        x[i][j] = x[i][j] + tmp; 
      }

More to read: http://suif.stanford.edu/papers/lam-asplos91.pdf
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Do you understand to this lecture?

• Do not waste the memory – use minimal 
required amount of memory

• Do you see differences in these declarations?

• /* Before optimization */
int a=0;
char b='a';
int c=1;

• /* After optimization */
int a=0;
int c=1;
char b='a';

a

c

b

a

c

b
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struct cheese {
 char name[17];

short age;
char type;

int calories;
short price;

int barcode[4];
};

struct cheese {
char name[17]; /* 0 17 */

/* XXX 1 byte hole, try to pack */
short age; /* 18 2 */
char type; /* 20 1 */

/* XXX 3 bytes hole, try to pack */
int calories; /* 24 4 */
short price; /* 28 2 */

/* XXX 2 bytes hole, try to pack */
int barcode[4]; /* 32 16 */

}; /* size: 48, cachelines: 1 */
/* sum members: 42, holes: 3 */
/* sum holes: 6 */
/* last cacheline: 48 bytes */

What is incorrect? – see. pahole

Arnaldo Carvalho de Melo: The 7 dwarves: debugging information beyond gdb
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Lessons learned

• Be careful about the layout of the structure members
• Place the most critical elements (most commonly used) ones 

at the beginning of the structure 
• If you access structure members, try to keep the order in 

which they are defined in the structure

• For larger structures, the rules also apply and can be applied 
for the cache line size

• The other question is what members should be 
in the structure at all: OOP principle vs. speed
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Do you understand to this lecture?

• Data, which are accessed in same time instant 
(sequentially) group together. 

• Data, which are often accessed, group together.
• Data alignment in memory has to be often analyzed as well – 

directly in assembly language or in C – check if your compiller 
aligns allocated memory to 8-byte border for doubles, if not:
• Allocate as much as you need + 4B (or even more – according to data 

size)
• use AND to obtain aligned store for your data, example:

double a[5];
double *p, *newp;
p = (double*)malloc ((sizeof(double)*5)+4);
newp = (double*)((intptr_t)(p+4)) & (-7);

• See also int posix_memalign(void **memptr, size_t align, size_t size);
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Do you understand to this lecture?

• Prime numbers search – Sieve of Eratosthenes:

/* Before optimization */
boolean array[max];
for(i=2;i<max;i++) {
  array = 1;
}
for(i=2;i<max;i++) 
  if(array[i]) 
    for(j=i;j<max;j+=i) 
       array[j] = 0; /* transfer from memory to cache

                                                 write 0*/

Transfer occurs only for 
cache miss
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Do you understand to this lecture?

• Prime numbers search – Sieve of Eratosthenes:

/* After optimization */
boolean array[max];
for(i=2;i<max;i++) {
  array = 1;
}
for(i=2;i<max;i++) 
  if(array[i]) 
    for(j=2;j<max;j+=i) 
       if(array[j]!=0) /* transfer from memory into cache

                                                     and read */       
          array[j] = 0; /* write 0 only if required */

• It reduces useless writes (reduces writes to main memory 
– dirty cache lines has to be written before line reuse)
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Cache bypass can speed up your programs for some cases

• If you are producing data, which are not used in short time 
(non-temporal write operation), there is no reason to cache it

• This is often the case for large data structures (matrices, etc.)
• Why does this speed up the program?

#include <emmintrin.h> 
void _mm_stream_si32(int *p, int a);      And more…

It stores data from „a“ variable to „p“ address without forcing caching of 
location. However, if the "p" already exists in the cache, the cache will 
be updated.

-> see Write-combining strategy;

-> final WC buffer flushing is under programmer control, else by HW
• More details: “Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in 

the Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.
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Optimize often called functions

• If you frequently and especially in a fast sequence call for 
the same function, optimize it! Use caching principle for 
that sometimes, be careful about threads …

• Example: We know that we will need to calculate square 
roots of integer only and even often only from 0 to 10.

double sqrt10(int i) {
    static const double lookup_table[] = {0, 1, 

sqrt(2), sqrt(3), 2, sqrt(5), sqrt(6), 
sqrt(7), sqrt(8), 3, sqrt(10)   };

    if(0 <= i && i <= 10)
    return lookup_table[i];
    else 

return sqrt(i);
}
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Optimize often called functions

• Example: We will call a function which is called often in 
succession with the same parameters… 

double f(double x, double y) { 
return sqrt(x * sin(x) + y * cos(y)); }

After optimization, be careful about threads:
double f(double x, double y) {
    static double prev_x = 0, prev_y = 0, result = 0;

 
 if (x == prev_x && y == prev_y) 

        return result;
 prev_x = x;

    prev_y = y;
    result = sqrt(x * sin(x) + y * cos(y)); 
    return result;
}
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How to determine cache parameters?

