
1B4M35PAP Advanced Computer Architectures

Advanced Computer Architectures

Lecture – Memory subsystem – part one
- introduction, implementation, cache, virtual memory

Czech Technical University in Prague, Faculty of Electrical Engineering
Slides authors: Michal Štepanovský, update Pavel Píša

2B4M35PAP Advanced Computer Architectures

Lecture motivation from programmer POV?

 A:
int matrix[M][N];

int i,j,sum=0;

…

for(i=0;i<M;i++)

 for(j=0;j<N;j++)

 sum+=matrix[i][j];

Quick Quiz 1.: Is the result of both code fragments a same?

Quick Quiz 2.: Which of the code fragments is processed faster and why?

 B:
int matrix[M][N];

int i,j,sum=0;

…

for(j=0;j<N;j++)

 for(i=0;i<M;i++)

 sum+=matrix[i][j];

Is there a rule how to iterate over matrix element efficiently?

3B4M35PAP Advanced Computer Architectures

From UMA to NUMA development (even in PC segment)

CPU 1 CPU 2

Northbridge
MC

Southbridge

RAM

MC - Memory controller – contains circuitry responsible for SDRAM read and writes. It
also takes care of refreshing each memory cell every 64 ms.

CPU 1 CPU 2

MC

Southbridge

RAM

RAM

MC Northbridge

Southbridge

USB
PCI-E

CPU 1 CPU 2

MC MC

RAM RAM

Non-Uniform Memory
Architecture

SATA
USB

PCI-ESATA
USB

PCI-ESATA

Southbridge

USB
PCI-E

CPU 1 CPU 2

MC

RAM RAM

SATA

4B4M35PAP Advanced Computer Architectures

Intel Core 2 generation more detailed …

Northbridge became Graphics and Memory Controller Hub (GMCH)

5B4M35PAP Advanced Computer Architectures

Intel i3/5/7 generation more detailed …

Even more details in
following lectures

6B4M35PAP Advanced Computer Architectures

Memory subsystem – terms and definitions

• Memory address – fixed-length sequences of bits or index

• Data value – the visible content of a memory location

Memory location can hold even more control/bookkeeping
information
• validity flag, parity and ECC bits etc.

• Basic memory parameters:
• Access time – delay or latency between a request and the access

being completed or the requested data returned
• Memory latency – time between request and data being available

(does not include time required for refresh and deactivation)
• Throughput/bandwidth – main performance indicator. Rate of

transferred data units per time.
• Maximal, average and other latency parameters

7B4M35PAP Advanced Computer Architectures

Memory subsystem – terms and definitions

• Memory types RWM (RAM), ROM, FLASH
• Data retention time and conditions (volatile/nonvolatile)
• RAM memories implementations:

 SRAM (static), DRAM (dynamic).

• RAM = Random Access Memory – memory with arbitrary
address/random access

memory
type

required
transistors

area for
1 bit

data availability latency

SRAM about 6 < 0,1 m2 all the time < 1ns – 5ns

DRAM 1 < 0,001 m2 requires refresh about 10 ns

8B4M35PAP Advanced Computer Architectures

Usual SRAM chip and SRAM cell

Area per memory cell:

SRAM memory cell
CMOS technology

Principle:

http://educypedia.karadimov.info/library/SEC08.PDF

9B4M35PAP Advanced Computer Architectures

Usual SRAM chip and SRAM cell

Common SRAM chip Read example for synchronous case :

https://www.ece.cmu.edu/~ece548/localcpy/sramop.pdf

OE can be asynchronous

10B4M35PAP Advanced Computer Architectures

Usual SRAM chip and SRAM cell

Larger memory?

11B4M35PAP Advanced Computer Architectures

Multiport cache?

• A must for superscalar CPU
• Required when cache is shared between CPUs as well

12B4M35PAP Advanced Computer Architectures

Detail of dynamic memory cell

Single transistor dynamic memory
bit cell

The nMOS transistor forms a switch that connects (or not) the capacitor to
the "bitline" wire. The connection is controlled by a "wordline" wire.

The process of reading discharges the capacitor same as the
current leakage in time. Therefore, its state must be renewed.
Refresh - required working phase of dynamic memory.
Negatively affects (prolongs) the average access time.

Photo source: http://www.eetimes.com/document.asp?doc_id=1281315

13B4M35PAP Advanced Computer Architectures

Internal architecture of the DRAM memory chip

This 4M × 1 DRAM is internally realized as an 2048x2048 array
of 1b memory cells

14B4M35PAP Advanced Computer Architectures

History of DRAM chips development

RAS – Row Address Strobe,
CAS – Column Address Strobe

Year Capacity Price[$]/GB Access time [ns]

1980 64 Kb 1 500 000 250

1983 256 Kb 500 000 185

1985 1 Mb 200 000 135

1989 4 Mb 50 000 110

1992 16 Mb 15 000 90

1996 64 Mb 10 000 60

1998 128 Mb 4 000 60

2000 256 Mb 1 000 55

2004 512 Mb 250 50

2007 1 Gb 50 40

15B4M35PAP Advanced Computer Architectures

Old school DRAM – asynchronous access

• The address is transferred in two phases – reduces
number of chip module pins and is natural for internal
DRAM organization

• This method is preserved even for today chips even that
more pins/balls are no so big problem today

RAS – Row Address Strobe,
CAS – Column Address Strobe

16B4M35PAP Advanced Computer Architectures

SDRAM – end of 90-ties – synchronous DRAM

• SDRAM chip is equipped by counter that can be used to
define continuous block length (burst) which is read together

17B4M35PAP Advanced Computer Architectures

SDRAM – the most widely used main memory technology

• SDRAM – clock frequency up to 100 MHz, 2.5V.

• DDR SDRAM – data transfer at both CLK edges, 2.5V.

• DDR2 SDRAM – lower power consumption 1.8V, frequency
up to 400 MHz.

• DDR3 SDRAM – even lower power consumption at 1.5V,
frequency up to 800 MHz.

• DDR4 SDRAM …

• There are also other dynamic memory types, I.e. RAMBUS,
that use entirely different concept

• All these innovations are focused mainly on throughput, not
on the random access latency.

18B4M35PAP Advanced Computer Architectures

Memory and CPU speed disproportion – Moore's law

1980 1985 1990 1995 2000 2005 2010

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

Year

P
e

rf
o

rm
a

n
c

e Processor-Memory
Performance Gap
Growing

Source: Hennesy, Patterson
CaaQA 4th ed. 2006

CPU performance 25%
per year

52%
per year

20%
per year

Throughput of memory
only +7% per year

Memory

CPU

19B4M35PAP Advanced Computer Architectures

Bubble sort – algorithm example from seminaries

int array[5]={5,3,4,1,2};
int main()
{
 int N = 5,i,j,tmp;
 for(i=0; i<N; i++)
 for(j=0; j<N-1-i; j++)
 if(array[j+1]<array[j])
 {
 tmp = array[j+1];
 array[j+1] = array[j];
 array[j] = tmp;
 }
 return 0;
}

 What we can
consider and
expect from our
programs?

Think about
some typical
data access
patterns and
execution flow.

20B4M35PAP Advanced Computer Architectures

Memory hierarchy – principle of locality

• Programs/processes access a small proportion
of their address space at any given instant of
time

• Temporal locality
• Items accessed recently are likely to be accessed

again soon
• e.g., instructions in a loop, instruction variables

• Spatial locality
• Items near those accessed recently are likely to be

accessed soon.
• E.g., sequential instruction access (program memory),

array data (data memory).

21B4M35PAP Advanced Computer Architectures

Memory hierarchy introduced based on locality

• The solution to resolve capacity and speed requirements is to
build address space (data storage in general) as hierarchy of
different technologies.

• Store input/output data, program code and its runtime data on
large and cheaper secondary storage (hard disk)

• Copy recently accessed (and nearby) items from disk to
smaller DRAM based main memory (usually under operating
system control)

• Copy more recently accessed (and nearby) items from DRAM
to smaller SRAM memory (cache) attached to CPU (hidden
memory, transactions under HW control), optionally, tightly
coupled memory under program's control

• Move currently processed variables to CPU registers (under
machine program/compiler control)

22B4M35PAP Advanced Computer Architectures

Contemporary price/size examples

Data
path

Control unit

L1
cache

Level2
cache

(SRAM)

Main
memory
(DRAM)

Secondary
memory

(disc)

R
egiste rs

CPU

Type/
Size

L1 32kB Sync
SRAM

DDR3
16 GB

HDD 3TB

Price 10 kč/kB 300
kč/MB

123
kč/GB

1 kč/GB

Speed/
throughput

0.2...2ns 0.5...8
ns/word

15
GB/sec

100 MB/sec

Some data can be available in more copies (consider levels and/or SMP).
Mechanisms to keep consistency required if data are modified.