• Linux
#include <unistd.h>
long sysconf (int name);
Kde name:

_SC_LEVEL1_ICACHE_SIZE

_SC_LEVEL1_ICACHE_ASSOC

_SC_LEVEL1_ICACHE_LINESIZE    etc.

• Windows
GetLogicalProcessorInformation()  -> 
SYSTEM_LOGICAL_PROCESSOR_INFORMATION whi
ch contains CACHE_DESCRIPTOR field
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Virtual memory.
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Reasons to introduce virtual memory..

• Many (>10, server >10000) processes run in parallel on a computer
• Problem is how to divide and manage physical memory (i.e. 1 GB) 

between these processes? If single continuous block is provided, 
required amount is not known in advance? Other problem is 
corruption of memory by maliscuous program (i.e. virus) or due to 
error in program (unintended programmer mistake – bad pointers 
manipulation) which can target block allocated to other process.

• Address translation together with virtual memory is solution…
• Each process is given the illusion that it has separate memory/ 

address space allocated to it and can use all pointers values 
(excluding some specific areas, i.e. range above 3 GB for 32-bit x86).

• It is even possible to maintain illusion that each process has whole 
or even more memory available than is total physical main memory in 
a system because secondary memory can provide additional space.

• Basic idea: Process addresses memory by virtual addresses (own 
address space) and these addresses are translated to physical ones..
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• Explain idea on 8B (Bytes) virtual address space and 8B physical memory
• Now to implement address translation? Byte addressing expected.
• One of the solutions: Translation of random virtual address to random 

physical address is required. I.e. 3-bit virtual address should be translated 
to 3-bit physical address. It is enough to use table with 8 entries, where 
each entry holds  3 bity, dohromady 8x3=24bitů/proces.

• Problem! If the virtual address space is 4 GB, lookup table size would be 
232x32 bitů = 16GB for each process. This is too much…

Reasons to introduce virtual memory..

7

6

5

4

3

2

1

0

6

3

7

4

1

5

0

2

7

6

5

4

3

2

1

0

3-bit addres for 8 entries

Look-up 
table

Virtual address 
space

physical 
address spacemapping

Solution: 
Look-up 

table
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• Mappin of each arbitrarily (cell/byte) virtual address to arbitrarily 
virtual address is practicaly infeasible!

• Solution: Divide virtual address space into blocks of same size – virtual 
pages, and physical memory on physical pages of same size. In our 
example, we have a 2B page.

Virtual memory - Solve too large table from previous slide:

7

6

5

4

3

2

1

0

1

0

2

3

1

0

3

2

7

6

5

4

3-address for 4 entries

Look-up 
table

Virtual 
address

Physical 
address

mapping

Solution – one bit of address is not 
used for translation. Look-up table 
has half of entries which require 
less bits.

3

2

1

0

Page 
number

3

2

1

0

page 
number

● Our solution then translates virtual addresses on groups basis... Inside the 
given page some bits define byte offset and are not used during 
translation. We are thus able to use/map the entire address space.
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Example No 1

What are the 
consequences?

• Array data are 
stored sequentially.

More questions ...
• Which address is it?
• Where are these 

data mapped in 
chache and phys. 
mem?

#include <stdio.h>
#include <stdlib.h>
int main()
{
    int a, b[4], *c, d;
    c = (int*)malloc(4*sizeof(int));
    printf("%p %p %p %p\n",&a,&b,&c,&d);
    printf("%p %p %p\n",&b[0],&b[1],&b[2]);
    printf("%p %p %p\n",&c[0],&c[1],&c[2]);
    free(c);
    return 0;
} 0028FF1C 0028FF0C 0028FF08 0028FF04

0028FF0C 0028FF10 0028FF14
00801850 00801854 00801858

Program output:
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Virtual address and virtual memory

• Virtual memory (VM) – a way to manage memory where a separate 
address space is provided to each process, it is (can be) organized 
independently on the physical memory ranges and can be even bigger 
than the whole physical memory

• Programs/instructions running on the CPU operate with data only 
through virtual addresses

• Translation from virtual address (VA) to physical address (PA) is 
implemented in HW (MMU, TLB) fully or can require TLB fill by OS.