23B4M35PAP Advanced Computer Architectures

Mechanism to lookup demanded information?

• According to the address and other management information
(data validity flags etc).

• The lookup starts at the most closely located memory level
(local CPU L1 cache).

• Requirements:

• Memory consistency/coherency.

• Used means:

• Memory management unit to translate virtual address to
physical and signal missing data on given level.

• Mechanisms to free (swap) memory locations and migrate
data between hierarchy levels

• Hit (data located in upper level – fast), miss (copy from lower
level required)

24B4M35PAP Advanced Computer Architectures

Example of the CPU with three-level cache
 Harvard architecture L1 cache - Intel Nehalem

• IMC: integrated memory
controller with 3 DDR3 memory
channels,

• QPI: Quick-Path Interconnect
ports

• Compare sizes of caches at each
level!!!

25B4M35PAP Advanced Computer Architectures

Solution of memory and CPU speed disproportion? Cache.

26B4M35PAP Advanced Computer Architectures

Terminology definitions for cache memory

• Cache hit corresponds to situation
when search location is found in the
cache.

• Cache miss, opposite. Not dound.
• Cache line or Cache block – basic

unit/size which is copied to/from
memory.

• Cache block size from 8B to 1KB,
typically 32/64/128B in practice.

Processor

• As for B4M35PAP use more precise definition:
• Cache block – data, which are transferred

to/from memory cache.
• Cache line includes in addition management

informations about block (Tag, valid, dirty, etc. –
depends on protocol)

• Cache row – corresponds to internal cache organization

27B4M35PAP Advanced Computer Architectures

Example

• Consider cache of size 8 one word blocks. Where
are stored data/block from address 0xF0000014?
• Fully associative,
• Directly mapped, or
• Or limited number of ways (N=2) associative

(2-way cache).

28B4M35PAP Advanced Computer Architectures

Directly mapped cache

• Set = (Adresa/4) mod 8

29B4M35PAP Advanced Computer Architectures

Directly mapped cache

Capacity – C

Number of sets – S

Block size – b

Number of blocks – B

Degree of associativity – N

C = 8 (8 words),

S = B = 8,

b = 1 (one word in the block),

N = 1

Directly mapped cache:
one block in each set

30B4M35PAP Advanced Computer Architectures

More realistic cache line organization

• Tag upper bits of block index in memory (corresponds to
memory address divided by size of one way of the
cache).

• Data field holds actual content/values corresponding to
the cached address/addresses.

• Validity bit – indicates if Data field is valid, holds real
data or is unused/unsynchronized.

• Dirty bit – distinguishes state of data field. Informs that
value hold in cache (cache) differs to value in main
memory, that is updated and not write back yet.

V More flags, i.e. D Tag Data

31B4M35PAP Advanced Computer Architectures

Direct mapped cache implementation – block size 4 words

Why to use bigger block
sizes than single word?

32B4M35PAP Advanced Computer Architectures

Cache with limited degree of associativity – N=2 (ways)

Capacity – C

Number of sets – S

Block size – b

Number of blocks – B

Degree of associativity – N

C = 8 (8 words),

S = 4,

b = 1 (one word in the block),

B = 8

N = 2

What is advantage of higher
associativity degree?

33B4M35PAP Advanced Computer Architectures

Cache with limited degree of associativity – N=4 (ways)

4-way cache

34B4M35PAP Advanced Computer Architectures

Fully associative cache

• The fully associative cache contains only one set, the degree of
associativity is equal to the number of blocks (N = B). The memory
address can be mapped anywhere.

• ... is another naming for a B-way associative cache with one set
• ... has the least amount of conflicts for the given capacity but needs

the most HW means (comparators) - the chip surface is growing
• ... is suitable for a relatively small cache sizes

 A fully associative cache has only S=1 set.

35B4M35PAP Advanced Computer Architectures

Important cache access statistical parameters

• Hit Rate - number of memory accesses satisfied by given
level of cache divided by number of all memory accesses

• Miss Rate – same principle, but for requests resulting in
access to slower memory = 1 – Hit Rate.

• Miss Penalty – time required to transfer block (data) from
lower/slower memory level.

• Average Memory Access Time (AMAT)
 AMAT = HitTime + MissRate×MissPenalty

Miss Penalty for multilevel cache can be computed by
recursive application of AMAT formula

36B4M35PAP Advanced Computer Architectures

Comparison of different cache sizes and organizations

Remember: 1. miss rate is not cache parameter/feature!
2. miss rate is not parameter/feature of the program!

37B4M35PAP Advanced Computer Architectures

What can be gained from spatial locality?

Miss rate of consecutive accesses can be reduced by increasing block size –
expected spatial locality. On the other hand, increased block size for same
cache capacity results in smaller number of sets and higher probability of
conflicts (set number aliases) and then to increase of miss rate. Solution can
be combination with prediction of locations for prefetch or prefetch control
instructions.

38B4M35PAP Advanced Computer Architectures

Resolve Cache Miss situation, data are not present in cache

• Data has to be filled from main memory, but quite often all available cache
locations which address can be mapped to are allocated

• Cache content replacement policy (offending cache line is invalidated
either immediately or after data are placed in the write queue/buffer)

• Random – random cache line is evicted. Simple but not optimal.

• LRU (Least Recently Used) – additional information is required to find
cache line that has not been used for the longest time

• LFU (Least Frequently Used) – additional information is required to find
cache line that is used least frequently – requires some kind of forgetting

• ARC (Adaptive Replacement Cache) – combination of LRU and LFU
concepts

• Write-back – content of the modified (dirty – D bit) cache line is moved to
the write queue when line is to be used for another address. Procesed
automatically by HW.

39B4M35PAP Advanced Computer Architectures

• How is LRU (Least Recently Used) policy implemented ???
• Consider 4-way asociative cache!

• It is not easy if LRU processing is expected to be implemented fast …
• Intel uses pseoudo-LRU pro 4-way, each set has only 3 additional bits

(full LRU requires to encode one of 4! = 24 permutations i.e. 5 bits)
• Cache activity is different for two ceases, data are found (cache hit),

data re not found (cache miss)
• In the case of a hit, we need to keep track of what way has provided

data - certainly not the least used one (i.e. the most recently used)
• In the case of a miss, we have to decide where to save the new data

way A way B way C way D

way A way B way C way D

Resolve Cache Miss situation, data are not present in cache

40B4M35PAP Advanced Computer Architectures

• How is LRU (Least Recently Used) policy implemented ???

• The first bit „AB/CD“ is set if the hit is in A or B. The bit is cleared if ht is
in C or D. No information is changed for miss case. This bit „AB/CD“
informs in which “half” was last hit.

• Recurrently, bit „A/B“ is set if hit is in A and cleared for hit in B.
• Similarly for „C/D“ bit.

way A way B way C way D

way A way B way C way D

bit AB / CD

bit A/B bit C/D

bit A/B

bit AB / CD bit C/D

Resolve Cache Miss situation, data are not present in cache

41B4M35PAP Advanced Computer Architectures

• How is LRU (Least Recently Used) policy implemented ???
• Which data (way) are replaced in cache miss case???

• Sumarize: Pseudo-LRU advantage is that all bits „AB/CD“, „A/B“, „C/D“
are only written or unchanged in cache hit case. Slowdown (read) occurs
only for cache miss case. Utilization of binary tree is easinly extendable for
pseudo-LRU implementation for 8, 16, etc. ways.

way A way B way C way D

way A way B way C way D

bit AB / CD == 0 ?

bit A/B == 0 ? bit C/D == 0 ?

Have all ways valid bit set?

yes no Use available
(unused) line in
chche yes no

yes no yes no

state replace next state

00x way A 11u

01x way B 10u

1x0 way C 0u1

1x1 way D 0u0

x – don’t care
u - unchanged

Resolve Cache Miss situation, data are not present in cache

42B4M35PAP Advanced Computer Architectures

Resolve Data write by processor into memory

• There is cache in between!
• Data consistency – logical requirement to ensure same content for

given address on all hierarchy levels.

• Write through – as data are written into cache they are written to
write queue-buffer and then are written asynchronously into memory.

• Write back – data are updated only in cache and Dirty (D bit of line
metadata) is set. Actual write into memory is initated when given
cache-line is to be reused for other content or when sync is required.

• Dirty bit – additional bit in cache-line metatada. Marks situation when
cache holds modified value and main memory requires update.

V Další bity, např. D Tag Data

43B4M35PAP Advanced Computer Architectures

Resolve Data write by processor into memory

There are more variants of write strategies:
• Write-combining (data are collected in write

combine buffer. There are written together
later; it does not guarantee ordering (weakly
ordered memory); example: write to
video/framebuffer RAM of graphic card)

• Uncacheable (typically when address does not
target RAM/main memory => it usually
corresponds to write into device registers, i.e.:
PCIe card which has BAR mapped to this
address

• Write-protect
• x86 architecture uses Memory Type Range

Registers (MTRR) registers for these strategies
selection or Page Attribute Table (PAT) on
newer CPUs which allows per page attributes
specification

Write-
combining

Write-
back

44B4M35PAP Advanced Computer Architectures

Trend – Multiple levels cache

• Primary cache is directly connected to the processor
• Fast, small. The most important: minimal Hit Time

• L2 Cache resolves misses in primary cache
• Larger, slower, but still much faster than main memory. Usually

shared between cores cluster. The most important: low Miss Rate

• Main memory resolves misses in the last cache level
• Today high performance system use even L3 cache

Parameter typical for L1 typical for L2

Počet bloků 250-2000 15 000-250 000

KB 16-64 2 000-3 000

Velikost bloku v B 16-64 64-128

Miss penalty (v hod) 10-25 100-1 000

Miss rates 2-5% 0,1-2%

45B4M35PAP Advanced Computer Architectures

Victim cache

• Directly mapped cache is cheap and fast
• The problem of the directly mapped cache is that in case of

a collision (the aliasing mapping of two different addresses)
older (often still useful) data/instructions are replaced by
newer ones

• Solving this problem was N-way associative, resp. fully
associative cache.

• Is this the only solution? No! You can still use the so-
called Victim cache.

• PRINCIPLE: Use a fast, directly mapped cache. If we
remove data from this cache, we would store it in the Victim
cache. In cache miss, data are additionally searched in the
victim cache before access to the main memory.

46B4M35PAP Advanced Computer Architectures

Victim cache

• A: The incomming block is placed into main cache and „expelled“ block
into Victim cache (FIFO strategy for Victim cache is sufficient to realize
LRU – result of B rule)

• B: In the case of miss in main cache and hit in Victim cache, cache lines
are swapped between these caches

• Is this only alternative? No! Assist cache is next alternative.

tag data

Main directly mapped cache

Victim cache – fully associative

tag data
from

memoryA

B

47B4M35PAP Advanced Computer Architectures

Assist cache

• A: Incoming block is stored into Assist cache (FIFO)
• B: If there is miss in main cache and hit in Assist cache, swap cache lines

between caches.
• Remarks: Data are transferred into main cache only after hit in Assist

cache, that is, after repeated requests to access the same address.
Therefore, the data cached in main cache prove time locality.

tag data

Main directly mapped cache
Assist cache – fully associative

tag data

from
memory

A

B

48B4M35PAP Advanced Computer Architectures

Do you understand to this lecture?

• If so, you are already aware that using 2 principles (temporal
and spatial localityprinciples) can lead to a significant speedup
of your program by using cache effectively ... !!!

• There are HW and SW (compiler) techniques that optimize
caching based on these principles. You can not influence HW
techniques from a programmer's point of view. You can set
optimization level for compiler ...

• However, even the best compiler only compiles what the
programmer wrote. Algorithm selection, storage and
manipulation of data structures are all determined by the
programmer. Therefore, "the most" work is still in the hands of
the programmer, and it depends to a large extent on
programmer how "fast" program will be .

49B4M35PAP Advanced Computer Architectures

Do you understand to this lecture?

• Instruction cache – more complex
• Appropriate code reordering, eventually reordering/grouping of

hot or interconnected functions in memory
• Profiling

• Data cache – easier
• Proper data layout – the data we plan to use

sequentially, sort sequentially in memory, etc.
• Merge fields or related data structures, locate the most

used fields first in structures
• Work on data blocks - use the already used one as

soon as possible
• Iteration in nested cycles - see introductory example -

to browse the memory sequentially and not with skips
• merging two loops into one - Loop fusion, etc.

50B4M35PAP Advanced Computer Architectures

Do you understand to this lecture?

• Spatial locality – conflicts/aliasing in cache:
/* Before optimization */
int values[SIZE];
int keys[SIZE];
int scores[SIZE];

/* After optimization */
struct item{
 int value;
 int key;
 int score;
};
struct item records[SIZE];

Assume 2-way associative
cache…

for(i=0; i<SIZE; i++)
 for(j=0; j<SIZE; j++)
 …

51B4M35PAP Advanced Computer Architectures

Do you understand to this lecture?

• Temporal locality:
/* Před optimalizací */
for (i = 0; i < SIZE; i++)
 for (j = 0; j < SIZE; j++)
 a[i][j] = b[i][j] * c[i][j];
for (i = 0; i < SIZE; i++)
 for (j = 0; j < SIZE; j++)
 d[i][j] = a[i][j] - c[i][j];

/* Po optimalizaci */
for (i = 0; i < SIZE; i++)
 for (j = 0; j < SIZE; j++)
 { a[i][j] = b[i][j] * c[i][j];
 d[i][j] = a[i][j] - c[i][j];}

It's not just about saving the
instructions, but also using
the cache more efficiently ...

52B4M35PAP Advanced Computer Architectures

Do you understand to this lecture?

• Next example – matrix multiplication

for(i=0; i < N; i++)
 for(j=0; j < N; j++) {
 tmp = 0;
 for (k=0; k < N; k++)
 tmp += y[i][k]*z[k][j];
 x[i][j] = tmp;
 }

Will it help us somehow
when swap these two lines?
Will the program be
equivalent?

(See introductory
example ...)

53B4M35PAP Advanced Computer Architectures

Do you understand to this lecture?

• Next example – matrix multiplication
• It is better to use so-called block multiplication.
• Idea: Let's divide the calculation into BxB sub-matrices

that will fit in cache ... => elimination of "capacity misses"
for (jj = 0; jj < N; jj = jj+B)
 for (kk = 0; kk < N; kk = kk+B)
 for (i = 0; i < N; i++)
 for (j = jj; j < min(jj+B-1,N); j++) {
 tmp = 0;

 for (k = kk; k < min(kk+B-1,N); k++)
 tmp += y[i][k]*z[k][j];
 x[i][j] = x[i][j] + tmp;
 }

More to read: http://suif.stanford.edu/papers/lam-asplos91.pdf

54B4M35PAP Advanced Computer Architectures

Do you understand to this lecture?

• Do not waste the memory – use minimal
required amount of memory

• Do you see differences in these declarations?

• /* Before optimization */
int a=0;
char b='a';
int c=1;

• /* After optimization */
int a=0;
int c=1;
char b='a';

a

c

b

a

c

b

55B4M35PAP Advanced Computer Architectures

struct cheese {
 char name[17];

short age;
char type;

int calories;
short price;

int barcode[4];
};

struct cheese {
char name[17]; /* 0 17 */

/* XXX 1 byte hole, try to pack */
short age; /* 18 2 */
char type; /* 20 1 */

/* XXX 3 bytes hole, try to pack */
int calories; /* 24 4 */
short price; /* 28 2 */

/* XXX 2 bytes hole, try to pack */
int barcode[4]; /* 32 16 */

}; /* size: 48, cachelines: 1 */
/* sum members: 42, holes: 3 */
/* sum holes: 6 */
/* last cacheline: 48 bytes */

What is incorrect? – see. pahole

Arnaldo Carvalho de Melo: The 7 dwarves: debugging information beyond gdb

56B4M35PAP Advanced Computer Architectures

Lessons learned

• Be careful about the layout of the structure members
• Place the most critical elements (most commonly used) ones

at the beginning of the structure
• If you access structure members, try to keep the order in

which they are defined in the structure

• For larger structures, the rules also apply and can be applied
for the cache line size

• The other question is what members should be
in the structure at all: OOP principle vs. speed

57B4M35PAP Advanced Computer Architectures

Do you understand to this lecture?