• Common OSes implement virtual memory through paging which 
extends concept even to swapping memory content onto secondary 
storage (disc)

Program works
in its virtual

address space
mapping

Physical
memory

(+caches)

VA – virtual
address

PA –
physical
address
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Virtual memory - paging

• Process virtual memory content is divided into aligned pages of same 
size (power of 2, usually 4 or 8 kB) 

• Physical memory consists of page frames of the same size
• Note: huge pages option on modern OS and HW –  2n pages

Virtual 
address 
space 
process-A

Virtual 
address 
space 
process-B

Physical memory

Page
frame

Disk
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Virtual memory - paging

• Each virtual page may map to at most one physical page 
(vice versa rule is not required)

• Multiple virtual pages may be mapped to one particular 
physical page. What does it bring?

• We can share memory across different processes or threads 
(data or code - the OS loads the shared libraries only once), 
we can provide other privileges (access rights).

• If the program tries to access the page in a way that does not 
match its permission, the CPU generates a General 
Protection fault (SIGSEGV)

• Handler for General protection fault - a typical reaction is the 
end of the process
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Virtual/physical address and data

A0-A31 A0-A31

D0-D31 D0-D31

Virtual Physical

Virtual address Physical address

Data

CPU
Address 

translation 
MMU

Memory
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• Consider virtual ddress width 32 bits, physical memory size 
1GB and 4 KB page size

Virtual and physical addressing in more detail

12 bits  => 212 = 4 KB 
equal to page size

31…                        12 11…      0

29…                     12 11…      0

offsetVirtual page number

Physical page number offset

Address (page 
frame number) 

translationWhat about 
remaining bits? 
Described
Later …

• What is very important practical consequence of this 
arrangement → the least significant address bits (offset) are 
unchanged by translation.
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Return to example No 1

#include <stdio.h>
#include <stdlib.h>
int main()
{
    int a, b[4], *c, d;
    c = (int*)malloc(4*sizeof(int));
    printf("%p %p %p %p\n",&a,&b,&c,&d);
    printf("%p %p %p\n",&b[0],&b[1],&b[2]);
    printf("%p %p %p\n",&c[0],&c[1],&c[2]);
    free(c);
    return 0;
} 0028FF1C 0028FF0C 0028FF08 0028FF04

0028FF0C 0028FF10 0028FF14
00801850 00801854 00801858

Program output:
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Return to example No 1

• Have you noticed 
addresses, where a, c, d 
variables and array b 
are located?

• What does it mean if 
program is extended by 
commands:
a = 1;
b[0] = a+1;
b[1] = b[0]+1;
d = b[2]; 
//b[2] is not initialized..

0x28FF1C

0x28FF04
0x28FF08
0x28FF0C
0x28FF10

a

b[]

c
d

c[]

0x801850 c[0]

4 Byte

heap

stack

…

0x801850

…

…

Virtual address space



76B4M35PAP Advanced Computer Architectures

Return to example No 1

• Consider L1 data cache of size 32kB with associativity 
degree 8 and block size 64B. Cache is initially empty.

• What happens when the first line of the program is 
executed?

a = 1;
b[0] = a+1;
b[1] = b[0]+1;
d = b[2]; 
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Return to example No 1

• Consider L1 data cache of size 32kB with associativity degree 8 
and block size 64B. Cache is initially empty.

• What happens when the first line of the program is executed?

a = 1;

V Tag Data Data

63 …

62 …

61 …

60 …

… … …

1 …

0 …

64 sets

16 words  (16x Data) = 64B = block size

8 different ways

…

way 0 way 1 way 7
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Return to example No 1

1111 0011 0010 0001 0000

V Tag Data Data Data Data Data Data Data Data Data

63 …

62 …

61 …

60 1 0x0028F ??? … a b[3] b[2] b[1] b[0] c d ???

… … …

1 …

0 …

64 sets

16 words  (16x Data) = 64B

way 0

Attention: 
Physical 
address 

should be 
stored in 

Tag!!!