• Data, which are accessed in same time instant
(sequentially) group together.

• Data, which are often accessed, group together.
• Data alignment in memory has to be often analyzed as well –

directly in assembly language or in C – check if your compiller
aligns allocated memory to 8-byte border for doubles, if not:
• Allocate as much as you need + 4B (or even more – according to data

size)
• use AND to obtain aligned store for your data, example:

double a[5];
double *p, *newp;
p = (double*)malloc ((sizeof(double)*5)+4);
newp = (double*)((intptr_t)(p+4)) & (-7);

• See also int posix_memalign(void **memptr, size_t align, size_t size);

58B4M35PAP Advanced Computer Architectures

Do you understand to this lecture?

• Prime numbers search – Sieve of Eratosthenes:

/* Before optimization */
boolean array[max];
for(i=2;i<max;i++) {
 array = 1;
}
for(i=2;i<max;i++)
 if(array[i])
 for(j=i;j<max;j+=i)
 array[j] = 0; /* transfer from memory to cache

 write 0*/

Transfer occurs only for
cache miss

59B4M35PAP Advanced Computer Architectures

Do you understand to this lecture?

• Prime numbers search – Sieve of Eratosthenes:

/* After optimization */
boolean array[max];
for(i=2;i<max;i++) {
 array = 1;
}
for(i=2;i<max;i++)
 if(array[i])
 for(j=2;j<max;j+=i)
 if(array[j]!=0) /* transfer from memory into cache

 and read */
 array[j] = 0; /* write 0 only if required */

• It reduces useless writes (reduces writes to main memory
– dirty cache lines has to be written before line reuse)

60B4M35PAP Advanced Computer Architectures

Cache bypass can speed up your programs for some cases

• If you are producing data, which are not used in short time
(non-temporal write operation), there is no reason to cache it

• This is often the case for large data structures (matrices, etc.)
• Why does this speed up the program?

#include <emmintrin.h>
void _mm_stream_si32(int *p, int a); And more…

It stores data from „a“ variable to „p“ address without forcing caching of
location. However, if the "p" already exists in the cache, the cache will
be updated.

-> see Write-combining strategy;

-> final WC buffer flushing is under programmer control, else by HW
• More details: “Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in

the Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

61B4M35PAP Advanced Computer Architectures

Optimize often called functions

• If you frequently and especially in a fast sequence call for
the same function, optimize it! Use caching principle for
that sometimes, be careful about threads …

• Example: We know that we will need to calculate square
roots of integer only and even often only from 0 to 10.

double sqrt10(int i) {
 static const double lookup_table[] = {0, 1,

sqrt(2), sqrt(3), 2, sqrt(5), sqrt(6),
sqrt(7), sqrt(8), 3, sqrt(10) };

 if(0 <= i && i <= 10)
 return lookup_table[i];
 else

return sqrt(i);
}

62B4M35PAP Advanced Computer Architectures

Optimize often called functions

• Example: We will call a function which is called often in
succession with the same parameters…

double f(double x, double y) {
return sqrt(x * sin(x) + y * cos(y)); }

After optimization, be careful about threads:
double f(double x, double y) {
 static double prev_x = 0, prev_y = 0, result = 0;

 if (x == prev_x && y == prev_y)

 return result;
 prev_x = x;

 prev_y = y;
 result = sqrt(x * sin(x) + y * cos(y));
 return result;
}

63B4M35PAP Advanced Computer Architectures

How to determine cache parameters?

• Linux
#include <unistd.h>
long sysconf (int name);
Kde name:

_SC_LEVEL1_ICACHE_SIZE

_SC_LEVEL1_ICACHE_ASSOC

_SC_LEVEL1_ICACHE_LINESIZE etc.

• Windows
GetLogicalProcessorInformation() ->
SYSTEM_LOGICAL_PROCESSOR_INFORMATION whi
ch contains CACHE_DESCRIPTOR field

64B4M35PAP Advanced Computer Architectures

Virtual memory.

65B4M35PAP Advanced Computer Architectures

Reasons to introduce virtual memory..

• Many (>10, server >10000) processes run in parallel on a computer
• Problem is how to divide and manage physical memory (i.e. 1 GB)

between these processes? If single continuous block is provided,
required amount is not known in advance? Other problem is
corruption of memory by maliscuous program (i.e. virus) or due to
error in program (unintended programmer mistake – bad pointers
manipulation) which can target block allocated to other process.

• Address translation together with virtual memory is solution…
• Each process is given the illusion that it has separate memory/

address space allocated to it and can use all pointers values
(excluding some specific areas, i.e. range above 3 GB for 32-bit x86).

• It is even possible to maintain illusion that each process has whole
or even more memory available than is total physical main memory in
a system because secondary memory can provide additional space.

• Basic idea: Process addresses memory by virtual addresses (own
address space) and these addresses are translated to physical ones..

66B4M35PAP Advanced Computer Architectures

• Explain idea on 8B (Bytes) virtual address space and 8B physical memory
• Now to implement address translation? Byte addressing expected.
• One of the solutions: Translation of random virtual address to random

physical address is required. I.e. 3-bit virtual address should be translated
to 3-bit physical address. It is enough to use table with 8 entries, where
each entry holds 3 bity, dohromady 8x3=24bitů/proces.

• Problem! If the virtual address space is 4 GB, lookup table size would be
232x32 bitů = 16GB for each process. This is too much…

Reasons to introduce virtual memory..

7

6

5

4

3

2

1

0

6

3

7

4

1

5

0

2

7

6

5

4

3

2

1

0

3-bit addres for 8 entries

Look-up
table

Virtual address
space

physical
address spacemapping

Solution:
Look-up

table

67B4M35PAP Advanced Computer Architectures

• Mappin of each arbitrarily (cell/byte) virtual address to arbitrarily
virtual address is practicaly infeasible!

• Solution: Divide virtual address space into blocks of same size – virtual
pages, and physical memory on physical pages of same size. In our
example, we have a 2B page.

Virtual memory - Solve too large table from previous slide:

7

6

5

4

3

2

1

0

1

0

2

3

1

0

3

2

7

6

5

4

3-address for 4 entries

Look-up
table

Virtual
address

Physical
address

mapping

Solution – one bit of address is not
used for translation. Look-up table
has half of entries which require
less bits.

3

2

1

0

Page
number

3

2

1

0

page
number

● Our solution then translates virtual addresses on groups basis... Inside the
given page some bits define byte offset and are not used during
translation. We are thus able to use/map the entire address space.

68B4M35PAP Advanced Computer Architectures

Example No 1

What are the
consequences?

• Array data are
stored sequentially.

More questions ...
• Which address is it?
• Where are these

data mapped in
chache and phys.
mem?

#include <stdio.h>
#include <stdlib.h>
int main()
{
 int a, b[4], *c, d;
 c = (int*)malloc(4*sizeof(int));
 printf("%p %p %p %p\n",&a,&b,&c,&d);
 printf("%p %p %p\n",&b[0],&b[1],&b[2]);
 printf("%p %p %p\n",&c[0],&c[1],&c[2]);
 free(c);
 return 0;
} 0028FF1C 0028FF0C 0028FF08 0028FF04

0028FF0C 0028FF10 0028FF14
00801850 00801854 00801858

Program output:

69B4M35PAP Advanced Computer Architectures

Virtual address and virtual memory

• Virtual memory (VM) – a way to manage memory where a separate
address space is provided to each process, it is (can be) organized
independently on the physical memory ranges and can be even bigger
than the whole physical memory

• Programs/instructions running on the CPU operate with data only
through virtual addresses

• Translation from virtual address (VA) to physical address (PA) is
implemented in HW (MMU, TLB) fully or can require TLB fill by OS.

• Common OSes implement virtual memory through paging which
extends concept even to swapping memory content onto secondary
storage (disc)

Program works
in its virtual

address space
mapping

Physical
memory

(+caches)

VA – virtual
address

PA –
physical
address

70B4M35PAP Advanced Computer Architectures

Virtual memory - paging

• Process virtual memory content is divided into aligned pages of same
size (power of 2, usually 4 or 8 kB)

• Physical memory consists of page frames of the same size
• Note: huge pages option on modern OS and HW – 2n pages

Virtual
address
space
process-A

Virtual
address
space
process-B

Physical memory

Page
frame

Disk

71B4M35PAP Advanced Computer Architectures

Virtual memory - paging

• Each virtual page may map to at most one physical page
(vice versa rule is not required)

• Multiple virtual pages may be mapped to one particular
physical page. What does it bring?

• We can share memory across different processes or threads
(data or code - the OS loads the shared libraries only once),
we can provide other privileges (access rights).

• If the program tries to access the page in a way that does not
match its permission, the CPU generates a General
Protection fault (SIGSEGV)

• Handler for General protection fault - a typical reaction is the
end of the process

72B4M35PAP Advanced Computer Architectures

Virtual/physical address and data

A0-A31 A0-A31

D0-D31 D0-D31

Virtual Physical

Virtual address Physical address

Data

CPU
Address

translation
MMU

Memory

73B4M35PAP Advanced Computer Architectures

• Consider virtual ddress width 32 bits, physical memory size
1GB and 4 KB page size

Virtual and physical addressing in more detail

12 bits => 212 = 4 KB
equal to page size

31… 12 11… 0

29… 12 11… 0

offsetVirtual page number

Physical page number offset

Address (page
frame number)

translationWhat about
remaining bits?
Described
Later …

• What is very important practical consequence of this
arrangement → the least significant address bits (offset) are
unchanged by translation.

74B4M35PAP Advanced Computer Architectures

Return to example No 1

#include <stdio.h>
#include <stdlib.h>
int main()
{
 int a, b[4], *c, d;
 c = (int*)malloc(4*sizeof(int));
 printf("%p %p %p %p\n",&a,&b,&c,&d);
 printf("%p %p %p\n",&b[0],&b[1],&b[2]);
 printf("%p %p %p\n",&c[0],&c[1],&c[2]);
 free(c);
 return 0;
} 0028FF1C 0028FF0C 0028FF08 0028FF04

0028FF0C 0028FF10 0028FF14
00801850 00801854 00801858

Program output:

75B4M35PAP Advanced Computer Architectures

Return to example No 1

• Have you noticed
addresses, where a, c, d
variables and array b
are located?

• What does it mean if
program is extended by
commands:
a = 1;
b[0] = a+1;
b[1] = b[0]+1;
d = b[2];
//b[2] is not initialized..

0x28FF1C

0x28FF04
0x28FF08
0x28FF0C
0x28FF10

a

b[]

c
d

c[]

0x801850 c[0]

4 Byte

heap

stack

…

0x801850

…

…

Virtual address space

76B4M35PAP Advanced Computer Architectures

Return to example No 1

• Consider L1 data cache of size 32kB with associativity
degree 8 and block size 64B. Cache is initially empty.

• What happens when the first line of the program is
executed?

a = 1;
b[0] = a+1;
b[1] = b[0]+1;
d = b[2];

77B4M35PAP Advanced Computer Architectures

Return to example No 1

• Consider L1 data cache of size 32kB with associativity degree 8
and block size 64B. Cache is initially empty.

• What happens when the first line of the program is executed?

a = 1;

V Tag Data Data

63 …

62 …

61 …

60 …

… … …

1 …

0 …

64 sets

16 words (16x Data) = 64B = block size

8 different ways

…

way 0 way 1 way 7

78B4M35PAP Advanced Computer Architectures

Return to example No 1

1111 0011 0010 0001 0000

V Tag Data Data Data Data Data Data Data Data Data

63 …

62 …

61 …

60 1 0x0028F ??? … a b[3] b[2] b[1] b[0] c d ???

… … …

1 …

0 …

64 sets

16 words (16x Data) = 64B

way 0

Attention:
Physical
address

should be
stored in

Tag!!!

• Consider L1 data cache of size 32kB with associativity degree 8
and block size 64B. Cache is initially empty.

• What happens when the first line of the program is executed?

a = 1;

79B4M35PAP Advanced Computer Architectures

Return to example No 1

Conclusions:

• Paging (virtual memory realization) does not disturb
spatial locality principle => important for cache.

• Data on adjacent virtual addresses will be
stored in physical memory side by side (unless
it exceeds the page boundary).

• If a page fault occurs as a result of the cache miss,
then the whole page moves to memory from disc,
and then the cache line moves to the cache. The
next cache miss inside the page will no longer
cause a page fault (until the page is replaced by
another page).

80B4M35PAP Advanced Computer Architectures

Address translation

• Page Table
• Root pointer/page directory base register (x86 CR3=PDBR)
• Page table directory PTD
• Page table entries PTE

• Basic mapping unit is a page (page frame)
• Page is basic unit of data transfers between main

memory and secondary storage
• Mapping is implemented as look-up table in most cases
• Address translation is realized by Memory

Management Unit (MMU) which is part of CPU
• Example follows on the next slide:

81B4M35PAP Advanced Computer Architectures

Virtual to physical address translation realization

• Data structure of Page Directory (Page Table) is stored in main memory.
Allocation of continuous area in physical memory and placing its physical
address into PDBR register is task of operating system.

• PDBR - page directory base register – x86 is realized by CR3 register –
it contain physical address of start of page table

• PTBR - page table base register – the same in another documents…

`

PDBR

31… 12 11… 0

29… 12 11… 0

offsetVirtual page number

Physical page number offset

Překlad adresy
(překlad čísla stránky)

82B4M35PAP Advanced Computer Architectures

220 entries
 220.4B =

4MB

PDBR

Page table

Virtual to physical address translation realization

12 bitů

4kB
= 212B

Paměť je rozdělena
na fyzické stránky

PFN 0

20 bits to address physical page
+ additional bits (valid,

permissions, etc.) = 4B (8B)

PFN 1

PFN 2

PFN N-1
N=232/212=220

4GB
 220

physical
pages

20 bitů

 Given virtual page
is mapped to

physical page frame
No 1

83B4M35PAP Advanced Computer Architectures

Analyze memory requirements for page table

• Typical page size 4 kB = 2^12
• For known page address only 12 bit are used as offset to address

inside page. 20 bits (for 32-bit address) remain.
• The fastest map/table look-up is indexing use array structure ⇒
• Result: Page Directory (Page Table) should provide 2^20 entries

(PTEs). This is not practical and causes may disadvantages. For
200 processes it requires 200×2^20×4 bytes = 800 MB of memory.

• Usual process/thread work with small part of the whole address
space (temporal locality principle) in given „instant of time“. Usual
process utilizes only smaller portion of maximal address space as
well.

• Physical space allocation fragmentation problem when large
compact table is used for each process

• Solution: multilevel page table – lower levels populated only for
used address ranges

84B4M35PAP Advanced Computer Architectures

Multilevel page table

85B4M35PAP Advanced Computer Architectures

Multilevel page table – 2 levels

12 bits

4kB
= 212B

Memory divided to
physical page frames

PFN 0

20 bits to hold PFN + additional bits
(valid, rights, etc.) = 4B (8B)

PFN 1

PFN 2

PFN N-1
N=232/212=220

4GB
 220

PFNs s

10 bits

210 entries
 210.4B = 4KB

10 bits

210 Page tables
 210.4KB =

4MB
(if whole address
space is mapped)

210
položek

PDBR

86B4M35PAP Advanced Computer Architectures

Multilevel pagetables

Remarks to previous slide:
• Only a few processes uses whole available address space => it is not

necessary to allocate all 210 Page tables of the second level
• Page tables can be paged to disk (not used in Linux)

Overall notes:
• Intel IA32 implements 2-level page tables

• Level 1 Page Table is named as Page Direcory (10 bits for indexing)
• Level 2 Page Table is named simply Page Table (10 bits)

• For 64-bit virtual addresses is usual to use less bits for physical address
– for example 48 or 40 and even virtual address has some limitations.

• Intel Core i7 uses 4-level page tables and 48 address space
• Level 1 Page Table: Page global directory (9 bits) indexed by bits 39..47
• Level 2 Page Table: Page upper directory (9 bits) indexed by bits 30..38
• Level 3 Page Table: Page middle directory (9 bits) indexed by bits 21..29
• Level 4 Page Table: Page table (9 bits) indexed by bits 12..20

87B4M35PAP Advanced Computer Architectures

Which fields are in page table entries?

Look-up TablePage # Offset

V Access rights Frame#

+Index into
pagetable

Page table

PA – physical address

Page table placed in physical memory

VA – virtual
address

Page Table
Base Register

PTBR

Page valid bit – if = 0,
page not in the memory

results in page fault

88B4M35PAP Advanced Computer Architectures

Which fields are in page table entries?