• Consider L1 data cache of size 32kB with associativity degree 8 
and block size 64B. Cache is initially empty.

• What happens when the first line of the program is executed?

a = 1;
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Return to example No 1

Conclusions:

• Paging (virtual memory realization) does not disturb 
spatial locality principle => important for cache.

• Data on adjacent virtual addresses will be 
stored in physical memory side by side (unless 
it exceeds the page boundary).

• If a page fault occurs as a result of the cache miss, 
then the whole page moves to memory from disc, 
and then the cache line moves to the cache. The 
next cache miss inside the page will no longer 
cause a page fault (until the page is replaced by 
another page).
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Address translation 

• Page Table
• Root pointer/page directory base register (x86 CR3=PDBR)
• Page table directory PTD
• Page table entries PTE

• Basic mapping unit is a page (page frame)
• Page is basic unit of data transfers between main 

memory and secondary storage 
• Mapping is implemented as look-up table in most cases
• Address translation is realized by Memory 

Management Unit (MMU) which is part of CPU
• Example follows on the next slide:
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Virtual to physical address translation realization 

• Data structure of Page Directory (Page Table) is stored in main memory. 
Allocation of continuous area in physical memory and placing its physical 
address into PDBR register is task of operating system.

• PDBR - page directory base register – x86 is realized by CR3 register – 
it contain physical address of start of page table

• PTBR - page table base register – the same in another documents…

`

PDBR

31…                        12 11…      0

29…                     12 11…      0

offsetVirtual page number

Physical page number offset

Překlad adresy 
(překlad čísla stránky)
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220 entries
  220.4B =  

4MB

PDBR

Page table

Virtual to physical address translation realization  

12 bitů

4kB 
= 212B

Paměť je rozdělena 
na fyzické stránky

PFN 0

20 bits to address physical page 
+ additional bits (valid, 

permissions, etc.) = 4B (8B)

PFN 1

PFN 2

PFN N-1
N=232/212=220

4GB 
 220 

physical 
pages

20 bitů

 Given virtual page 
is mapped to 

physical page frame 
No 1
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Analyze memory requirements for page table

• Typical page size 4 kB = 2^12
• For known page address only 12 bit are used as offset to address 

inside page. 20 bits (for 32-bit address) remain.
• The fastest map/table look-up is indexing  use array structure ⇒
• Result: Page Directory (Page Table) should provide 2^20 entries 

(PTEs). This is not practical and causes may disadvantages. For 
200 processes it requires 200×2^20×4 bytes = 800 MB of memory.

• Usual process/thread work with small part of the whole address 
space (temporal locality principle) in given „instant of time“. Usual 
process utilizes only smaller portion of maximal address space as 
well.

• Physical space allocation fragmentation problem when large 
compact table is used for each process

• Solution: multilevel page table – lower levels populated only for 
used address ranges
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Multilevel page table
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Multilevel page table – 2 levels

12 bits

4kB 
= 212B

Memory divided to 
physical page frames

PFN 0

20 bits to hold PFN + additional bits 
(valid, rights, etc.) = 4B (8B)

PFN 1

PFN 2

PFN N-1
N=232/212=220

4GB 
 220 

PFNs s

10 bits

210 entries
  210.4B =  4KB

10 bits

210 Page tables
  210.4KB =  

4MB
(if whole address 
space is mapped)

210 
položek

PDBR
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Multilevel pagetables

Remarks to previous slide:
• Only a few processes uses whole available address space => it is not 

necessary to allocate all 210 Page tables of the second level
• Page tables can be paged to disk (not used in Linux) 

Overall notes:
• Intel IA32 implements 2-level page tables

• Level 1 Page Table is named as Page Direcory (10 bits for indexing)
• Level 2 Page Table is named simply Page Table (10 bits)

• For 64-bit virtual addresses is usual to use less bits for physical address 
– for example 48 or 40 and even virtual address has some limitations.

• Intel Core i7 uses 4-level page tables and 48 address space
• Level 1 Page Table: Page global directory (9 bits) indexed by bits 39..47
• Level 2 Page Table: Page upper directory (9 bits) indexed by bits 30..38
• Level 3 Page Table: Page middle directory (9 bits) indexed by bits 21..29
• Level 4 Page Table: Page table (9 bits) indexed by bits 12..20
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Which fields are in page table entries? 