• bit 0: Present bit – informs if page is present in memory(1) or on disc (0)
Named as V – valid bit in some other sources/architectures.

• bit 1: Read/Write: if 1 – R/W; if 0 – only read allowed (RO)
• bit 2: User/Supervisor: 1 – user accessible; 0 – only OS
• bit 3: Write-through/Write-back – cache strategy for given page
• bit 4: Cache disabled/enabled – some peripherals are mapped into

memory space (memory mapped I/O), this allows immediate read/write of
its registers. These addresses can be considered as un-cached I/O ports.

• bit 5: Accessed – set if page content is read/written by CPU – is used
during decission which pages should be freed when memory is required.

Analyze entries of Page Directory (Page Table na 1.úrovni)
31… 1 0

Can be used by operating system P=0

31… 12 6 5 4 3 2 1 0
Base address of Page table … A PCD PWT U/S R/W P=1

89B4M35PAP Advanced Computer Architectures

Which fields are in page table entries?

• bit 6: Dirty bit – Is set if page has been modified (written into) after last
operating system check. Such page has to be written back to swap in
case of PFN reuse for other purposes. Operating system is responsible
to clear of Dirty and Accessed bits.

Analyze entries of (leaf) Page Table (Page Table of level 2 for example)
31… 1 0

Can be used by operating system P=0

31… 12 7 6 5 4 3 2 1 0
Base address of Page … D A PCD PWT U/S R/W P=1

90B4M35PAP Advanced Computer Architectures

Remarks

V AR Frame#

• Each process has its own page table
• Process specific value of CPU PTBRT register is loaded

by OS when given process is scheduled to run
• This ensures memory separation and protection between

processes
• Page table entry format fields required to remember

• V – Validity Bit. V=0 page is not valid (is invalid)
• AR – Access Rights (Read Only, Read/Write, Executable, etc.),
• Frame# - page frame number (location in physical memory)
• Other management information, Modified/Dirty, (more bits

discussed later, permission, system, user etc.).

91B4M35PAP Advanced Computer Architectures

Virtual memory – Hardware and software interaction

Processor

Address
translation

Page fault
procession by OS

Main
memory

Secondary
store

a
Z

a'

Virtual address Physical address
OS process
data transfer

missing page, i.e. PTE.V = 0

92B4M35PAP Advanced Computer Architectures

How to resolve page-fault

• Check first that fault address belongs to process mapped areas

• If free physical frame is available

• The missing data are found in the backing store (usually swap or file on
disk)

• Page content is read (usually through DMA, Direct Memory Access, part
of some future lesson) to the allocated free frame. If read blocks, the OS
scheduler switches to another process.

• End of the DMA transfer raises interrupt, OS updates page table of
original process.

• Scheduler switches to (resumes) original process.

• If no free frame is available, some frame has to be released

• The LRU algorithm finds (unpinned – not locked in physical memory by
OS) frame, which can be released.

• If the Dirty bit is set, frame content is written to the backing store (disc). If
store is a swap – store to the PTE or other place block nr.

• Then continue with gained free physical frame.

93B4M35PAP Advanced Computer Architectures

Virtual memory and files on disk (secondary memories)…

• Virtual memory extends available “physical” memory by secondary
memory space. The pages are automatically swapped/read to/from disc.
This can be reused…

• Mapping of programs and dynamic libraries into memory:
• Programs and libraries are stored as binary files (holding instructions

and data) in filesystem
• When new program is about to be run (process is allocated):

• OS notes at which virtual address ranges/areas (VMA) should
be blocks of file available in given address space

• OS actualizes process Page table as result of fault and uses
information noted in VMAs to fill pages by right content from file
then sets entries as Valid=1. In case of physical memory
pressure discards unmodified pages ans sets Valid=0

• Program is read automatically by memory management as it runs…
• See mmap() – functions allocates VMA and update Page table such

way that area is transparent window into part of whole file.

94B4M35PAP Advanced Computer Architectures

Multilevel page table – translation overhead

• Translation would take long time, even if entries for all levels were
present in cache. (One access per level, they cannot be done in
parallel.)

• The solution is to cache found/computed physical addresses

• Such cache is labeled as Translation Look-Aside Buffer

• Even multi-level translation caching are in use today

95B4M35PAP Advanced Computer Architectures

Ideal translation case when TLB serves all translations

CPU (ALU)

TLB
Main

memory

Cache

hit

hit

miss

missvirtual
address

physical
address

TLB fill from
Page table

• Notice that single memory access can result in multiple misses
• If TLB miss occurs, it is necessary to run HW (or SW on some

architectures) page walk. It usually uses cached access to page table.

96B4M35PAP Advanced Computer Architectures

Fast MMU/address translation using TLB

• Translation-Lookaside Buffer, or may it be, more descriptive
name – Translation-Cache

• Cache of frame numbers where key is page virtual addresses
(virtual page frame number – VPFN)

97B4M35PAP Advanced Computer Architectures

Address stranslation – Intel Nehalem (Core i7)

http://cs.nyu.edu/courses/spring13/CSCI-UA.0201-003/lecture18.pdf

98B4M35PAP Advanced Computer Architectures

Address translation – Intel Nehalem (Core i7) – in more detail

99B4M35PAP Advanced Computer Architectures

Memory organization - Intel Nehalem (Core i7)

100B4M35PAP Advanced Computer Architectures

Memory organization - Intel Nehalem – some remarks

• Block size: 64B

• CPU reads whole cache line/block from

 main memory and each is 64B aligned

• (6 LS bits are zeros), partial line fills allowed
• L1 – Harvard. Shared by two (H)threads

instruction – 4-way 32kB, data 8-way 32kB
• L2 – unified, 8-way, non-inclusive, WB

• L3 – unified, 16-way, inclusive (each line stored in L1 or L2 has copy in L3), WB

• Store Buffers – temporal data store for each write to eliminate wait for write to
the cache or main memory. Ensure that final stores are in original order and
solve “transaction” rollback or forced store for:

- exceptions, interrupts, serialization/barrier instructions, lock prefix,..
• TLBs (Translation Lookaside Buffers) are separated for the first level

Data L1 32kB/8-ways results in 4kB range (same as page) which allows to use
12 LSBs of virtual address to select L1 set in parallel with MMU/TLB

101B4M35PAP Advanced Computer Architectures

Intel Core i7 – the same but different view

102B4M35PAP Advanced Computer Architectures

Typical sizes of today I/D and TLB caches comparison

Typical paged memory
parameters

Typical TLB

Size in blocks 16 000-250 000 40-1024

Size 500-1 000 MB 0,25-16 KB

Block sizes in B 4 000-64 000 4-32

Miss penalty
(clock cycles)

10 000 000 –
100 000 000

10-1 000

Miss rates 0,00001-0,0001% 0,01-2

Backing store Pages on the disk Page table in the
main memory

Fast access location Main memory frames TLB

103B4M35PAP Advanced Computer Architectures

More efficient memory use – means to speed up programs

Your program can take into account the page size and use
memory more efficiently - by aligning to the multiples of page
size, and then reducing internal and external page
fragmentation .. (ordering allocations etc. See also memory
pool)
#include <stdio.h>
#include <unistd.h>
int main(void) {

printf(„Page size id: %ld B.\n",
 sysconf(_SC_PAGESIZE));
return 0;

}

Allocation of memory aligned to some block size:
void * memalign(size_t size, int boundary)
void * valloc(size_t size)

104B4M35PAP Advanced Computer Architectures

windows

#include <stdio.h>
#include <windows.h>

int main(void) {
 SYSTEM_INFO s;
 GetSystemInfo(&s);
 printf("Page size is: %ld B.\n",
 ns.dwPageSize);
 printf("Address range for application (and dll):
 0x%lx – 0x%lx\n",
 s.lpMinimumApplicationAddress,
 s.lpMaximumApplicationAddress);
 return 0;
}

105B4M35PAP Advanced Computer Architectures

Are hierarchical (multilevel) page tables only alternative?
• Hierarchical page tables are (in fact) represent a tree structure that needs

to be searched

• Another alternative exists: Inverted Page Tables
• 64-bit virtual address space is quite large, physical memory is much

smaller -> big disproportion
• Idea: Physical memory is divided into pages. It is enough to have array of

rows equivalent to numebr of physical pages to store information to which
virtual page is physical one allocated.