Look-up TablePage # Offset

V Access rights Frame#

+Index into 
pagetable

Page table

PA – physical address

Page table placed in physical memory

VA – virtual 
address

Page Table
Base Register

PTBR

Page valid bit – if = 0,
page not in the memory

results in page fault
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Which fields are in page table entries?

• bit 0: Present bit – informs if page is present  in memory(1) or on disc (0)
Named as V – valid bit in some other sources/architectures.

• bit 1: Read/Write: if 1 – R/W; if 0 – only read allowed (RO)
• bit 2: User/Supervisor: 1 – user accessible; 0 – only OS
• bit 3: Write-through/Write-back – cache strategy for given page
• bit 4: Cache disabled/enabled – some peripherals are mapped into 

memory space (memory mapped I/O), this allows immediate read/write of 
its registers. These addresses can be considered as un-cached I/O ports.

• bit 5: Accessed – set if page content is read/written by CPU – is used 
during decission which pages should be freed when memory is required.

Analyze entries of Page Directory (Page Table na 1.úrovni) 
31…       1 0

Can be used by operating system P=0

31…          12 6 5 4 3 2 1 0
Base address of Page table … A PCD PWT U/S R/W P=1
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Which fields are in page table entries?

• bit 6: Dirty bit – Is set if page has been modified (written into) after last 
operating system check. Such page has to be written back to swap in 
case of PFN reuse for other purposes. Operating system is responsible 
to clear of Dirty and Accessed bits. 

Analyze entries of (leaf) Page Table (Page Table of level 2 for example) 
31…       1 0

Can be used by operating system P=0

31…          12 7 6 5 4 3 2 1 0
Base address of Page … D A PCD PWT U/S R/W P=1
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Remarks

V    AR  Frame#

• Each process has its own page table
• Process specific value of CPU PTBRT register is loaded 

by OS when given process is scheduled to run
• This ensures memory separation and protection between 

processes
• Page table entry format fields required to remember

• V – Validity Bit. V=0  page is not valid (is invalid)
• AR – Access Rights (Read Only, Read/Write, Executable, etc.),
• Frame# - page frame number (location in physical memory)
• Other management information, Modified/Dirty, (more bits 

discussed later, permission, system, user etc.).
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Virtual memory – Hardware and software interaction

Processor

Address
translation

Page fault
procession by OS

Main
memory

Secondary
store

a
Z

a'

Virtual address Physical address
OS process 
data transfer

missing page, i.e. PTE.V = 0
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How to resolve page-fault

• Check first that fault address belongs to process mapped areas

• If free physical frame is available

• The missing data are found in the backing store (usually swap or file on 
disk)

• Page content is read (usually through DMA, Direct Memory Access, part 
of some future lesson) to the allocated free frame. If read blocks, the OS 
scheduler switches to another process.

• End of the DMA transfer raises interrupt, OS updates  page table of 
original process.

• Scheduler switches to (resumes) original process.

• If no free frame is available, some frame has to be released

• The LRU algorithm finds (unpinned – not locked in physical memory by 
OS) frame, which can be released.

• If the Dirty bit is set, frame content is written to the backing store (disc). If 
store is a swap – store to the PTE or other place block nr.

• Then continue with gained free physical frame.



93B4M35PAP Advanced Computer Architectures

Virtual memory and files on disk (secondary memories)…

• Virtual memory extends available “physical” memory by secondary 
memory space. The pages are automatically swapped/read to/from disc. 
This can be reused…

• Mapping of programs and dynamic libraries into memory:
• Programs and libraries are stored as binary files (holding instructions 

and data) in filesystem
• When new program is about to be run (process is allocated):

• OS  notes at which virtual address ranges/areas (VMA) should 
be blocks of file available in given address space

• OS actualizes process Page table as result of fault and uses 
information noted in VMAs to fill pages by right content from file 
then sets entries as Valid=1. In case of physical memory 
pressure discards unmodified pages ans sets Valid=0

• Program is read automatically by memory management as it runs…
• See mmap() – functions allocates VMA and update Page table such 

way that area is transparent window into part of whole file.
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Multilevel page table – translation overhead

• Translation would take long time, even if entries for all levels were 
present in cache. (One access per level, they cannot be done in 
parallel.) 