• The problem is poor spatial locality (cacheability) as has result and
limitation to physical map page only to single virtual one

OffsetPage number

PID Virtual Page # Phys. Page #

Hash

PID

Hash Table:
Number of rows is equal to
number of physical pages

106B4M35PAP Advanced Computer Architectures

Virtual memory as used in Linux

107B4M35PAP Advanced Computer Architectures

Definitions – put things into context

• Linux organizes VM as collection
of virtual memory areas (VMA)

• Area is continuos block valid
process virtual memory, which
has some purpose. Example:
code segmant, data segment,
heap, shared library segment,
user stack.

• Each valid virtual page belong
to some VMA.

• Use of areas/segments allows to
organize virtual memory with
„gaps“ – segments are not
required to follow up each other.
Even higher levels of page tables
can be populated at runtime.

108B4M35PAP Advanced Computer Architectures

struct task_struct
struct task_struct {

 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */

 long counter;
 long priority;

 unsigned long signal;

 unsigned long blocked; /* bitmap of masked signals */

 unsigned long flags; /* per process flags, defined below
*/

 int errno;

 long debugreg[8]; /* Hardware debugging registers */

 struct exec_domain *exec_domain;

 struct linux_binfmt *binfmt;

 struct task_struct *next_task, *prev_task;

 struct task_struct *next_run, *prev_run;

 unsigned long saved_kernel_stack;
 unsigned long kernel_stack_page;

 int exit_code, exit_signal;

 unsigned long personality;

 int dumpable:1;

 int did_exec:1;

 int pid;

 int pgrp;

 int tty_old_pgrp;

 int session;

 int leader;

 int groups[NGROUPS];

struct task_struct *p_opptr, *p_pptr, *p_cptr,
 *p_ysptr, *p_osptr;

struct wait_queue *wait_chldexit;

unsigned short gid,egid,sgid,fsgid;

 unsigned long timeout, policy, rt_priority;

 unsigned long it_real_value, it_prof_value, it_virt_value;

 unsigned long it_real_incr, it_prof_incr, it_virt_incr;

 struct timer_list real_timer;

 long utime, stime, cutime, cstime, start_time;

unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;

 int swappable:1;

 unsigned long swap_address;

 unsigned long old_maj_flt; /* old value of maj_flt */

 unsigned long dec_flt; /* page fault count of the last time */

 unsigned long swap_cnt; *number of pages to swap on next pass */
struct rlimit rlim[RLIM_NLIMITS];

 unsigned short used_math;

 char comm[16];

int link_count;

 struct tty_struct *tty; /* NULL if no tty */

struct sem_undo *semundo;

 struct sem_queue *semsleeping;

struct desc_struct *ldt;

struct thread_struct tss;

struct fs_struct *fs;

struct files_struct *files;

struct mm_struct *mm; /* memory management info */
struct signal_struct *sig; /* signal handlers */

};

109B4M35PAP Advanced Computer Architectures

• task_struct contains (or better points) information which allows
kernel to manage execution of process (PID, pointer to user stack
user stack,…). mm_struct *mm is important for us now.

struct task_struct

mm_struct holds state of virtual
memory space. Nás zajímá:
• pgd_t *pgd;
• struct vm_area_struct *mmap;

PDBR (page directory base register) =
PTBR = CR3 (v x86) is set to pgd
value at process switch/schedule.

110B4M35PAP Advanced Computer Architectures

Page Fault Exception Handling - simplified

Consider that MMU (Mem Manag Unit) invokes Page Fault as result of
attempt to access some memory location/translate its virtual address A
(not present in TLB). This results in execution of Page Fault Handler:

• It check if A is valid. i.e. it A points within some VMA defined by
vm_area_struct. vm_start and vm_end limits are checked. Sequential
search of VMAs list is time consumpting => there is kept up to date
search RB tree for each process areas.
If address is not valid for process -> Segmentation Fault and kill

• If attempt is valid is operation permitted? access rights (read, write,
execute). If not -> Protection Exception and kill the process

• Access is legal to legal address. Free or victim physical page has to be
found and released (marked as invalid in appropriate page table(s) and
if dirty write it back to disk), load new/requested page content, actualize
Page Table. Finis and return from Page Fault Handler. CPU restarts
instruction causing Page Fault. MMU serves address A translation
correctly this time – without raising Page Fault.

111B4M35PAP Advanced Computer Architectures

Memory Mapping

Linux initialize content of (area) of virtual
memory by:
• Regular file (read from area result in read

from the file)
• Anonymous file/area – if CPU read from

given address the first time, kernel uses
RO mapping to the global zero initiated
page. For write it searches for free page or
releases some (if it is dirty it is written to
swap file), copies zero page, actualize
Page Table. These initially zeroed pages
are sometimes labeled as demand-zero
pages

More programmer use in mmap() function
• It maps files or devices into process

address space to be accessed directly by
CPU

112B4M35PAP Advanced Computer Architectures

Linux memory management structures

page table
page table
pgd_t pgd

file /bin/sh – struct
inode

struct address_space
 struct radix_tree_root page_tree

V
M

A
V

M
A

V
M

A
V

M
A

V
M

A

V
M

A

V
M

A
V

M
A

V
M

A
V

M
A

V
M

A

V
M

A

anon_
vma

mm_struct

r-b
tree

mm_struct

r-b
tree

thread B3
task_struct

thread B1
task_struct

thread B2
task_struct

A1
task_struct

sda1

sda2

MMU

CPU
current

n × TLB

PAGE_OFF
SET

sda1

sda2 NULL
protect

.text –
priv/ro
mapped

.data -
priv
mapped
from file

.bss - 0
initialize
d data

heap -
anon_vma
or
/dev/null
mmap

stack

libraries
.so files
mmap

u
s

e
r-

s
p

a
c

e
 –

 m
em

or
y

co
nt

ex
t

-
m

m
_s

tr
uc

t

k
e

rn
e

l
–

gl

ob
al

m

ap
pi

ng

virtual adress
space for process
A

file /bin/sh – struct
inode

filesystem on block device
/dev/sda1 – struct
super_block

b
lo

ck
 d

e
v

/d
e

v
/s

d
a

 –
 s

tr
u

ct
 b

lo
ck

_d
ev

ic
e

ELF
header

.text
LOAD
RO

.data
LOAD
RW

.bss
NOLOA
D
COMMO
N

VPFN

VPFN

VPFN

VPFN

VPFN

PFN

phys.
mem/
addresses

PFN
PFN

PFN
PFN
PFN

PFN
PFN

PFN
PFN
PFN

PFN
PFN

PFN
PFN

IO
 m

e
m

VPFN

VPFN

VPFN

VPFN

VPFN

VPFN

VPFN

VPFN

VPFN

VPFN

swap device
swap_info_str
uct

struct address_space
 struct radix_tree_root page_tree

proc. B

VMA = struct
vm_area_struct
PFN represented by struct
page

VPFN

VPFN

No
PFN
yet

mm_struct

r-b
tree

V
M

A
V

M
A

V
M

A
V

M
A

V
M

A

V
M

A

CO
W

mm_struct

r-b
tree

V
M

A
V

M
A

V
M

A
V

M
A

V
M

A

V
M

A

R
A

M

thread B3
task_struct

thread B1
task_struct

thread B2
task_struct

A1
task_structmodule

s

phys
map

CPU
current

page table

n × TLB

page table
pgd_t pgd

n × TLB

MMU

pu
d_

t p
ud

pm
d_

t
p

m
d

pt
e_

t p
te

Z
O

N
E

_D
M

A
32

, D
M

A
, N

O
R

M
A

L,

H
IG

H

anon_
vma

vmallo
c

See the description in the notes of the OpenDocument format

Virtual address space

Legend:

Hardware

Kernel structure

113B4M35PAP Advanced Computer Architectures

Significant problem with reverse pages mapping

• Multiple virtual pages (VPFN) from single or even
multiple processes can map to single physical page
(PFN).

• The mapping of virtual to physical page costs only
one entry (PTE) in the page table (4/8 byte) + some
much smaller amount in upper table levels (PGD,
PUD, PMD) + one are description (vm_area_struct)
for whole range.

• Physical pages are critical resource and each is
described by its struct page which is found directly
from its location page-frame-number (PFN)

• PFN = virtual_address >> PAGE_SHIFT

• Location of all PTE for given PFN is complicated but required to manage and
release/free physical page (for reuse) and invalidation all corresponding PTEs.