• The solution is to cache found/computed physical addresses

• Such cache is labeled as Translation Look-Aside Buffer

• Even multi-level translation caching are in use today
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Ideal translation case when TLB serves all translations

CPU (ALU)

TLB
Main 

memory

Cache

hit

hit

miss

missvirtual 
address

physical 
address

TLB fill from 
Page table

• Notice that single memory access can result in multiple misses
• If TLB miss occurs, it is necessary to run HW (or SW on some 

architectures) page walk. It usually uses cached access to page table.
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Fast MMU/address translation using TLB

• Translation-Lookaside Buffer, or may it be, more descriptive 
name – Translation-Cache

• Cache of frame numbers where key is page virtual addresses 
(virtual page frame number – VPFN)
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Address stranslation – Intel Nehalem (Core i7)

http://cs.nyu.edu/courses/spring13/CSCI-UA.0201-003/lecture18.pdf
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Address translation – Intel Nehalem (Core i7) – in more detail
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Memory organization - Intel Nehalem (Core i7)
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Memory organization - Intel Nehalem – some remarks

• Block size: 64B

• CPU reads whole cache line/block from

 main memory and each is 64B aligned

• (6 LS bits are zeros), partial line fills allowed
• L1 – Harvard. Shared by two (H)threads

instruction – 4-way 32kB, data 8-way 32kB
• L2 – unified, 8-way, non-inclusive, WB

• L3 – unified, 16-way, inclusive (each line stored in L1 or L2 has copy in L3), WB

• Store Buffers – temporal data store for each write to eliminate wait for write to 
the cache or main memory. Ensure that final stores are in original order and 
solve “transaction” rollback or forced store for:

- exceptions, interrupts, serialization/barrier instructions, lock prefix,..
• TLBs (Translation Lookaside Buffers) are separated for the first level

Data L1 32kB/8-ways results in 4kB range (same as page) which allows to use 
12 LSBs of virtual address to select L1 set in parallel with MMU/TLB
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Intel Core i7 – the same but different view
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Typical sizes of today I/D and TLB caches comparison

Typical paged memory 
parameters

Typical  TLB

Size in blocks 16 000-250 000 40-1024

Size 500-1 000 MB 0,25-16 KB

Block sizes in B 4 000-64 000 4-32

Miss penalty 
(clock cycles)

10 000 000 –
100 000 000

10-1 000

Miss rates 0,00001-0,0001% 0,01-2

Backing store Pages on the disk Page table in the 
main memory

Fast access location Main memory frames TLB
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More efficient memory use – means to speed up programs

Your program can take into account the page size and use 
memory more efficiently - by aligning to the multiples of page 
size, and then reducing internal and external page 
fragmentation .. (ordering allocations etc. See also memory 
pool)
#include <stdio.h>
#include <unistd.h>
int main(void) {

printf(„Page size id: %ld B.\n",
       sysconf(_SC_PAGESIZE)); 
return 0;

}

Allocation of memory aligned to some block size:
void * memalign(size_t size, int boundary)
void * valloc(size_t size)
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windows

#include <stdio.h>
#include <windows.h>

int main(void) {
    SYSTEM_INFO s;
    GetSystemInfo(&s);
    printf("Page size is: %ld B.\n",  
       ns.dwPageSize);
    printf("Address range for application (and dll): 
       0x%lx – 0x%lx\n",
       s.lpMinimumApplicationAddress,
       s.lpMaximumApplicationAddress);
    return 0;
}
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Are hierarchical (multilevel) page tables only alternative?
• Hierarchical page tables are (in fact) represent a tree structure that needs 

to be searched

• Another alternative exists: Inverted Page Tables
• 64-bit virtual address space is quite large, physical memory is much 

smaller -> big disproportion 
• Idea: Physical memory is divided into pages. It is enough to have array of 

rows equivalent to numebr of physical pages to store information to which 
virtual page is physical one allocated.

• The problem is poor spatial locality (cacheability) as has result and 
limitation to physical map page only to single virtual one

OffsetPage number

PID Virtual Page # Phys. Page #

Hash

PID

Hash Table:
Number of rows is equal to 
number of physical pages
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Virtual memory as used in Linux
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Definitions – put things into context

• Linux organizes VM as collection 
of virtual memory areas (VMA) 

• Area is continuos block valid 
process virtual memory, which 
has some purpose. Example: 
code segmant, data segment, 
heap, shared library segment, 
user stack.

• Each valid virtual page belong 
to some VMA.

• Use of areas/segments allows to 
organize virtual memory with 
„gaps“ – segments are not 
required to follow up each other. 
Even higher levels of page tables 
can be populated at runtime.



108B4M35PAP Advanced Computer Architectures

struct task_struct
struct task_struct {

  volatile long        state; /* -1 unrunnable, 0 runnable, >0 stopped */

  long                 counter;
  long                 priority;

  unsigned             long signal;

  unsigned             long blocked;   /* bitmap of masked signals */

  unsigned             long flags;     /* per process flags, defined below 
*/

  int errno;

  long                 debugreg[8];    /* Hardware debugging registers */

  struct exec_domain   *exec_domain;

  struct linux_binfmt  *binfmt;

  struct task_struct   *next_task, *prev_task;

  struct task_struct   *next_run,  *prev_run;

  unsigned long        saved_kernel_stack;
  unsigned long        kernel_stack_page;

  int                  exit_code, exit_signal;

  unsigned long        personality;

  int                  dumpable:1;

  int                  did_exec:1;

  int                  pid;

  int                  pgrp;

  int                  tty_old_pgrp;

  int                  session;

  int                  leader;

  int                  groups[NGROUPS];

struct task_struct   *p_opptr, *p_pptr, *p_cptr, 
                       *p_ysptr, *p_osptr;

struct wait_queue    *wait_chldexit;  

unsigned short       gid,egid,sgid,fsgid;

  unsigned long        timeout, policy, rt_priority;

  unsigned long        it_real_value, it_prof_value, it_virt_value;

  unsigned long        it_real_incr, it_prof_incr, it_virt_incr;

  struct timer_list    real_timer;

  long                 utime, stime, cutime, cstime, start_time;

unsigned long        min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;

  int swappable:1;

  unsigned long        swap_address;

  unsigned long        old_maj_flt;    /* old value of maj_flt */

  unsigned long        dec_flt;        /* page fault count of the last time */

  unsigned long        swap_cnt; *number of pages to swap on next pass */
struct rlimit        rlim[RLIM_NLIMITS];

  unsigned short       used_math;

  char                 comm[16];

int                  link_count;

  struct tty_struct    *tty;           /* NULL if no tty */

struct sem_undo      *semundo;

  struct sem_queue     *semsleeping;

struct desc_struct *ldt;

struct thread_struct tss;

struct fs_struct     *fs;

struct files_struct  *files;

struct mm_struct *mm; /* memory management info */
struct signal_struct *sig; /* signal handlers */

};
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• task_struct contains (or better points) information which allows 
kernel to manage execution of process (PID, pointer to user stack 
user stack,…). mm_struct *mm is important for us now.

struct task_struct

mm_struct holds state of virtual 
memory space. Nás zajímá:
• pgd_t *pgd;
• struct vm_area_struct *mmap;

PDBR (page directory base register) = 
PTBR = CR3 (v x86) is set to pgd 
value at process switch/schedule. 
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Page Fault Exception Handling - simplified

Consider that MMU (Mem Manag Unit) invokes Page Fault as result of 
attempt to access some memory location/translate its virtual address A 
(not present in TLB). This results in execution of Page Fault Handler:

• It check if A is valid. i.e. it A points within some VMA defined by 
vm_area_struct.  vm_start and vm_end limits are checked. Sequential 
search of VMAs list is time consumpting => there is kept up to date 
search RB tree for each process areas.
If address is not valid for process -> Segmentation Fault and kill

• If attempt is valid is operation permitted? access rights (read, write, 
execute). If not -> Protection Exception and kill the process

• Access is legal to legal address. Free or victim physical page has to be 
found and released (marked as invalid in appropriate page table(s) and 
if dirty write it back to disk), load new/requested page content, actualize 
Page Table. Finis and return from Page Fault Handler. CPU restarts 
instruction causing Page Fault. MMU serves address A translation 
correctly this time – without raising Page Fault.
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Memory Mapping

Linux initialize content of (area) of virtual 
memory by:
• Regular file (read from area result in read 

from the file)
• Anonymous file/area – if CPU read from 

given address the first time, kernel uses 
RO mapping to the global zero initiated 
page. For write it searches for free page or 
releases some (if it is dirty it is written to 
swap file), copies zero page, actualize 
Page Table. These initially zeroed pages 
are sometimes labeled as demand-zero 
pages

More programmer use in mmap() function
• It maps files or devices into process 

address space to be accessed directly by 
CPU
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Linux memory management structures
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Significant problem with reverse pages mapping

• Multiple virtual pages (VPFN) from single or even 
multiple processes can map to single physical page 
(PFN).