• If record is held for each page then it requires 8 bytes per list entry (next and PTE
pointer) but there is only ~900M lowmemory on x86 in 32-bit

• If 1000 processes maps 2G shared memory (code, same data) then lists for
reverse mapping take 1000*2*1024*1024*1024/4096*8/1024/1024/1024 = 3.9 GiB

VPFN

VPFN

VPFN

VPFN

VPFN

VPFN

PFN

PFN

PFN

PFN

VPFN

114B4M35PAP Advanced Computer Architectures

Structures used for reverse mapping
• Solution: objrmap + anon_vma + prio_tree

• Each physical page (page struct) points only to corresponding VMA or inode

• PTE is then found by searching given page in VMA , finding
its offset. VMA points to mm_struct which defines page table
for memory context. Location of PTE in page table is easy
from VMA start and page offset in VMA.

PFN struct page
address_space *mapping

PFN

PFN

PFN

anon_vmaanon_vma

struct inode
address_space *i_mapping, i_data

vma

vma

prio_tree

vma vma

struct page
address_space *mapping

struct page
address_space *mapping

struct page
address_space *mapping

115B4M35PAP Advanced Computer Architectures

Virtual memory are data structures
struct vm_area_struct {

struct mm_struct * vm_mm; /* The address space we belong to. */
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

 within vm_mm. */

/* linked list of VM areas per task, sorted by address */
struct vm_area_struct *vm_next;

pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */

struct rb_node vm_rb;

union {
struct {

struct list_head list;
void *parent; /* aligns with prio_tree_node parent */
struct vm_area_struct *head;

} vm_set;

struct raw_prio_tree_node prio_tree_node;
} shared;

struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
struct anon_vma *anon_vma; /* Serialized by page_table_lock */

/* Function pointers to deal with this struct. */
const struct vm_operations_struct *vm_ops;

/* Information about our backing store: */
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

 units, *not* PAGE_CACHE_SIZE */
struct file * vm_file; /* File we map to (can be NULL). */
void * vm_private_data; /* was vm_pte (shared mem) */
unsigned long vm_truncate_count;/* truncate_count or restart_addr */

};

For areas with an address
space and backing store,
linkage into the
address_space->i_mmap
prio tree, or linkage to
the list of like vmas
hanging off its node, or
linkage of vma in the
address_space->
 i_mmap_nonlinear list.

A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
list, after a COW of one of the file pages. A MAP_SHARED vma can
only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack or brk
vma (with NULL file) can only be in an anon_vma list.

116B4M35PAP Advanced Computer Architectures

Some system calls and their interaction with memory

• fork() – creates new process as a copy of calling one. All pages (except
of SHM) of parent are marked as Copy-On-Write (COW) and are shared
between processes – VMA are kept with original writable state but PTE of
parent and child are marked RO => only the first write result in page
separation/copying for child or parent and marking it RW

• clone() – create new process, but allows to control if memory
management and other aspect should be separated or shared with
parent process or thread => if MM shared then thread is created

• mmap() – creates new VMA/region in linear/virtual address space of
given process and allows to map file into it

• mremap() – remaps or modifies size and attributes of memory region
• munmap() – releases whole or part of region. (If unmapped in middle,

region is divided into two)
• shmat() – connects/maps shared memory segment to the process
• shmdt() – undoes shmat()
• exit() – destroys process and all its memory areas and regions

117B4M35PAP Advanced Computer Architectures

References

• Randal E. Bryant, David R. O’Hallaron: Computer Systems, A
Programmer’s Perspective.

• http://cs.nyu.edu/courses/spring13/CSCI-UA.0201-003/lecture18.pdf
• David Money Harris and Sarah L. Harris: Digital Design and

Computer Architecture, Second Edition. Morgan Kaufmann.

http://cs.nyu.edu/courses/spring13/CSCI-UA.0201-003/lecture18.pdf

	Slide 1
	Motivace pro přednášku z pohledu programátora?
	Architektura počítače
	Konkrétněji…
	Konkrétněji…
	Terminologie kolem pamětí
	Slide 7
	Typický čip a buňka SRAM
	Typický čip a buňka SRAM
	Typický čip a buňka SRAM
	Více-portová cache?
	Detail paměťové buňky dynamické paměti
	Vnitřní organizace čipu DRAM paměti
	Vývoj DRAM paměťových čipů v čase
	Klasická DRAM – asynchronní rozhraní
	SDRAM – konec 90.let – synchronní DRAM
	SDRAM – paměť současnosti
	Disproporce ve výkonu proc x pam, Moorův zákon
	Bubble sort – již znáte z cvičení
	Paměťová hierarchie – základní principy
	Co z uvedeného plyne?
	Paměťová hierarchie
	Jak a kde pak ale hledanou informaci najdeme?
	Slide 24
	Řešení disproporce rychlosti? Cache.
	Terminologie kolem skryté paměti
	Příklad
	Přímo mapovaná cache
	Přímo mapovaná cache
	Realističtější formát řádky cache
	Přímo mapovaná skrytá paměť – velikost bloku 4 slova
	Cache s omezeným stupněm asociativity N=2
	Cache s omezeným stupněm asociativity N=4
	Plně asociativní cache
	Terminologie kolem skryté paměti II.
	Porovnání
	Co přináší prostorová lokalita?
	Řešení situace Cache Miss, data v cache nejsou
	Řešení situace Cache Miss, data v cache nejsou
	Řešení situace Cache Miss, data v cache nejsou
	Řešení situace Cache Miss, data v cache nejsou
	Řešení situace Zápis dat procesorem do paměti
	Řešení situace Zápis dat procesorem do paměti
	Trend - Víceúrovňové SP
	Victim cache
	Victim cache
	Assist cache
	Pochopili jste tuto přednášku?
	Pochopili jste tuto přednášku?
	Pochopili jste tuto přednášku?
	Pochopili jste tuto přednášku?
	Pochopili jste tuto přednášku?
	Pochopili jste tuto přednášku?
	Pochopili jste tuto přednášku?
	Co je špatně? – viz. pahole
	Ponaučení
	Pochopili jste tuto přednášku?
	Pochopili jste tuto přednášku?
	Pochopili jste tuto přednášku?
	Obcházení cache může rovněž urychlit Vaše programy
	Optimalizujte často volané funkce
	Optimalizujte často volané funkce
	Jak zjistit paramatry cache?
	Virtuální paměť.
	Motivace k virtuální paměti..
	Motivace k virtuální paměti..
	Motivace k virtuální paměti.. - Ponaučení z předchozího slide:
	Příklad č.1
	Virtualizace paměti
	Virtuální paměť - stránkování
	Virtuální paměť - stránkování
	Virtuální a fyzické adresování
	Virtuální a fyzické adresování - detailněji
	Vraťme se k příkladu č.1
	Vraťme se k příkladu č.1
	Vraťme se k příkladu č.1
	Vraťme se k příkladu č.1
	Vraťme se k příkladu č.1
	Vraťme se k příkladu č.1
	Realizace převodu adres?
	Realizace převodu adres?
	Realizace převodu adres?
	Uvažujme…
	Více-úrovňové stránkování
	Více-úrovňové stránkování – 2 úrovně
	Více-úrovňové stránkování
	Tabulka stránek – jak vypadají položky? Význam položek…
	Tabulka stránek – jak vypadají položky? Význam položek…
	Tabulka stránek – jak vypadají položky? Význam položek…
	Poznámky
	Virtuální paměť: spolupráce HW a SW
	Co dělat, když je výpadek stránky – Page Fault?
	Virtuální paměť a soubory na disku…
	Více-úrovňové stránkování – Problém rychlosti
	Idealizace překladu adres pomocí TLB - čtení
	Rychlá realizace Tabulky stránek - TLB
	Překlad adres – Intel Nehalem (Core i7)
	Překlad adres – Intel Nehalem (Core i7) – detailněji
	Organizace paměti - Intel Nehalem (Core i7)
	Organizace paměti - Intel Nehalem – několik poznámek
	Intel Core i7 – to samé, jiný pohled
	Slide 102
	Efektivnější používáni paměti – prostředek zrychlení programu
	windows
	Jsou hierarchické stránkovací tabulky jedinou možností?
	Virtuální paměť z pohledu Linuxu
	Pojmy – dejme věci do souvislostí
	struct task_struct
	struct task_struct
	Page Fault Exception Handling - zjednodušeně
	Memory Mapping
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Některá systémová volání z pohledu paměti
	References