• The mapping of virtual to physical page costs only 
one entry (PTE) in the page table (4/8 byte) + some 
much smaller amount in upper table levels (PGD, 
PUD, PMD) + one are description (vm_area_struct) 
for whole range.

• Physical pages are critical resource and each is 
described by its struct page which is found directly 
from its location page-frame-number (PFN)

• PFN = virtual_address >> PAGE_SHIFT

• Location of all PTE for given PFN is complicated but required to manage and 
release/free physical page (for reuse) and invalidation all corresponding PTEs.

• If record is held for each page then it requires 8 bytes per list entry (next and PTE 
pointer) but there is only ~900M lowmemory on x86 in 32-bit  

• If 1000 processes maps 2G shared memory (code, same data) then lists for 
reverse mapping take 1000*2*1024*1024*1024/4096*8/1024/1024/1024 = 3.9 GiB

VPFN

VPFN

VPFN

VPFN

VPFN

VPFN

PFN

PFN

PFN

PFN

VPFN
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Structures used for reverse mapping
• Solution: objrmap + anon_vma + prio_tree

• Each physical page (page struct) points only to corresponding VMA or inode

• PTE is then found by searching given page in VMA , finding 
its offset. VMA points to mm_struct which defines page table 
for memory context. Location of PTE in page table is easy 
from VMA start and page offset in VMA.  

PFN struct page
address_space *mapping

PFN

PFN

PFN

anon_vmaanon_vma

struct inode
address_space *i_mapping, i_data

vma

vma

prio_tree

vma vma

struct page
address_space *mapping

struct page
address_space *mapping

struct page
address_space *mapping
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Virtual memory are data structures 
struct vm_area_struct {

struct mm_struct * vm_mm; /* The address space we belong to. */
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

   within vm_mm. */

/* linked list of VM areas per task, sorted by address */
struct vm_area_struct *vm_next;

pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */

struct rb_node vm_rb;

union {
struct {

struct list_head list;
void *parent; /* aligns with prio_tree_node parent */
struct vm_area_struct *head;

} vm_set;

struct raw_prio_tree_node prio_tree_node;
} shared;

struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
struct anon_vma *anon_vma; /* Serialized by page_table_lock */

/* Function pointers to deal with this struct. */
const struct vm_operations_struct *vm_ops;

/* Information about our backing store: */
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

             units, *not* PAGE_CACHE_SIZE */
struct file * vm_file; /* File we map to (can be NULL). */
void * vm_private_data; /* was vm_pte (shared mem) */
unsigned long vm_truncate_count;/* truncate_count or restart_addr */

};

For areas with an address 
space and backing store, 
linkage into the 
address_space->i_mmap 
prio tree, or linkage to 
the list of like vmas 
hanging off its node, or 
linkage of vma in the 
address_space->
 i_mmap_nonlinear list.

A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 
list, after a COW of one of the file pages. A MAP_SHARED vma can 
only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack or brk 
vma (with NULL file) can only be in an anon_vma list.
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Some system calls and their interaction with memory

• fork() – creates new process as a copy of calling one. All pages (except 
of SHM) of parent are marked as Copy-On-Write (COW) and are shared 
between processes – VMA are kept with original writable state but PTE of 
parent and child are marked RO => only the first write result in page 
separation/copying for child or parent and marking it RW

• clone() – create new process, but allows to control if memory 
management and other aspect should be separated or shared with 
parent process or thread => if MM shared then thread is created

• mmap() – creates new VMA/region in linear/virtual address space of 
given process and allows to map file into it

• mremap() – remaps or modifies size and attributes of memory region
• munmap() – releases whole or part of region. (If unmapped in middle, 

region is divided into two)
• shmat() – connects/maps shared memory segment to the process
• shmdt() – undoes shmat()
• exit() – destroys process and all its memory areas and regions
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